Input: Results of survey form and google form | |
Output: T2DM lifestyle disease prediction models | |
BEGIN | |
STEP 1: Prepare the dataset from survey form and Google form | |
STEP 2: Preprocess the dataset: | |
STEP 2.1: Data integration | |
STEP 2.2: Data transformation | |
STEP 2.3: Data cleaning | |
STEP 3: Xtrain , Ytrain--75% of dataset | |
STEP 4: Xtest , Ytest--25% of dataset | |
STEP 5: Machine learning algorithms that are used in the models | |
mn=[ KNN( ), LR( ), SVM( ), NB( ), DT( ), RF( ), GB( )] | |
for(i=0; i<7; i++) do | |
Model= mn[i]; | |
Model.fit(); | |
model.predict(); | |
print(Accuracy(i), confusion_matrix, classification_report, roc_curve); | |
End | |
STEP 6: Deployment of framework | |
STOP |