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Abstract

To find a cure for cystic fibrosis, there has been tremendous progress in the development of 

treatments that target the basic defect in the protein channel, CFTR. However, 10% of cystic 

fibrosis patients have rare CFTR mutations that are still without an approved CFTR-targeting 

drug. To identify relevant therapies for these patients, culture models using nasal, bronchial, and 

rectal tissue from individual patients allow functional, biochemical, and cellular detection of drug-

rescued CFTR. Additionally, novel systems such as induced pluripotent stem cell-derived models 

are utilized to characterize CFTR mutations and identify treatments. State-of-the art translational 

models were instrumental for CFTR modulator development and may become important for 

gene-based drug discovery and other novel therapeutic strategies.
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Introduction

Cystic fibrosis (CF) is an autosomal recessive disease resulting from mutations in the CF 

transmembrane conductance regulator (CFTR) gene [1], which encodes an ion channel 

that transports chloride and bicarbonate, playing an important role in hydration of many 
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epithelial surfaces. After discovery of the CFTR gene in 1989, preclinical research with in 

vitro human cell models paved the way for the development of CFTR-targeting therapeutics 

that permit successful treatment of the basic defect in CF. These CFTR modulators are 

small-molecular compounds known as correctors that augment transfer of mutant CFTR to 

the apical membrane, and potentiators that increase CFTR channel activity [2].

90% of people with CF (pwCF) in North America, and 80% worldwide carry the F508del 

CFTR mutation. Unfortunately, 10% of the CF population or more, depending on ethnicity, 

have rare mutations for which CFTR modulator therapies are not available. To reach these 

patients and to improve upon available therapies, numerous CFTR-targeting compounds 

and reagents are currently in the clinical pipeline including novel mRNA- and DNA-based 

gene therapy therapeutics, read-through reagents for premature stop codons, and advanced 

modulator compounds (https://www.cff.org/Trials/Pipeline), and thus, personalized models 

for CF research remain in high demand for predicting drug efficacy for CF individuals.

CF research has developed and employed specific, physiologically relevant human assay 

systems to advance discovery of CF drugs. Primary human bronchial epithelial (HBE) 

and nasal epithelial (HNE) cells are typically grown at air-liquid interface (ALI) as planar 

cultures to study electrophysiological properties that reflect the function of epithelial ion 

channels such as CFTR [3–7]. Such models are imperative for efficiently identifying 

and screening compounds before they enter clinical trials, maximizing the likelihood of 

achieving clinically meaningful improvements in CFTR function, thus facilitating rapid 

progression of clinical trials toward more effective CF treatments. This review will highlight 

new and improved models that have been utilized for identifying effective CFTR-targeting 

therapies for pwCF.

CF Therapeutics

The first FDA-approved CFTR modulator was the potentiator ivacaftor (IVA), which is the 

active ingredient of a drug that improves the function of the CFTR gating mutant G551D 

[8,9]. While IVA or the CFTR corrector lumacaftor (LUM) alone did not significantly 

improve lung function in the CFTR folding mutant, F508del [10], combining LUM with 

IVA or combining the newer corrector tezacaftor (TEZ) with IVA resulted in modest lung 

function improvements in clinical trials in pwCF homozygous for F508del CFTR [11–14]. 

The recently approved triple therapy drug (next-generation corrector elexacaftor (ELX) with 

TEZ and IVA; ELX/TEZ/IVA) showed substantial efficacy in phase 3 clinical trials [15,16] 

and was more robust than IVA and dual combination therapies in some populations. The 

improvement in lung function measured as forced expiratory volume in 1 second percent 

predicted compared to sex- and age-matched healthy lungs (FEV1pp) in pwCF receiving 

ELX/TEZ/IVA is significant, with an overall improvement of FEV1pp of at least 10% 

[16,17], which is comparable to what was observed in G551D pwCF treated with IVA. In 

addition, improvement in the gastrointestinal (GI) system was observed in patients taking 

ELX/TEZ/IVA.
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Personalized Models

The FDA approval of CFTR modulators for certain CFTR mutations was based on FRT cell 

line data. Although cell lines are useful to study mechanistic defects of CFTR mutations, 

they may not constitute a reliable physiological system for predicting all drug effects that 

are observed in epithelial tissues [18–21]. Some CFTR therapeutics such as read-through 

reagents prevented premature termination mutations in cell lines but did not work in 

primary epithelia where extensive nonsense-mediated mRNA decay is observed [22–25]. 

Identifying therapeutics that rescue CFTR splicing mutations are important for pwCF with 

such mutations. Studies on splicing mutations were previously conducted in cell lines 

but are more complicated in vivo and are therefore being intensively pursued [26]. In 

differentiated epithelia, CFTR localization and function are determined by cell-type specific 

expression and spatial interactions [27] and highly modulated by environmental factors such 

as inflammation [28].

Human in vitro models have been crucial for testing CFTR rescue in a relevant physiological 

environment. As patients respond differently to drugs, the most effective models for 

predicting clinical responses to therapeutics are cultures derived from tissue samples of 

individual patients; a personalized medicine approach. These cultures can be used in 

multiple assays to identify, optimize, and confirm therapies. In addition, it is important 

to have models available for examination of pharmacokinetics and pharmacodynamics of 

drugs [29].

Well-established in vitro models are differentiated cultures of HBE and HNE cells on 

membranes at ALI [30]. ALI culture protocol details (i.e., passage number of cells, 

differentiation time, type of media, supplements and insert type) may affect cell type 

composition, the magnitude of ion channel expression and activity, and the amount of CFTR 

protein that is rescued [31,32]. A common method to assess mutant CFTR rescue in these 

cultures is to observe electrophysiological responses of CFTR measured as short-circuit 

currents in Ussing chambers by treatment with forskolin that leads to CFTR activation by 

cAMP-dependent protein kinase, PKA. Basal CFTR currents before further activation by 

forskolin may also be indicative of restored CFTR function, as well as a diminution of the 

epithelial sodium channel (ENaC) activity. Furthermore, activation of CFTR by nucleotides 

(i.e., UTP or ATP) in the presence of the calcium-activated chloride channel (CaCC) 

TMEM16A inhibitor offers the possibility to evaluate an additional physiological activation 

route. Restoration of mucociliary clearance (MCC) of CF HNE and HBE ALI cultures 

is less commonly used for primary drug screenings; however, they can be investigated to 

evaluate the ability of a CFTR-targeting drug to restore airway surface liquid homeostasis, 

normalize mucin concentrations, and ciliary dynamics [33,34], which are all important 

components of a well-functioning MCC. A recent publication demonstrates the importance 

of CFTR modulators on airway hydration and mucus properties [33].

Patient specimens from airway and GI tissue can be used to generate organoids for 

testing rescue of mutant CFTR function [35–37]. Depending on the culture method, airway 

organoids can be oriented such that the apical membrane faces inward or outward, and 

rescue of mutant CFTR can be quantitated by changes in organoid size. These methods vary 
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by tissue type and are described in more detail, below. An overview of the most commonly 

used models to evaluate CFTR therapeutics is shown in Figure 1.

Bronchial Cultures

Primary HBE cells derived from explant lungs of pwCF and cultured at ALI have been the 

gold standard for studying the efficacy of CFTR modulators [8,38,39]. In addition, HBE 

can be obtained from living patients via bronchial brushings, which provide the potential 

to identify optimal therapeutics for individual patients (personalized medicine). To expand 

resources available for testing of CFTR modulators, CF HBE cells can be conditionally 

reprogrammed and maintained to higher passage numbers [32]. Organoids/spheroids from 

airway epithelial cells are obtained by seeding of CF HBE in matrigel, in which the 

movement of ions by luminal CFTR channels drives fluid toward the center, resulting in 

swelling that is not observed in CF patient-derived organoids where CFTR is defective. 

These models are suitable to quantitate CFTR-targeting therapeutics that induce CFTR-

dependent spheroid swelling and are also an appropriate model to study CF pathophysiology 

[37,40]. In addition, a novel method for generating bronchial organoids with externally 

oriented apical membranes in mixed matrix components was recently published [41]. 

Expanded cultures of bronchial epithelial cells can be utilized as an additional source of 

tissue to create spheroids for more testing of CFTR-targeting therapeutics.

Nasal Cultures

HNE cells have many properties in common with HBE cells and form polarized, 

pseudostratified epithelia mimicking in vivo airways and the expression of ion channels 

including CFTR, ENaC, and CaCCs. Similar to HBE cells, HNE cells can be derived 

by brushing or scraping but the collection is far less invasive than for HBE cells [42]. 

Thus, patient-derived HNE cultures differentiated at ALI have become a standard model in 

CFTR modulator testing [42–49]. Epithelial cell types such as ionocytes, ciliated cells, and 

secretory cells differ between nasal cells and large (bronchi) and small (bronchioles) airways 

[50–53]; however, HNE cultures appear to recapitulate many of the bioelectric properties 

of differentiated HBE and respond in a similar fashion to CFTR modulators [42,44,54]. 

HBE and HNE cultures can be used to evaluate the effects of CFTR modulators on 

reversing secondary CF phenotypes such as decreased MCC. Similar to HBE, conditionally 

reprogramming of HNE is available as a method to expand patient culture lifetime without 

majorly affecting CFTR function [55,56]. CFTR-mediated chloride currents in HNE cells 

correlated with patients’ sweat chloride concentrations, a common method to detect CF 

[55]. Thus, HNE cells are recognized as a non-invasive surrogate for HBE cells in many 

preclinical studies of CFTR modulators [36,42–46,55,57–63]. Patient-derived nasal tissue 

can be grown in suspension, creating nasospheroids with CFTR channels on the outer 

surface [36]. Upon rescue of mutant CFTR, ion transport and fluid will move outward 

toward the media, causing the spheroids to shrink, which can be quantitated [36].
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Intestinal Cultures

In 2013, it was shown that organoids derived from patients’ intestines can be utilized to 

study drug rescue of mutant CFTR function [64]. A recent study showed that intestinal 

organoids can be used to test for CFTR rescue of nonsense mutations, in which 5 different 

therapies were combined: the 3 CFTR modulators in ELX/TEZ/IVA plus a compound that 

induces translational readthrough and a compound that inhibits nonsense mRNA-mediated 

decay. This is very promising for pwCF with nonsense CFTR mutations that are not 

eligible for ELX/TEZ/IVA [65]. Another recent study using intestinal organoids showed 

the importance of testing compounds from different companies to optimize efficacy of 

F508del CFTR rescue [66]. Although F508del CFTR in patient-derived cultures typically 

responds well to rescue by triple therapy, cultures from different patients with the same 

CFTR genotype do not respond in a similar fashion, which may be due to genetic traits 

other than CFTR that may affect CFTR modulator efficacy and therefore should be further 

examined [67,68]. Additional models using different intestinal tissues and different culture 

methods/scaffolds may also have the potential to be used for CF research [69–71].

As clinical improvement of pwCF and in vitro readout by rectal organoids appear to 

be correlated [65,72,73], large efforts such as HIT-CF Europe aim to expand organoid-

based screenings of drugs from multiple companies to pwCF with rare mutations (https://

www.hitcf.org/). Furthermore, GI organoids are not only utilized for selection of optimized 

treatments for rare CFTR mutations but also for evaluation of novel read-through therapies 

for nonsense mutations and gene therapeutic approaches [74,75]. Additionally, GI organoids 

can be seeded on membranes to form monolayers that develop to differentiated cultures 

that are analyzed electrophysiologically in Ussing chambers to study restoration of CFTR-

mediated currents in CF planar cultures [76]. Recent publications demonstrate the power of 

directly comparing clinical data with in vitro data from patient-derived intestinal cultures 

[77,78]. GI organoids are the most straightforward model to develop from only partially 

digested tissue specimens. These can be subsequently cultured on inserts as monolayers, 

offering the following advantages: 1) they can be analyzed in Ussing chambers, and 2) the 

apical surface is directly accessible for treatments.

Other Gastrointestinal Cultures

CF patients frequently suffer from CF-related diabetes (CFRD), which can lead to glucose 

imbalance that can in turn, augment the severity of CF disease. It is therefore important to 

develop a relevant pancreas model for testing potential therapies that improve these glucose 

imbalances. A pancreas-on-a-chip model was developed using patient-derived pancreatic 

ductal epithelial cells (PDECs) and pancreatic islets, allowing for examination of the 

relationship between these cell types [79]. CFTR is expressed in PDECs and inhibition 

of CFTR channel function leads to a decrease in insulin secretion. To alleviate the effects 

of CFRD, this pancreas-on-a-chip model can be utilized to test CFTR modulators for their 

ability to improve glucose imbalances in individual patients. In addition, patient-derived 

cultures of biliary tissue (cholangiocytes) can also be used to test for rescue of CFTR 

function [80,81].
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Induced Pluripotent Stem Cells

Induced pluripotent stem cells (iPSCs) are adult somatic (e.g., skin or blood) cells that have 

been reprogrammed, bringing the cells back to an embryonic-like pluripotent state [82]. 

This allows the creation of an unlimited source of any type of human cell for therapeutic 

testing. Although creating lung tissue from stem cells is very complicated, in 2015, iPSCs 

were created from F508del pwCF, corrected with wild-type CFTR gene sequences, and then 

differentiated into airway epithelial cells [83]. iPSC-derived lung epithelium can be used to 

generate lung organoids that mimic lung tissue [84–86]. Furthermore, iPSCs can be used 

to model defects in ciliary function, which can be beneficial for measuring defective MCC 

in CF cultures [87]. iPSC-derived lung progenitor cells can be set up in a high-throughput 

platform, allowing studies that measure rescue of mutant CFTR function [88]. In addition, 

for GI studies, iPSCs were used to create pancreatic duct-like organoids that expressed 

CFTR [89]. Overall, iPSC technology may be particularly beneficial for pwCF with rare 

CFTR mutations such as nonsense mutations that do not yet have approved CFTR-targeting 

therapies.

Preclinical Models in Development

Exciting developments are ongoing using cells not only from various GI segments, but 

also other tissues such as sweat ducts, submucosal glands, and liver [90–92] for translation 

modeling of CF. As CF disease is thought to be initiated in small airways, HBE cells from 

small and large airways are utilized as separate models to display typical characteristics 

of cell populations found in these specific regions [50]. To study engraftment with HBE 

cultures expressing wild-type CFTR, a cell therapy approach was developed involving 

repopulation CF HBE cultures, thereby creating a population of cells that express CFTR 

with normal function [93]. Advanced models aim to incorporate environmental conditions 

found in the CF lungs such as infection, inflammation, mucus burden, and hypoxia [28,94]. 

In testing various drugs for their ability to repair the defects of CFTR mutations, it is 

important to consider how the efficacy of drugs may be affected by nearby tissues, cells, and 

secreted reagents such as the endothelium, immune system cells and cytokines, and bacteria. 

To address this, a CF Airway Chip was created that includes CF bronchial epithelial cells 

grown at air-liquid interface, lung endothelium, and dynamic fluid flow that can deliver 

immune cells [95]. These CF Airway Chips accurately represent the human airway in vivo, 

allowing direct testing of various drugs to rescue rare CFTR mutations. Other organs-on-a-

chip are also in development for CF research, including multi-tissue organs-on-a-chip to 

address the effects of different organs on each other [96,97].

Conclusions

In vitro models derived from tissues of pwCF are vital for the development of effective 

CFTR therapeutics. Personalized models are important as patients respond differently to 

treatments. Using tissue that is relevant to CF (bronchial, nasal, and GI epithelial cells) 

collected from pwCF for drug testing is an effective method for identifying and optimizing 

therapeutics for each patient. Cultures grown in planar (2D) and spheroid or organoid (3D) 

formats are used as models of CF disease in multiple drug testing assays. These in vitro 
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translational models have been crucial for understanding CF pathophysiology and CFTR 

regulation and were instrumental in identifying effective CFTR modulators for pwCF. Newer 

models such as iPSC-derived cultures and organs-on-a-chip allow the use of additional 

material and more advanced methods, respectively. In the future, researchers will continue 

to tackle remaining complicated cellular issues with models that simulate inflammation, 

infection, mucus, and MCC, and enable gene therapy studies that accurately predict clinical 

outcomes for pwCF in need of effective therapies.
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Highlights

• Relevant models of CF are critical for predicting clinical outcomes of 

therapeutics

• Nasal, bronchial, and rectal 2D and 3D cultures have been key for drug 

discovery

• Personalized medicine is important as individuals respond differently to drugs

• Novel models such as iPSCs and organs-on-a-chip will improve drug testing

• Advanced personalized models will be useful for future gene therapy drug 

discovery
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Figure 1: Translational human in vitro models for CF research and drug discovery.
Processing and expansion of nasal bronchial and GI epithelial tissues to form 2D planar and 

3D spheroid cultures. Expanded HNE and HBE cells are either seeded on membranes form 

planar cultures or in matrigel to form spheroids. GI organoids develop directly from partially 

digested tissues. Planar and spheroid cultures can be utilized to evaluate pharmacological 

rescue of CFTR rescue by various assays that evaluate CFTR function and maturation. Some 

image panels were obtained from Servier Medical Art (smart.servier.com).
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