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Abstract

Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have 

uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular 

tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is 

central to physiological NO signaling, serving as the active site for canonical NO biosynthesis 

in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the 

soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, 

other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of 

nitrite. This auxiliary hemoprotein reaction unlocks a “second axis” of NO signaling in which 

nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent 

physiological pathways and examine complex chemical and biochemical reactions that govern NO 

and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate 
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and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including 

NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and 

tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these 

key reaction pathways to target NO signaling and treat a wide range of diseases.

Graphical Abstract

INTRODUCTION

The connection between nitric oxide (NO), a neutral diatomic molecule bearing a single 

unpaired electron, and human physiology was first realized in the context of vasoregulation 

when NO was identified as the endothelium-derived relaxing factor that activates the 

enzyme soluble guanylyl cyclase (sGC). Robert Furchgott, Ferid Murad, and Louis Ignarro 

received the Nobel Prize in Physiology or Medicine in 1998 for seminal contributions 

to this discovery of “nitric oxide as a signaling molecule in the cardiovascular system”. 

Central to this connection was the discovery that NO binding to heme directly enhances 

the activity of sGC, which catalyzes the formation of cyclic guanosine monophosphate 

(cGMP). As a second messenger, cGMP goes on to stimulate smooth muscle cells, primarily 

through the activation of protein kinase G (PKG). In the more than 30 years since 

this NO-dependent regulatory paradigm was established, rich collaborative efforts among 

investigators in inorganic chemistry, physiology, and biomedicine have elucidated much of 

the complex chemical reactivity and nuanced physiological regulatory functions of NO. 

Researchers have uncovered physiological sources of NO through enzymatic biosynthesis 

[by nitric oxide synthase (NOS)] as well as through redox bioactivation of the stable NO 

precursor nitrite (NO2
−). Additional downstream effects of the NO–sGC–cGMP pathway 

have been determined, such as the regulation of platelet activation and inflammation. 

New physiological targets of NO and its derivatives have also been identified, including 

reactive thiols, tyrosine residues, and unsaturated fatty acids. These new discoveries have 

expanded the scope of NO-dependent regulation beyond cardiovascular homeostasis, and 

NO signaling is now implicated in many physiological and pathophysiological processes, 

such as neurotransmission, host defense, carcinogenesis, and response to oxidative stress. 

The primary objective of this Forum Article is to review critical oxidative and reductive 

reactions that govern NO and NO2
− signaling, with a particular focus on reactions with 

hemoproteins. We will also highlight key NO-dependent signaling pathways and review 

emergent therapeutic strategies that target these pathways. Given our laboratory’s experience 

in nitrite bioactivation, we specifically emphasize the complex chemical and biochemical 

pathways that enable nitrite to modulate NO-dependent pathways and the therapeutic 

approaches that utilize this stable NO precursor.
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SGC: THE CENTRAL NO RECEPTOR

NO regulates a number of critical biological processes via the NO–sGC–cGMP signaling 

pathway. In humans, picomolar-to-nanomolar concentrations of NO in vascular smooth 

muscle tissue enhance the guanylyl cyclase activity of sGC by several hundredfold, 

resulting in an increase of the second messenger molecule cGMP.1–3 This activation of 

sGC occurs within milliseconds of NO exposure in cells.4 cGMP subsequently interacts with 

downstream targets, including protein kinases and ion channels that regulate physiological 

processes such as vasodilation, platelet aggregation, and neurotransmission.5 Disruption of 

the NO–sGC–cGMP pathway is implicated in a large number of cardiovascular diseases, 

including pulmonary hypertension, peripheral vascular disease, and atherosclerosis.6–8 

Myriad studies have sought to elucidate the detailed molecular mechanisms of NO-

dependent regulation, largely because of the connection between the NO–sGC–cGMP 

pathway and cardiovascular diseases, which are responsible for 1 in 3 deaths worldwide. In 

addition to NO itself, sGC has garnered significant therapeutic interest as pharmacological 

stimulators, and activators of sGC can enhance the enzymatic activity (and subsequent 

production of cGMP) independent of or in conjunction with NO.9

sGC Structure and Function.

sGC is a 150 kDa heterodimeric protein that contains two polypeptide chains (α, 690 

a.a. residues; β, 620 a.a. residues) with modest sequence similarity and identical domain 

architectures. While multiple sGC polypeptide isoforms exist in humans (α1, α2, β1, and 

β2), the α1β1 heterodimer is ubiquitously expressed and most commonly studied.10,11 Both 

α and β subunits contain three domains: an N-terminal heme–nitric oxide binding (HNOB) 

domain (also referred to as a heme–nitric oxide–oxygen, or HNOX, domain), a HNOB-

associated (HNOBA) domain comprised of a Per-Arnt-Sim (PAS)-like domain linked to a 

long α-helix that forms a parallel dimeric coiled-coil (CC) with the other monomer, and 

a C-terminal catalytic domain.12,13 A b-type heme binds to the β-subunit HNOB domain 

via a histidine side-chain ligand (His105), and NO binding to this five-coordinate heme 

site modulates guanylyl cyclase activity in the catalytic cyclase domain.14–16 Interactions 

between HNOBA domains facilitate α/β dimerization.17–19 The sGC catalytic domain is 

a member of the class III cyclase family and contains a single active site at the interface 

of the α/β heterodimer.17,20,21 In the active site, two Mg2+ cations and several hydrogen 

(H)-bond-donating amino acid residues stabilize GTP binding and facilitate intramolecular 

cyclization.22,23

NO-dependent activation of sGC occurs upon formation of a nitrosyl-heme species and 

ensuing scission of the axial His105 bond. Ignarro and colleagues first proposed this NO-

dependent activation model based on several key observations: (1) heme is required to 

observe a NO-dependent increase in sGC enzymatic function, (2) direct addition of nitrosyl-

heme complexes enhances the activity of apo-sGC, and (3) incubation of apo-sGC with iron-

free protoporphyrin IX enhances enzymatic activity in a manner similar to that observed 

upon NO binding to heme-bound enzyme.1,24 A slew of spectroscopic investigations 

subsequently confirmed this activation model through direct observation of five-coordinate 

heme-nitrosyl species, which correlated with increased enzymatic activity.15,16,25–29

Dent et al. Page 3

Inorg Chem. Author manuscript; available in PMC 2022 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Long-range structural reorganization accounts for NO-induced allosteric signal transduction 

in sGC. After years of structural studies using sGC truncates, Kang et al. recently reported 

moderate-resolution (3.8–3.9 Å) cryo-electron microscopy (cryo-EM) structures of full-

length sGC in inactive (ferric and unliganded ferrous) and active (ferrous-NO-bound) forms 

(Figure 1).30 NO binding to the β-HNOB heme triggers a structural reorganization of the 

N-terminal sensor module (encompassing HNOB and HNOBA domains from α and β 
subunits). This conformational change is accompanied by extension of the α and β CC 

helices, as well as a 70° rotation of the relative orientation of the two helices. Rotation of 

the CC helices drives reorganization of the catalytic module: the active site volume increases 

to accommodate Mg2+ cations and the GTP substrate, thereby lowering KM and increasing 

guanylyl cyclase activity. A second cryo-EM study comparing active and inactive structures 

of sGC from the moth species Manuca sexta, published shortly after the Homo sapiens sGC 

study, largely corroborated the proposed structural model.31 These authors also observed 

reorientation of the sensor module, accompanied by elongation and rotation of the CC 

helices and ultimately opening of the GTP-binding active site in the catalytic module.

Ligand Selectivity at the sGC Heme.

A critical detail of the NO–sGC–cGMP pathway is that NO binds sGC via the iron-

containing cofactor heme. Metal cofactor binding and subsequent physiological signal 

transduction occur commonly for NO and other related “small molecule bioregulators”, 

such as dioxygen (O2), carbon monoxide (CO), and hydrogen sulfide (H2S). These Lewis 

base-type signaling molecules are historically described as “gasotransmitters”; however, 

relevant signaling interactions occur between molecules dissolved in solution, not in the 

gaseous phase, and we therefore refrain from using this term. Because of the ostensible 

similarity of these small-molecule bioregulators and their respective target metal centers, 

selectivity by small-molecule-sensing proteins is paramount.

Unlike most hemoproteins, sGC does not bind O2 with a high affinity but exhibits exquisite 

selectivity for NO. The factors that dictate small-molecule heme-binding affinities have 

recently been reviewed in terms of a “sliding scale rule” for hemoproteins.32–35 This sliding 

scale rule posits that five-coordinate iron(II) hemoproteins bearing an axial, neutral His 

ligand exhibit an intrinsic ligand selectivity for the diatomic small molecules NO, CO, and 

O2: KD(CO)/KD(NO) ≈ KD(O2)/KD (CO) ≈ 103–104. Four protein-derived structural factors 

in the heme pocket may alter the absolute and/or relative affinities of these ligands: (1) 

proximal Fe–N(His) bond strength (also described as “proximal ligand strain”), (2) distal 

pocket steric hindrance, (3) distal pocket electrostatics, and (4) the presence of a distal 

pocket H-bond donor. Differences in ligand access channels and heme distortions may also 

dictate hemoprotein selectivity, but detailed systematic investigations are required to fully 

understand these factors.34

In sGC, ligand selectivity against O2 is primarily dictated by two factors: a weak proximal 

Fe–N(His) bond and lack of a distal pocket H-bond donor. The Fe–N(His) bond in ferrous 

sGC is very weak, as evidenced by the remarkably low Fe–N stretching frequency (204 

cm–1)29 compared to those of other His-ligated hemoproteins such as deoxyhemoglobin 

(215 cm−1)36 and deoxymyoglobin (218 cm−1).37 Changes in the proximal ligand bond 
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strength modulate the ligand affinities for NO, CO, and O2 in a similar manner: the weaker 

the Fe–N(His) bond, the lower the ligand binding affinity across the board. Distal heme 

pocket H-bond donation selectively stabilizes O2 binding in five-coordinate hemoproteins, 

as observed for hemoglobin and myoglobin.38 This structural factor likely contributes to 

poor O2 binding in sGC, which lacks a H-bond donor in the distal pocket. Supporting this 

hypothesis, a bacterial H-NOX protein (with sequence and structural homology to sGC) 

bears a H-bonding Tyr residue in the distal heme pocket and forms a stable oxyferrous 

species.39,40 While substitution of the analogous distal pocket residue in human sGC 

(Ile145) with Tyr does not give rise to a stable oxyferrous species,41 steric clashes likely 

impart geometric constraints that preclude proper H-bond donation in this mutagenic model. 

Taken together, these factors lead to an estimated binding dissociation constant for O2 of 

around 1.4 M, far exceeding the solubility of O2 in aqueous solution (~260 μM).32,34

At equimolar concentrations, NO reversibly binds to the five-coordinate sGC heme to form 

a relatively stable six-coordinate species with a NO dissociation constant of 54 nM (KD = 

koff,6-c/kon,5-c = 27 s−1/1.4 × 108 M−1 s−1 at 24 °C).3,33 This NO affinity is consistent with 

the sliding scale rule: the dissociation constant for CO binding to sGC is 97 μM,42 roughly 3 

orders of magnitude lower than that of NO.34 Taken in the context of physiological signaling 

in the vascular wall, which occurs at low nanomolar concentrations of NO,43 it is likely that 

the above KD value is an overestimation and/or that only a small fraction of sGC is required 

to trigger the activation of downstream PKG. Unfortunately, it has been difficult to rectify 

the kinetic properties ascribed to sGC through in vitro experimentation, with the complex 

NO signaling dynamics observed in vivo. Understanding the exact nature of NO binding 

and subsequent sGC signaling presents an extreme challenge for the field, and creative 

cross-disciplinary approaches are needed to fully understand these complexities.

Adding to the complexity of sGC-dependent signaling is the controversial notion 

that CO activates sGC under physiological conditions. Several studies have invoked 

CO-induced activation of sGC under physiological conditions in the context of 

neurotransmission,44 regulation of vascular tone,45 and inhibition of vascular smooth muscle 

cell proliferation.46,47 However, as noted above, the CO binding affinity of the sGC heme is 

~100 μM, while the basal physiological levels of CO vary between 2 and 5 nM.42,48,49 Even 

though it is possible that localized CO concentrations may rise above basal levels under 

pathophysiological conditions (e.g., inhaled CO poisoning), CO-bound sGC remains six-

coordinate and exhibits 80-fold lower enzymatic activity compared to that of five-coordinate, 

NO-bound sGC.26 Likely the only relevant context of CO-induced activation of sGC is in the 

presence of pharmacological sGC stimulators, which enhance sensitivity to small-molecule 

bioregulators (vide infra).

While CO is unlikely to activate sGC, mounting evidence suggests that CO itself still 

possesses properties of a signaling molecule under physiological conditions, indicating 

other (metalloprotein) targets. CO, which is generated as a byproduct of heme degradation 

by O2- and NADPH-dependent heme-oxygenase (HO) enzymes, has been implicated in 

maintaining homeostatic function through transcriptional regulation of circadian rhythm 

and regulation of large-conductance Ca2+ channels.50–52 The precise molecular targets of 

CO that confer these effects remain elusive, although spectroscopic investigations have led 
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to the identification of several hemoprotein targets of CO, including NPAS2/CLOCK and 

Rev-Erbβ as well as Ca2+- and voltage-gated K+ channels.53–59 These hemoproteins exhibit 

high (nM) CO binding affinities; however, the relative affinities of NO and O2 have not been 

determined. Additionally, a large conceptual gap still exists between in vitro CO-binding 

properties of these putative mammalian CO sensors and in vivo conditions that could result 

in CO-dependent signaling. One step toward closing this gap is to better understand the 

spatiotemporal distribution of CO and NO in cellular and animal models. Understanding the 

interplay between and NO and CO signaling is a crucial area of future study because NO 

and CO likely compete for heme sites under certain physiological and pathophysiological 

conditions.

sGC as a Therapeutic Target: Pharmacological Stimulators and Activators.

Given the central role of sGC in the NO–sGC–cGMP signaling axis and the relevance of this 

pathway to cardiovascular disease, many therapeutic strategies that directly target sGC have 

been developed. Strategies aimed at targeting sGC via NO biosynthesis will be discussed in 

detail below. In this section, we briefly highlight pharmacological approaches to modulate 

sGC activity in the context of stimulators and activators. For a comprehensive overview of 

sGC therapeutic strategies, we direct the reader to recent reviews.9,60

sGC stimulators have emerged as a promising class of therapeutics currently 

undergoing preclinical and clinical studies to treat pathophysiological conditions including 

cardiovascular, fibrotic, hematologic, and metabolic diseases. sGC stimulators are organic 

small molecules that interact directly with the sGC β1 HNOB subunit bearing a ferrous 

heme that is primed for NO sensing. Pharmacologic enhancement of the sGC enzymatic 

activity was initially characterized as direct stimulation in an NO-independent manner,61–64 

but subsequent studies have demonstrated that sGC stimulators also sensitize the enzyme 

to NO (and CO), allowing for NO-dependent activation at lower concentrations of NO.65 

The detailed molecular interactions that confer stimulatory activity on this class of drugs are 

not completely understood but likely involve contacts between a stimulator molecule and 

the heme-containing β1 HNOB domain. Presumably, these interactions stabilize active sGC 

protein conformation30,31 and/or enhance NO geminate recombination by blocking a heme 

pocket exit channel.66,67 Preclinical animal models have suggested roles for sGC stimulators 

in the treatment of a wide variety of diseases, including pulmonary hypertension,68,69 

heart failure,70 chronic kidney disease,71,72 fibrosis,73–75 metabolic disease,76 and sickle 

cell disease.77 Building on these preclinical findings, researchers have conducted (or are 

currently conducting) clinical trials to extend therapeutic applications of sGC stimulators to 

human patients. One stimulator compound, riociguat (BAY 63–2521), has been approved 

to treat pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary 

hypertension.78,79 An ongoing phase 2 clinical trial in our laboratory is assessing the use of 

riociguat to mediate severe adverse cardiovascular events associated with sickle cell disease 

(NCT02633397). Two recently completed phase 3 trials assessed the efficacy of vericiguat 

(BAY 1021189), another sGC stimulator,80 as a treatment for heart failure with reduced 

ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). 

These studies found that vericiguat treatment improved outcomes (death and incidence of 
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hospitalization) for patients with HFrEF, but outcomes (physical limitation score and 6 min 

walking distance) for patients with HFpEF did not improve upon treatment.81,82

sGC activators comprise a second class of drugs that enhance the enzymatic activity of sGC 

with inactive (ferric) heme or no heme present.83 These activators serve as heme analogues 

that allosterically enhance sGC activity by mimicking the structure of a ferrous nitrosyl-

heme adduct, either through direct binding to apo-sGC or replacement of ferric heme.84,85 

Oxidation and loss of heme contribute to sGC inactivation and signal degradation. Such 

sGC loss is exacerbated under conditions of oxidative stress, and sGC activators may 

serve as a complementary pharmacologic intervention under pathophysiological conditions 

to enhance sGC activity and prevent enzymatic degradation.86–89 In a preclinical study, 

mice that express heme-free sGC develop hypertension and exhibit blunted NO-dependent 

vasodilation; however, treatment with the sGC activator cinaciguat (BAY 58–2667) 

significantly decreased blood pressure, consistent with heme-independent activation.90 

While preclinical studies demonstrating the pharmacological benefits of sGC activators 

were promising, several clinical trials aimed at treating acute heart failure and peripheral 

arterial occlusive disease using cinaciguat were stopped after patients exhibited hypotension 

without clear benefits.70 One open phase 1 clinical trial (NCT04609943) seeks to assess 

dose limitations of activator compound BAY 1211163 in patients with acute respiratory 

distress syndrome. Further research is required to better understand the limitations and ideal 

clinical applications of sGC activators.

L-ARGININE OXIDATION: NO BIOSYNTHESIS BY NOS

The canonical NO biosynthetic pathway features NOS enzymes that catalyze the oxidation 

of L-arginine to L-citrulline and NO. NOS enzymes are widely distributed among different 

tissues and are critical in the maintenance of vascular homeostasis as well as regulation 

of inflammation, immune response, and neurotransmission.91 NOS-dependent generation 

of NO directly modulates the NO–sGC–cGMP signaling axis and therefore represents a 

valuable therapeutic target in NO signaling.

The NOS active site consists of a five-coordinate, thiolate-ligated heme center where two 

sequential O2- and NADPH-dependent oxidation reactions occur via generation of a highly 

oxidizing iron–oxo species. First, one of the arginine guanidino N atoms is hydroxylated to 

form Nω-hydroxy-L-arginine (NOHA), which is subsequently oxidized in a second reaction 

to form L-citrulline and a ferric nitrosyl species.92 In order to become bioavailable, NO 

must dissociate from the ferric heme site. Untimely reduction of the ferric nitrosyl-heme to 

a nonlabile ferrous nitrosyl species initiates a “futile cycle” in which the enzyme returns 

to the ferric resting state upon reaction with O2 and generation of nitrate. Thus, for 

optimal NO synthesis, reduction of ferric nitrosyl-heme occurs at a slow rate relative to NO 

dissociation from the ferric heme; however, reduction of the ferric–superoxo heme species 

and subsequent disproportionation occurs at a fast rate relative to superoxide dissociation.

To accommodate these kinetic constraints, the NOS enzymatic complex employs several 

cofactors and intricate quaternary structural interactions. The active site in the N-terminal 

oxygenase domain binds heme and the electron-transport mediator tetrahydrobiopterin 
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(BH4). NADPH, which binds to a C-terminal reductase domain, reduces flavin adenine 

dinucleotide and flavin mononucleotide cofactors in the reductase domain before ultimately 

reducing the heme or BH4 cofactors in the oxidase domain. An intervening calmodulin 

binding domain regulates electron shuttling from the reductase domain to the oxygenase 

domain: calmodulin binding to a NOS homodimer enables domain swapping in which 

electrons from one reductase domain monomer reduce the opposite oxygenase domain, 

triggering NO production in the presence of O2 and L-arginine substrates.93–96

Three NOS isoforms exist in humans: neuronal NOS (nNOS, NOS I), inducible NOS 

(iNOS, NOS II), and endothelial NOS (eNOS, NOS III). These three isoforms are 

structurally homologous and share 50–60% overall sequence homology,97,98 although 

significant differences exist between nNOS, iNOS, and eNOS. These NOS isozymes exhibit 

differential expression patterns at the tissue and subcellular levels.60 Both nNOS and 

eNOS are constitutively expressed, and protein activity is primarily dictated by calmodulin/

Ca2+ binding and post-translational modifications.99–101 For example, half-maximal activity 

for nNOS and eNOS occurs at Ca2+ concentrations of 150 and 300 nM, respectively, 

while iNOS activity exhibits no Ca2+ dependence.98,102 Unlike nNOS and eNOS, iNOS 

is primarily regulated at the transcriptional level.102 Differences in kinetic parameters, 

including the heme reduction rate, O2 binding rate, kcat, and NO release rate, enable 

NOS isoforms to produce NO at different fluxes under different cellular conditions.92,103 

We direct the reader to several excellent reviews for more details regarding physiological 

regulation of isoform-specific NOS activity.60,91,98,100,104,105

Uncoupling of NOS enzymes, particularly eNOS, lowers NO production and often generates 

highly oxidizing superoxide and peroxynitrite species. Formally, NOS uncoupling occurs 

when NADPH consumption does not match stoichiometric NO production.60,106–108 

Such uncoupling may be caused by a deficiency of the L-arginine substrate, either 

through trafficking/compartmentalization or metabolism by arginases.109–113 Alternatively, 

NOS uncoupling may arise when electron shuttling between reductase and oxygenase 

domains is disrupted. Changes in the quaternary structure, including calmodulin and/or 

dimer dissociation, give rise to NOS uncoupling, often with concomitant generation of 

superoxide.114–119 Equivalents of superoxide may rapidly react with nearby NO, resulting 

in the formation of peroxynitrite, a highly reactive oxidant.120 In the presence of strong 

oxidants, such as superoxide- or peroxynitrite-derived species, BH4 can be oxidized to 

dihydrobiopterin (BH2), which competitively binds to eNOS and is unable to facilitate heme 

reduction and subsequent L-arginine hydroxylation.121–123 Post-translational modifications, 

including glutathionylation of eNOS cysteine residues and phosphorylation of a critical 

threonine residue, have been shown to disrupt electron flow and uncouple NOS activity 

as well.101,124–126 Importantly, eNOS is responsible for the production of basal NO levels 

that maintain optimum cardiovascular function,127 and eNOS uncoupling is implicated in 

myriad cardiovascular diseases.128–133 Therapeutic strategies to combat eNOS uncoupling 

focus on increasing bioavailable L-arginine or BH4 by direct supplementation, stimulation of 

production pathways, or inhibition of metabolic/decomposition pathways.134–138
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NITRITE REDUCTION: THE NITRATE–NITRITE–NO PATHWAY

While NOS enzymes represent the canonical physiological source of NO, additional routes 

for NO generation have been established in recent years via the nitrate–nitrite–NO pathway. 

This pathway is critical for NO regulation and metabolism; nitrite and nitrate serve as 

long-lasting NO storage pools and have become valuable therapeutic targets in the past 20 

years. Importantly, many of the chemical and biochemical reactions that convert nitrate and 

nitrite to NO occur under O2-limited conditions, allowing the nitrate–nitrite–NO pathway to 

complement O2-dependent NO production in NOS enzymes.

Inorganic nitrate (NO3
−) and nitrite (NO2

−) act as stable NO precursors under physiological 

conditions. Facultative anaerobes inhabiting the human salivary glands reduce dietary nitrate

—abundant in leafy green vegetables, beets, and cured meats—to nitrite using reductase 

enzymes analogous to those found in soil-denitrifying bacteria.139–141 Once swallowed, 

ingested nitrite and nitrate that exceed capacity for oral bacterial reduction can be absorbed 

in the gastrointestinal tract. Interestingly, as much as 25% of nitrate circulating in the 

plasma is reconcentrated in saliva via the sialin transporter, driving an enterosalivary 

recirculation of nitrate and additional nitrate reduction.142,143 Nitrite and nitrate are also 

generated endogenously through oxidation of NO primarily derived from eNOS.144 In 

plasma, oxidation of NO to form nitrite is catalyzed by the multicopper oxidase enzyme 

ceruloplasmin (eq 1).145

NO+Cu2 + + H2O Cu+ + NO2
− + 2H+ (1)

Reoxidation of copper occurs in an O2-dependent fashion. Under basal conditions, dietary 

nitrate reduction accounts for approximately half of the nitrite found in the plasma, while 

NO oxidation by ceruloplasmin accounts for the other half.146–148 While exogenous sources 

likely contribute to the majority of nitrate found in the body,149 endogenous oxidation of 

NO to form nitrate, a process known as NO dioxygenation, is facilitated by oxyferrous heme 

sites (eq 2).150,151

FeII − O2 + NO FeIII + NO3
− (2)

NO dioxygenation, a reaction common to all oxyferrous hemoproteins, has been specifically 

characterized in globin proteins found in the vasculature in vivo, including α-hemoglobin 

and cytoglobin,152–155 and likely contributes to regulation of the NO levels in the vascular 

endothelium.

Noncatalytic nitrite reduction to NO can occur in vivo as the physiological pH decreases. 

Nitrite is a weak base with a pKa value of 3.11 at 37 °C,156 and the standard reduction 

potential for nitrite changes significantly from highly favorable under acidic conditions to 

unfavorable under basic conditions (eqs 3 and 4).157,158

Reductive half-cell reaction for nitrite under acidic conditions:

HNO2 + H+ + e− NO + H2O E° = 0.99V (3)
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Reductive half-cell reaction for nitrite under basic conditions:

NO2
− + H2O + e− NO + 2OH− E° = − 0.46V (4)

Further, a well-accepted mechanism of nitrite reduction in acidic, aqueous solution involves 

dehydration of nitrous acid to generate dinitrogen trioxide (N2O3; eq 5), followed by 

disproportionation of N2O3 to generate 1 equiv of NO and 1 equiv of nitrogen dioxide 

(NO2; eq 6).

2HNO2 N2O3 + H2O (5)

N2O3 NO + NO2 (6)

This acid-promoted nitrite reduction is viable under conditions of low pH and high nitrite 

concentrations.159,160 During ischemia, reduced blood flow results in tissue acidosis that 

may support acid-promoted nitrite reduction.161 Additionally, the above conditions are met 

in the stomach after a nitrate-rich meal, where NO has been shown to regulate gastric blood 

flow, mucous production, and host defense.162–164 In addition to liberating NO, N2O3 is 

a powerful nitrosating agent that can react with primary and secondary amines to form 

N-nitrosoamines (vide infra). Subsequent metabolism of large quantities of N-nitrosoamines 

can lead to the formation of carcinogenic methylating agents,165 and some associative 

studies suggest that this adverse reactivity may contribute to an increased risk of malignancy 

for those who consume large quantities of processed meats that utilize nitrite in the curing 

process.166 On the other hand, ingestion of nitrate-rich leafy green vegetables leads to very 

high nitrite levels via nitrate bioconversion by oral bacteria, yet diets high in leafy green 

vegetables have not been consistently associated with significant risk of malignancy in large 

epidemiological studies.143,149,167

BIOACTIVATION OF NITRITE IN RED BLOOD CELLS (RBCS)

Because acid-promoted nitrite reduction occurs under limited conditions in vivo, nitrite 

would appear to serve little role in generating bioavailable NO. Very early work exploring 

the vasodilatory effects of nitrite in vitro seemed to support this theory: supraphysiological 

concentrations of nitrite were required to induce vasodilation in aortic rings, and these 

vasodilatory effects could be enhanced at lower pH values.168–171 However, a series of 

investigations characterizing nitrite levels (which vary from 150 to 1000 nM in plasma 

and up to 10 μM in tissue)172,173 and nitrite-dependent vasodilation in humans definitively 

identified a role for nitrite in the regulation of vascular tone through bioactivation. These 

studies demonstrated that plasma nitrite levels (1) exhibit an arterial–venous gradient, 

suggesting that nitrite is consumed across the physiological O2 gradient, (2) correlate well 

with eNOS activity, (3) increase with NO inhalation, and (4) decrease under conditions 

of hypoxia or exercise-induced stress.147,172,174,175 Additionally, infusion of nitrite (at near-

physiological nanomolar concentrations) in the brachial forearm artery decreased systemic 

blood pressure and increased blood flow.176,177 Subsequent investigations in animals and 

humans corroborated these findings: infusion of nitrite decreased blood pressure in a 
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dose-dependent manner, and blood pressure returned to basal levels several hours after 

infusion.178–181 Furthermore, venous nitrosyl-heme levels increased significantly during 

nitrite infusion, consistent with nitrite bioactivation to generate NO and subsequent up-

regulation of vasodilation via the NO–sGC–cGMP pathway.176

Originally, researchers suggested that molybdenum-containing oxidoreductase enzymes, 

which exhibit nitrite reductase activity under anaerobic conditions,182,183 could facilitate 

nitrite bioactivation. In preclinical rodent models and in vitro studies at low O2 tensions 

and very acidic pH values, specific inhibitors of the molybdopterin protein xanthine 

oxidoreductase (XOR) attenuated nitrite reductase activity and subsequent nitrite-dependent 

vasodilation;179,184 however, specific inhibition of XOR activity did not inhibit nitrite-

dependent vasodilatory response in humans given an infusion of nitrite.176,178 While it is 

likely that molybdopterin enzymes contribute to nitrite bioactivation in tissue under specific 

physiological O2 and pH conditions, another highly abundant metalloprotein, hemoglobin 

(Hb), primarily facilitates nitrite bioactivation in circulation.

Consistent with in vivo data indicative of nitrite-dependent vasodilation, in vitro experiments 

indicate that hemoglobin facilitates nitrite reduction in RBCs. For example, aortic rings 

exhibit vasodilatory activity in the presence of deoxyhemoglobin (deoxyHb) and nitrite 

but not in the presence of nitrite alone.176,185 This Hb-facilitated bioactivation of nitrite 

modulates signaling along the NO–sGC–cGMP pathway because incubation of RBCs 

with nitrite induces cGMP production and subsequently inhibits platelet activation (vide 

infra).186–189 Further, NO gas was indirectly observed by a chemiluminescent reporter in 

reactions of deoxygenated RBCs and rat aortas with nitrite.171,185,188,190

These seminal discoveries prompted exploration of the molecular mechanisms that drive 

nitrite-mediated signaling, and in this section, we review the proposed chemical and 

biochemical reaction pathways that occur between hemoglobin, NO, nitrite, and other 

nitrogen oxides in RBCs. While multifaceted and complex in nature, together these reactions 

may explain the observed pharmacological and in vivo effects of nitrite acting as a regulator 

of vascular tone under a variety of physiological and pathophysiological conditions. The 

elucidation of these pathways has been crucial for the development of nitrite therapeutics 

targeting cardiovascular diseases.

Hb-Facilitated Nitrite Reduction.

When O2 tensions are low at physiologically relevant pH values, ferrous hemoproteins, 

specifically globins, facilitate nitrite reduction to generate NO (Figure 2, solid red pathway). 

Reduction of nitrite occurs via an inner-sphere electron-transfer mechanism in which an 

equivalent of nitrite binds to deoxyHb, is protonated, and then is reduced, resulting in 1 

equiv of NO, ferric hemoglobin (metHb), and water (eq 7).191–194

NO2
− + H+ + FeII NO + FeIII + HO− (7)

Importantly, NO binds to ferric heme with an affinity several orders of magnitude lower than 

that of ferrous heme195 and therefore undergoes facile diffusion away from the site of nitrite 

reduction to participate in downstream signaling pathways.
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Evidence from in vitro chemical and biochemical experiments, as well as in vivo preclinical 

and clinical studies, has coalesced to support a paradigm in which RBC-derived hemoglobin 

mediates nitrite reduction to produce bioavailable NO; however, three critical biochemical 

reactions deplete NO and thereby complicate this model. First, as aforementioned, 

ceruloplasmin (present at concentrations of 1–5 μM in plasma)196,197 readily oxidizes NO 

and generates about half of the nitrite found in blood plasma (eq 1).145,146 Second, at lower 

O2 tensions, NO generated by Hb-mediated nitrite reduction in RBCs can rapidly bind to 

nearby deoxyHb sites (eq 8).

NO+FeII FeII − NO (8)

This nitrosylation or “autocapture” reaction occurs with a rate constant of 9 × 107 M−1 

s−1 for deoxyHb198 and effectively sequesters NO as a highly stable ferrous nitrosyl-heme 

species. Third, at higher O2 tensions, NO reacts with oxyHb to generate nitrate through NO 

dioxygenation (eq 2; Figure 2, pink pathway), which occurs with a near-diffusion-limited 

rate constant of (6–8) × 107 M−1 s−1 for oxyHb at 20 °C.150,199,200 Taking into account 

these mechanisms of NO depletion, one model suggests that NO exhibits a half-life of 1 

μs in RBCs.201 Thus, a key mechanistic question surrounds nitrite-mediated signaling: how 

do RBCs facilitate nitrite bioactivation in a manner that produces bioavailable NO? Some 

evidence suggests that nitrite reduction occurs preferentially at the RBC cell membrane 

surface,202 which would allow for more facile NO escape, especially considering that NO 

readily partitions to nonpolar media over aqueous media.160 However, compartmentalization 

alone likely does not fully rectify the rapid rate of NO depletion in RBCs, and additional 

chemical and other Hb-mediated reactions are worth considering.

Role of N2O3 in Nitrite-Mediated Signaling.

Nitrite-mediated signaling in RBCs may be facilitated by N2O3,203 which is generated in 

a very fast radical reaction between NO and NO2 (reverse reaction of eq 6). The requisite 

equivalent of NO2 may form as a product of NO autoxidation (eq 9).

2NO + O2 2NO2 (9)

While this third-order reaction does not typically proceed under physiological conditions 

in the aqueous cellular environment, more favorable reaction conditions may occur in the 

nonpolar environment of the RBC cell membrane, where it is estimated that autoxidation 

may occur up to 30 times faster than that in an aqueous environment due to enhanced 

solubility of NO and O2.204 Additional nitrite- and Hb-dependent pathways that generate 

NO2 exist under physiological conditions (vide infra).

Another pathway to form N2O3 occurs via certain Hb-mediated reactions. Because deoxyHb 

facilitates nitrite reduction, a transient ferric-nitrosyl intermediate forms (Figure 2, orange 

pathway). This electrophilic intermediate may subsequently react with 1 equiv of nitrite, 

liberating N2O3 and ferrous hemoglobin (eq 10).159,205,206

FeIII − NO FeII − NO+ + NO2
− FeII + N2O3 (10)
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Such reductive nitrosylation may also occur when water attacks the ferric-nitrosyl species, 

liberating 1 equiv of nitrite and ferrous heme (eq 11).

FeIII − NO FeII − NO+ + H2O FeII + HNO2 + H+ (11)

Nitrite accelerates the rate of reductive nitrosylation, presumably because of the enhanced 

nucleophilicity of nitrite compared to water or hydroxide.206 Alternatively, nitrite may first 

bind to a ferric heme site and then react with 1 equiv of NO to liberate N2O3 and ferrous 

heme (eq 12).203

FeIII − NO2
− FeII − NO2 + NO FeII + N2O3 (12)

Computational and electron paramagnetic resonance spectroscopic evidence suggests that 

the ferric-nitrite species exhibits significant electron delocalization, giving the heme species 

partial ferrous-NO2 radical character.203,207–209 This radical character would suggest rapid 

reaction with NO to yield N2O3 in a “nitrite anhydrase” mechanism (Figure 2, blue 

pathway). Given the highly dynamic nature of nitrogen oxide reactions in RBCs, it is 

entirely possible that both of the above mechanisms (eqs 10 and 12) operate, although these 

details have yet to be resolved.

Formation of N2O3 in RBCs may facilitate export of NO via several pathways. As a small, 

uncharged molecule, N2O3 can readily diffuse across the cell membrane, and the molecule 

undergoes facile homolytic cleavage to generate NO and NO2.187 As described above, N2O3 

is a powerful nitrosating agent (i.e., NO+ donor) because of partial NO+NO2
− character.210 

Under physiological conditions, N2O3 may transfer NO+ to nucleophilic thiols and amines 

(eqs 13 and 14).

N2O3 + RSH RSNO + H+ + NO2
− (13)

N2O3 + RR′NH RR′N(NO) + H+ + NO2
− (14)

Reversible S-nitrosation of β-hemoglobin Cys93 (SNO-Hb) has been proposed as an 

additional mechanism to extend the lifetime of Hb-derived NO;211 however, the details of 

this proposed mechanism are heavily debated. A recombinantly expressed Cys substitution 

hemoglobin variant, β-Cys93Ala, did not inhibit nitrite-dependent vasodilation in vitro, 

and an in vivo study showed that genetically engineered mice with the same β-Cys93Ala 

substitution do not exhibit impaired hypoxic vasodilation.185,212 While these results 

demonstrate that SNO-Hb is not a critical intermediate in nitrite-mediated signaling, 

modifications to β-Hb Cys93, including mutagenic Cys substitution and alkylation using 

NEM, potentiate nitrite reductase activity by decreasing the heme redox potential and 

allosterically stabilizing the R-state hemoglobin (vide infra).213–215 Thus, post-translational 

SNO-Hb may also enhance nitrite reductase activity and thereby potentiate the rate of nitrite 

reduction. More generally, post-translational modifications of Cys residues via S-nitrosation 

may alter protein function in many important physiological and pathophysiological contexts, 

such as reversible inhibition of proteins in the mitochondrial electron-transfer chain.216–219
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Allosteric Regulation of Hb-Facilitated Nitrite Reduction.

Fully unliganded hemoglobin exists in the T-state, which exhibits low ligand binding 

affinity. The binding of ligands, including O2, CO, and NO, to heme sites within hemoglobin 

favors an allosteric transition to the high-affinity R-state.220 These allosteric changes also 

influence nitrite reduction as the rate constant for deoxyHb increases from 0.1 M−1 s−1 in 

the T-state to 6 M−1 s−1 in the R-state at 25 °C.194,221–223 Two factors likely contribute to 

this allosterically induced change in the nitrite reductase activity. First, nitrite reduction (and 

subsequent heme oxidation) is thermodynamically favored for R-state hemoglobin, which 

has a lower redox potential than T-state hemoglobin (E1/2 vs NHE: HbAR = 42 mV; HbAT 

= 154 mV).185,194,215 Second, nitrite reduction is kinetically favored for R-state hemoglobin, 

which possesses a more open heme pocket that allows for facile nitrite binding.

As Hb-mediated nitrite reduction proceeds, NO may bind to a neighboring ferrous heme. 

NO binding allosterically stabilizes R-state hemoglobin and thereby increases the nitrite 

reduction rate constant of other heme sites within the tetramer. Simultaneously, NO binding 

limits the number of available ferrous heme sites for subsequent nitrite reduction. Under 

anaerobic conditions, this effect is known as “allosteric autocatalysis” and results in a 

sigmoidal reaction trace for nitrite reduction.194,221 Similarly, O2 binds to deoxyHb under 

more aerobic conditions, stabilizing the R-state and enhancing nitrite reduction while 

simultaneously limiting the number of sites where nitrite can react.221 These opposing 

ligand-dependent effects give rise to a bell-shaped curve upon estimation of the nitrite 

reductase activity as a function of O2 tensions, with maximal activity occurring between 

40 and 60% oxyHb saturation (Figure 3).224,225 Importantly, this range of maximal activity 

directly coincides with the set point for hypoxic vasodilation in humans, a physiological 

process in which blood vessels dilate in order to enhance blood flow and match O2 delivery 

as hemoglobin desaturates.226 The coincidence of oxyHb saturation levels for maximal 

Hb-mediated nitrite reductase activity and the onset of hypoxic vasodilation further supports 

the hypothesis that bioactivation of nitrite in RBCs contributes to the regulation of vascular 

tone under physiological conditions in the capillary bed.

Pathways That Propagate Nitrite-Mediated Signaling under Oxygen-Replete Conditions.

In addition to nitrite reduction with deoxyHb, nitrite undergoes a complex series of reactions 

with oxyHb to generate nitrate and metHb at O2 tensions near the P50 value for hemoglobin 

(27 mmHg).227 An initial lag phase is observed when an excess of nitrite is present relative 

to oxyHb,228,229 which yields hydrogen peroxide (H2O2) and nitrate (eq 15; Figure 2, 

dashed red pathway).

2Hb FeII − O2 + 2NO2
− + 2H+ 2Hb FeIII + H2O2 + 2NO3

− (15)

Several key studies suggest that this initial lag phase involves H2O2 but not superoxide 

(O2
•−): catalase, but not superoxide dismutase, inhibits the reaction when added during the 

initial reaction phase, and kinetic models that incorporate H2O2 generation are consistent 

with experimentally observed reaction traces.229–231 Reaction of peroxide with metHb 

results in formation of a ferryl radical cationic [FeIV=O)]•+ species reminiscent of that 

observed in compound I of cytochrome P450.229,232 Subsequent reactions of 2 equiv 
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of nitrite, first with the [FeIV=O)]•+ ferryl radical cation and second with the reduced 

diamagnetic [FeIV=O] ferryl intermediate species, result in 2 equiv of NO2 and metHb in an 

autocatalytic propagation reaction (eq 16; Figure 2, solid gray pathway).

Hb • + FeIV = O + 2NO2
− + 2H+ Hb FeIII − OH2 + 2NO2 (16)

Importantly, when the cellular partial pressure of O2 nears the P50 value of hemoglobin, 

hemoglobin will exhibit partial O2 saturation. At such physiologically relevant O2 

tensions, nitrite reduction by deoxyHb occurs alongside the nitrite–oxyHb reaction.232 

Cross-reactivity between the products of these two Hb-mediated reactions provides (1) a 

means to quench propagation of the nitrite–oxyHb mechanism and (2) another pathway 

for NO escape from RBCs. NO2, responsible for autocatalysis, oxidizes “inert” ferrous 

nitrosyl-heme, generated during nitrite reduction, to ferric nitrosyl-heme (eq 17; Figure 2, 

dashed black pathway).233,234

FeII − NO + NO2 FeIII − NO + NO2
− (17)

As described above, ferric heme centers generally exhibit NO dissociation rate constants 

several orders of magnitude higher than those of ferrous heme centers,195 and therefore this 

“oxidative denitrosylation” process leads to facile release of Hb-bound NO.232

In summary, numerous physiological data in vitro and in vivo (through human 

and animal studies) provide evidence that RBC-encapsulated hemoglobin facilitates 

nitrite-dependent vasodilation and platelet activation via the NO–sGC–cGMP 

pathway;176–179,181,186,187,189,235 however, the precise mechanisms that enable this 

bioactivation are not fully understood. A lingering central question is whether inefficient 

NO diffusion at the RBC membrane accounts for signaling or if intermediate chemical 

species are required. The above chemical reactions involving hemoglobin, oxygen, nitrite, 

NO, NO2, N2O3, and S-nitrosothiols, serve as examples of putative pathways that may allow 

nitrite-derived nitrogen oxides to escape RBCs and participate in the observed downstream 

signaling. Our investigations all support convergent bioactivation around the P50 value of 

hemoglobin, where (1) NO signaling has been detected experimentally by NO formation, 

platelet inhibition, vasodilation, and inhibition of mitochondrial respiration and (2) reactions 

that generate NO, NO2, and N2O3 are likely operative. It is important to note that the 

prevalence of these different reaction pathways varies under different conditions (i.e., 

O2 tension, nitrite concentration and relevant rate constants, pH, membrane localization). 

Further, there may be undiscovered routes that mediate nitrite-based signaling in RBCs. 

Fully elucidating the mechanistic details of nitrite signaling in the vasculature and in tissue 

will provide valuable context for interpretation of the results from clinical trials that employ 

nitrite therapeutics, described below.

Nitrite Therapeutics.

A growing body of preclinical and clinical studies support the use of nitrate and nitrite 

therapeutic agents for the controlled delivery of NO. In contrast to NO, which is quickly 

consumed in the blood (t1/2 < 2 ms),236,237 nitrite persists in circulation long enough 
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to reach peripheral blood vessels and tissues (t1/2 = 30–48 min).178,180,238,239 In fact, 

the peripheral vasodilatory effects of therapeutically inhaled NO have been ascribed to 

more stable NO-derived species, such as S- and N-nitrosated proteins (including SNO-

albumin and SNO-Hb),211,240 nitrated lipids,241,242 and nitrite,176 which may form in 

the pulmonary vasculature during NO inhalation.222 Hb-facilitated nitrite reduction occurs 

at low O2 tensions, and this process offers a complementary pathway to generate NO 

under physiological or pathological conditions of hypoxia.161,176,178,243,244 This selective 

bioactivation provides advantages for nitrite as a NO-generating therapeutic compared 

to other compounds, such as drug-conjugated NO-releasing moieties, S-nitrosothiols, and 

NONOates, which either undergo premature metabolism before reaching the target tissue or 

release NO indiscriminately, potentially giving rise to off-target side effects.

By serving as a supplemental source of NO, nitrite may be able to rescue impaired 

vasodilatory function in patients with hypertension or cardiovascular disease through direct 

modulation of the NO–sGC–cGMP pathway. Several translational studies have investigated 

the utility of inhaled, nebulized nitrite in the treatment of PAH associated with heart 

failure with preserved ejection fraction (PAH-HFpEF).238,245–247 Acute, inhaled nitrite 

lowers pulmonary arterial pressure, pulmonary capillary wedge pressure, and pulmonary 

vascular resistance in several preclinical and clinical studies of animals/patients with PAH-

HFpEF.181,246,248,249 In a recent investigation of five patients with PAH associated with 

β-thalassemia, the pulmonary arterial pressure was shown to decrease immediately upon 

nitrite inhalation but returned to basal levels within 15 min of cessation of ventilation.250

Given the reversibility of cardiac outcomes observed with inhaled or infused nitrite 

treatment, numerous preclinical and clinical studies have investigated acute and long-term 

oral nitrite or nitrate supplementation as a means to achieve improvements in cardiac 

function in conditions linked to cardiovascular disease.251,252 As described above, nitrate 

can be reduced to nitrite by microorganisms in the oral microbiome,139,253,254 and 

dietary nitrate supplementation, particularly in beetroot juice and green leafy vegetables, 

has been utilized extensively as a pharmacological means to increase circulating nitrite 

levels in humans.167,244,255–257 Several clinical studies have shown that short- and 

long-term supplementation with oral nitrate reduces blood pressure in hypertensive 

patients.167,179,256,258–261 Contrary to these findings, other studies have shown no nitrate-

dependent changes in blood pressure in hypertensive patients,262,263 although these 

differences may be due to underpowered study groups, differences in dosing, and variations 

in participant microbiomes that result in varied nitrate reductase activity and subsequent 

nitrite bioavailability.264–266 Our laboratory is currently conducting a placebo-controlled 

phase II clinical trial to examine how oral nitrite (40 mg three times a day for 10 

weeks) effects exercise capacity and hemodynamic outcomes in PAH-HFpEF patients 

(NCT03015402). For a more complete summary of preclinical and clinical studies that probe 

the therapeutic potential of nitrite, we direct the reader to a recent review by Kapil et al.252

NITRITE-MEDIATED SIGNALING IN ORGANS AND TISSUES

Given its abundance, hemoglobin is likely the primary source of nitrite-derived NO 

in the vasculature; however, nitrite reductase activity has been observed in a wide 
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variety of additional metalloproteins.60,251 Generally, nitrite reduction is facilitated by 

two metal-containing cofactors: heme and molybdopterin. Like hemoglobin, other heme-

containing globin proteins, including myoglobin (Mb),216,267 neuroglobin (Ngb),268,269 and 

cytoglobin (Cygb),153,270 exhibit nitrite reductase activity (eq 7). Analogous reactivity 

has been observed in several nonglobin hemoproteins, including but not limited to 

eNOS,271 partially unfolded cytochrome c,272,273 cytochrome P450 2B4, and human 

cystathionine β-synthase.274,275 Molybdopterins comprise an additional class of redox-

active metallocofactors that facilitate nitrite reduction via MoIV/V and MoV/VI redox 

couples. Nitrite reduction occurs more slowly when facilitated by molybdopterin compared 

to heme, and O2-sensitive molybdoenzymes, such as XOR, primarily contribute to nitrite 

bioactivation in tissues where nitrite accumulates at higher concentrations and O2 tensions 

are lower.276,277 Because this Forum Article focuses on hemoprotein reactivity, we direct 

the reader to other reviews that discuss molybdopterin-facilitated nitrite reduction in greater 

detail.278,279

Mb-Facilitated Nitrite Signaling in Tissue.

Myoglobin facilitates nitrite reduction in a mechanism analogous to that of hemoglobin 

and likely mediates NO signaling in cardiac and skeletal muscle tissues. The reaction 

rate constant for deoxymyoglobin (deoxyMb), 5.5 M−1 s−1 at 25 °C (12 M−1 s−1 at 37 

°C), is comparable to that of R-state hemoglobin.216,280 NO dioxygenation is also nearly 

diffusion-limited in oxymyoglobin (oxyMb, second-order rate constant of 4.4 × 107 M−1 s−1 

for equine oxyMb at 20 °C),200 so myoglobin may act as a NO sink, as well as a NO source. 

Under normoxic conditions, oxyMb likely scavenges NO, protecting mitochondrial proteins 

from the inhibition of enzymatic activity.281 Parallel NO-scavenging roles are proposed 

for cytoglobin and α-hemoglobin in vascular endothelial cells, where NO dioxygenation 

likely prevents excessive vasodilation.152,154,282,283 Under very low O2 tensions (P50 = 3 

mmHg for Mb), such as those found in the ventricular walls of the heart, myoglobin may 

switch from NO scavenger (via dioxygenation) to NO source (via nitrite reductase).243 Thus, 

Mb-facilitated nitrite reduction likely contributes to the cardioprotective properties of nitrite.

Emerging Roles of Neuroglobin and Cytoglobin.

Two additional heme-containing globin proteins, neuroglobin and cytoglobin, have emerged 

in recent years as regulators of NO signaling. The expression patterns of these hemoproteins 

differ drastically from those of hemoglobin and myoglobin: neuroglobin is expressed at 

high levels (100–200 μM) in retinal cells and at low levels (~1 μM) in other tissues 

in the nervous system, gastrointestinal tract, and endocrine organs, while cytoglobin is 

ubiquitously expressed at low levels.284–288 Because neuroglobin and cytoglobin are not 

expressed at millimolar levels in tissues, these recently discovered globins likely do not play 

a significant role in gas exchange/O2 transport.

While the specific functions of neuroglobin and cytoglobin in different cellular contexts 

have not been fully elucidated, in vitro biochemical studies reveal that both proteins 

facilitate nitrite reduction. Unlike hemoglobin and myoglobin, the distal histidine in 

neuroglobin and cytoglobin serves as an axial heme ligand, and these proteins exist in 

equilibrium between distally bound and unbound states.286,289–291 This labile axial His 
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ligand dictates small-molecule ligand binding and reactivity as the heme switches from 

a coordinatively saturated, six-coordinate environment to a coordinatively unsaturated, 

five-coordinate environment: e.g., a constitutively five-coordinate neuroglobin variant in 

which the distal His is mutated to a nonheme-coordinating leucine residue (H64L) exhibits 

nitrite reductase activity 3 orders of magnitude higher than that of the wild-type protein.268 

Interestingly, the distal His binding equilibrium is allosterically regulated by the redox status 

of two Cys residues outside of the heme pocket. Under oxidizing conditions, a disulfide 

bridge forms between these two Cys residues (Cys46 and Cys55, which span the CD 

loop in Ngb; Cys38 and Cys83, which span B and E helices in Cygb), opening the heme 

pocket and favoring dissociation of the distal His ligand.268,270,292–296 Consequently, this 

redox-dependent modulation of heme coordination influences NO and nitrite reactivity in 

Ngb and Cygb. For example, both proteins exhibit faster nitrite reduction in the disulfide 

form (kS–S = 0.12 M−1 s−1 for Ngb and kS–S = 32.3 M−1 s−1 for Cygb, both at 25 °C) 

compared to the free thiol form (kS–H = 0.062 M−1 s−1 for Ngb and kS–H = 0.4–0.63 M−1 

s−1 for Cygb, both at 25 °C),268,270 suggesting that the cellular redox environment can 

directly modulate protein reactivity.295 Protein oligomeric status may also influence ligand 

binding and reactivity because dimeric cytoglobin bearing intermolecular disulfides exhibits 

significantly diminished nitrite reductase activity (kS–S(dimer) = 0.26 M−1 s−1 for Cygb at 25 

°C).270

Under O2-replete conditions, cytoglobin likely attenuates NO signaling by facilitating 

NO dioxygenation. While virtually all oxyferrous hemoproteins may participate in NO 

dioxygenation reactions in vitro (eq 2), this reaction results in the formation of iron(III) 

heme, which cannot undergo subsequent NO dioxygenation. This observation suggests 

that NO scavenging will be limited to stoichiometric reactions in vivo.297 Importantly, 

a coupled NADH/cytochrome b5/cytochrome b5 reductase system reduces iron(III) heme 

in cytoglobin,154 allowing for efficient cytoglobin redox cycling and NO scavenging 

under physiological conditions.155 Several in vivo studies suggest that Cygb-mediated 

NO scavenging in vascular endothelial cells prevents excessive vasodilation at high 

NO fluxes.155,282,298 As aforementioned, analogous NO scavenging is carried out by α-

hemoglobin in vascular endothelial cells,152 and the precise interplay between cytoglobin 

and α-hemoglobin as NO-metabolizing regulators of the vascular tone requires further study.

Nitrite as a Cytoprotectant.

Nitrite-mediated cytoprotection in tissues has been studied extensively in the context of 

ischemia-reperfusion (I/R) injury, and most of the cytoprotective mechanisms involve 

bioactivation of nitrite to generate NO.219 Under ischemic conditions, tissues become 

hypoxic and may also experience acidosis, leading to favorable nitrite reduction conditions 

by metalloproteins such as myoglobin.201 The specific metalloproteins responsible for 

nitrite reduction likely vary organ to organ based on conditions and expression levels. For 

example, in the ischemic heart, deoxyMb is likely the primary source of nitrite-derived 

NO: nitrite reduction in heart tissue was abolished in myoglobin global knockout mice,299 

while allopurinol, a specific inhibitor of the molybdopterin enzyme XOR, only lessened 

nitrite-derived NO generation in heart homogenates by 10%216
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In ischemic tissues, nitrite-derived nitrogen oxides primarily exhibit cytoprotective effects 

by targeting specific mitochondrial proteins.219 NO can directly nitrosylate the O2-reducing 

a3 heme site in complex IV of the electron-transport chain,300–302 slowing the rate of 

O2 consumption and ameliorating ischemic effects through preservation of high-energy 

phosphate reserves.299 As alluded, studies in vivo suggest that Mb-facilitated nitrite 

reduction is the primary source of NO in the heart: the absence of myoglobin abolished 

nitrite-dependent cytoprotection in a mouse model of cardiac I/R injury.299 Ischemic tissue 

acidosis would promote formation of N2O3 (eq 5), which can then modify electron-transport 

chain proteins, including complexes I and III as well as ATP-synthase, via S-nitrosation. 

These protein modifications confer cytoprotection during reperfusion by reversibly 

inhibiting enzymatic activity and curbing ATP synthesis and ROS production.219,303 

Importantly, thiol nitrosation is temporary, and these enzymes recover normal activity over 

time after reperfusion.217 Finally, cytoprotection may also be conferred by a NO–sGC–

cGMP-dependent mechanism that results in decreased mitochondrial calcium accumulation 

and ion permeability.304–306

Many animal models of I/R injury have demonstrated nitrite-dependent cytoprotection 

in all major organ systems; however, results from human clinical trials are variable, 

with nitrite exhibiting clear cytoprotective effects under certain pathological conditions 

and little protective effects under other conditions. Early pharmacokinetic and toxicity 

studies demonstrated the feasibility of nitrite infusion in the context of subarachnoid 

hemorrhage.180,307 In contrast, intravenous nitrite treatment showed dubious effects in two 

placebo-controlled phase II clinical trials studying acute myocardial infarction and I/R injury 

after percutaneous coronary intervention (PCI).308,309 However, in a follow-up study, Jones 

et al. also showed that localized intracoronary nitrite treatment prior to PCI attenuated 

immune response.310 In the context of organ-transplant-induced I/R injury, therapeutic NO 

inhalation increased plasma nitrite levels and conferred improved organ function and patient 

outcomes after lung and liver transplantation.311,312 Recently, a large (N = 1502), placebo-

controlled phase II clinical trial assessed the therapeutic potential of nitrite administered 

to patients after cardiac resuscitation outside of a hospital setting (NCT03452917).313 In 

an earlier phase I trial, acute intravenous treatment of sodium nitrite (45 or 60 mg dose) 

did give rise to an increase in cGMP and nitrated fatty acid levels;314,315 however, nitrite 

intervention did not improve survival. Dose-dependent toxicity due to hypotension and 

methemoglobinemia limited the maximum safe dose for acute nitrite treatment,180,238 and 

such dose limitations may explain mixed therapeutic benefits observed in clinical trials. 

Taken together, these clinical results suggest that dose limitations curb the therapeutic 

benefit of global nitrite treatment; however, localized administration of nitrite at higher 

doses may improve outcomes in patients facing acute I/R injury.

“Oxidative” Nitrite Signaling: A Putative NO–sGC–cGMP-Independent Pathway.

Intriguing new preclinical research suggests that nitrite may also exhibit blood-pressure-

lowering effects independent of NO, sGC, and cGMP in mesenteric resistance vessels.316 

This hypothesis builds upon the observation that intermolecular disulfide formation at 

Cys42 in the α-subunit of PKG-1, the downstream target of cGMP, stabilizes a homodimer 

with enhanced kinase activity.317,318 By facilitating this disulfide formation, oxidants, 
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such as H2O2 and persulfides (e.g., cysteine persulfide, CysSSH; glutathione persulfide, 

GSSH), bypass NO, sGC, and cGMP to induce vasodilation and lower blood pressure by 

directly acting on PKG-1.319 This H2O2-triggered vasodilation is ameliorated in resistance 

vessels from mice bearing a “redox-dead” Cys-to-Ser substitution that disrupts disulfide 

formation in PKG-1, and these mice exhibit hypertension in vivo.318 Recently, Feelisch et al. 

demonstrated that a single intra-peritoneal dose of nitrite exhibits long-lasting hypotensive 

effects in mice under normoxic conditions in a cGMP-independent manner consistent with 

this oxidative activation pathway.316 Nitrite treatment increased cellular levels of H2O2 and 

persulfide species in mesentery resistance vessels, concomitant with enhanced vasodilation. 

Nitrite-dependent vasodilation was not observed in the resistance vessels of “redox-dead” 

C42S mice nor were global nitrite-dependent hypotensive effects. The authors speculate 

that nitrite may indirectly increase H2O2 concentrations due to specific inhibition of 

catalase;320,321 however, other chemical and hemoprotein-facilitated nitrite reactions may 

give rise to oxidizing equivalents in tissue (Figure 2). Specifically, nitrite can react directly 

with oxyHb to generate H2O2 under O2-replete conditions (eq 16). Further studies are 

required to unravel the chemical and biochemical pathways that support “oxidative” nitrite 

signaling in this context.

CONCLUDING REMARKS

NO sits at the interface of inorganic chemistry, physiology, and biomedical research. Central 

to the interdisciplinary studies of NO are the interactions of this small molecule (and its 

related nitrogen oxides) with hemoproteins, particularly in the vasculature (Figure 4). Heme 

serves as the NO-sensing cofactor in the central target of NO signaling, sGC, and as the 

enzyme active site in NOS-dependent NO biosynthesis. Besides these central hemoproteins, 

which are dedicated to the canonical NO signaling pathway, many other hemoproteins, 

such as hemoglobin and myoglobin, facilitate nitrite-mediated signaling through a series of 

complex oxidative and reductive reactions. These auxiliary hemoprotein reactions unlock 

a “second axis” of NO signaling: nitrite serves as a stable NO reserve, which can be 

tapped under conditions of physiological and pathophysiological hypoxia, complementing 

O2-dependent NO biosynthesis by NOS enzymes.

The multifaceted chemical reactivity and complex biological signaling pathways regulated 

by NO have posed many challenges in the development of a thorough understanding 

of this molecule’s role in human health and disease. However, these complexities have 

also presented researchers with novel therapeutic strategies that target NO-dependent 

signaling to treat a range of pathophysiological conditions from cardiovascular disease, 

organ transplant, infection, and oxidative stress. In particular, nitrite- and nitrate-based 

therapeutics have shown promise as modulators of NO signaling, and ongoing fundamental 

and clinical studies are exploring the applicability of localized and systemic nitrite and 

nitrate supplementation in the treatment of disease.
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Figure 1. 
NO-induced structural rearrangement in sGC. Structural models depicting inactive (left, 

PDB 6JT1) and active NO-bound (right, PDB 6JT2) sGC were determined using cryo-EM.30 

While the entire heterodimer is depicted for each model, the heme-containing β subunit 

is highlighted for clarity. Binding of NO to ferrous heme in the β-HNOB domain (red) 

induces a coil-to-helix transition that extends and reorients the central helices of the CC 

(yellow). CC elongation is accompanied by rotation of the β-HNOB and core HNOBA 

(cyan) domains away from the catalytic cyclase domain (purple). Together, these structural 

changes cause rotation of the relative orientation of the two cyclase domains, increasing 

the volume of the active site and allowing two Mg2+ cations (green spheres) and one GTP 

molecule (orange ball and stick) to bind at the interface of the catalytic domains. Inset: 

NO-induced structural changes at the sGC heme. NO binding brings the Fe atom back into 

the heme plane and is accompanied by a ~0.7 Å increase in the distance between the heme 

Fe atom and Nε2 atom of His105. We note that the resolution of the structural data (3.9 and 

3.8 Å for inactive and active structures, respectively) precludes in-depth analysis of the heme 

coordination environment (e.g., the authors do not include heme-bound NO in the active 

structural model).
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Figure 2. 
Compendium of proposed chemical and biochemical pathways that facilitate signaling 

by NO and NO-related species. Reactions with curved arrows depict processes that are 

facilitated by hemoproteins. Exact stoichiometries are not shown for clarity but can be found 

in the text where appropriate.
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Figure 3. 
Maximal nitrite-dependent NO generation coincides with the hemoglobin P50 value for 

O2 in the vasculature. In RBCs, hemoglobin approaches a maximal nitrite reductase rate 

constant of 6 M−1 s−1 (blue dotted line) at O2 tensions above P50 when the majority 

of hemoglobin is stabilized in the R-state.194,223 As O2 tensions fall below P50 (moving 

from left to right across the figure), O2 dissociates from heme concomitant with an 

allosteric R-to-T-state transition. At low O2 tensions, the hemoglobin nitrite reduction rate 

constant approaches a minimum value of 0.1 M−1 s−1.194,222 The number of deoxyHb 

sites available for nitrite reduction (black dashed line) mirrors O2-dependent changes in the 

nitrite reduction rate constant values: more deoxyHb sites become available as O2 tensions 

drop and O2 dissociates from heme sites. These opposing factors (nitrite reduction rate 

constant and deoxyHb site availability) give rise to a bell-shaped curve for the observed 

rate of nitrite-dependent NO generation (orange line) as a function of O2 tensions in the 

vasculature. Importantly, maximal nitrite reductase activity occurs at PO2 values between 
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40% and 60% of the hemoglobin P50 value, a range that coincides with the set point of 

hypoxic vasodilation in humans.226
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Figure 4. 
Overview of NO and nitrite-mediated signaling pathways in the vasculature. Dashed 

arrows depict multistep signaling processes. (1) eNOS generates NO in the endothelium 

using L-arginine (L-Arg) and O2. (2) NO freely diffuses through cellular membranes 

into neighboring smooth muscle cells and binds sGC. (3) Activation of sGC results 

in the conversion of GTP to the second messenger cGMP. (4) cGMP binds to 

and activates PKG-1 in vascular smooth muscle cells, and PKG-1 subsequently 

phosphorylates downstream targets to regulate physiological processes, such as smooth 

muscle relaxation (i.e., vasorelaxation). (5) Inorganic nitrite acts as a stable NO reservoir. 

At low O2 tensions in the vasculature or under conditions of pathophysiological 

hypoxia, ferrous deoxyHb reduces nitrite to generate an equivalent of NO and 
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ferric (met)Hb.176,178,193,194 Multiple hemoprotein-facilitated reactions regulate NO 

signaling and prevent overstimulation.194,203,205,232 (6) The multicopper-containing enzyme 

ceruloplasmin, found in the plasma, readily oxidizes NO to nitrite,145 while (7) oxyHb 

(and other O2-bound hemoproteins) rapidly oxidize NO to nitrate in a process called NO 

dioxygenation. (8) Nitrate can be carried throughout the plasma and concentrated in the 

salivary glands, where nitrate is secreted and metabolized by commensurate bacteria back 

to nitrite.141,142 Taken together, these processes (5–8) are collectively part of the nitrate–

nitrite–NO pathway, a complementary, O2-independent route to NO. (9) eNOS is also found 

in RBCs and platelets, which contribute to regulation of the vascular tone.322–324 (10) NO, 

derived from eNOS and/or nitrite reduction, inhibits platelet activation via the canonical 

sGC pathway.186–189 (11) Nitrite may increase H2O2 levels by directly inhibiting catalase 

or reacting with hemoproteins under O2-replete conditions to generate H2O2.229–231 (12) 

Some evidence suggests that nitrite may therefore also regulate the vascular tone in a NO–

sGC–cGMP-independent fashion in mesenteric resistance vessels by facilitating oxidative 

activation of PKG-1.316 More details regarding each of these pathways can be found in the 

main body of the text.
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