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ABSTRACT
◥

Purpose: FGFR genomic alterations (amplification, mutations,
and/or fusions) occur in �8% of gliomas, particularly FGFR1 and
FGFR3. We conducted a multicenter open-label, single-arm, phase
II study of a selective FGFR1–3 inhibitor, infigratinib (BGJ398), in
patients with FGFR-altered recurrent gliomas.

Patients and Methods: Adults with recurrent/progressive glio-
mas harboring FGFR alterations received oral infigratinib 125 mg on
days 1 to 21 of 28-day cycles. The primary endpoint was investigator-
assessed 6-month progression-free survival (PFS) rate by Response
Assessment in Neuro-Oncology criteria. Comprehensive genomic
profiling was performed on available pretreatment archival tissue to
explore additional molecular correlations with efficacy.

Results: Among 26 patients, the 6-month PFS rate was 16.0%
[95% confidence interval (CI), 5.0–32.5], median PFS was
1.7 months (95% CI, 1.1–2.8), and objective response rate was

3.8%.However, 4 patients had durable disease control lasting longer
than 1 year. Among these, 3 had tumors harboring activating point
mutations at analogous positions of FGFR1 (K656E; n ¼ 2) or
FGFR3 (K650E; n ¼ 1) in pretreatment tissue; an FGFR3-TACC3
fusion was detected in the other. Hyperphosphatemia was the most
frequently reported treatment-related adverse event (all-grade,
76.9%; grade 3, 3.8%) and is a known on-target toxicity of FGFR
inhibitors.

Conclusions: FGFR inhibitormonotherapy with infigratinib had
limited efficacy in a population of patients with recurrent gliomas
and different FGFR genetic alterations, but durable disease control
lasting more than 1 year was observed in patients with tumors
harboring FGFR1 or FGFR3 point mutations or FGFR3-TACC3
fusions. A follow-up study with refined biomarker inclusion criteria
and centralized FGFR testing is warranted.

Introduction
Gliomas are a clinically diverse group of primary brain tumors,

diagnosed in �100,000 people/year worldwide (1, 2). Glioblasto-
mas, the most common type of primary brain tumor, are partic-
ularly aggressive with a median overall survival (OS) of �15
to 18 months after standard care (3). Historically, the classifica-
tion of gliomas was based on histologic findings and pathologic
grading. However, comprehensive molecular characterization
over the past decade has identified complex genetic, epigenetic,
and chromosomal changes that segregate gliomas into distinct
molecular subtypes, with some genetic differences impacting
response to therapy (4–6). For example, methylation of the

MGMT promoter is both prognostic and predictive of benefit
from temozolomide (7).

FGFR genomic alterations (amplification, mutations, and fusions)
occur in �8% of gliomas, with most aberrations occurring in FGFR1
and FGFR3 (8). Chromosomal translocations that fuse the tyrosine
kinase domains of FGFR1 or FGFR3 and TACC1 or TACC3 have been
identified in 2% to 4% of gliomas (9–11). These FGFR fusion genes,
such as FGFR3-TACC3, are capable of ligand-independent dimeriza-
tion by virtue of the newly fused coiled-coil domain and have
demonstrated oncogenic potential in vitro and in vivo (9). Further,
FGFR3-TACC3 fusion has been reported as predictive of response to
FGFR tyrosine kinase inhibitors both preclinically (9, 10) and clinically
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in various solid tumors including gliomas (10). Less is known about the
underlying role of FGFR point mutations or amplification in glio-
mas (12). The oncogenic effects of FGFRmutations in human cancers,
including gliomas, are variable (13, 14), with FGFR amplification
typically failing to drive tumor addiction to FGFR signaling (9).

Infigratinib (BGJ398) is a potentATP-competitive FGFR1–3–selective
oral tyrosine kinase inhibitor (15) in development for the treatment of
patients with FGFR-driven conditions, including cholangiocarci-
noma, urothelial carcinoma, and achondroplasia. In clinical studies,
infigratinib 125 mg on days 1 to 21 of 28 achieved disease control in
84% of patients with advanced cholangiocarcinoma harboring
FGFR2 fusions/translocations (16), and in 64% of patients with
advanced urothelial carcinoma harboring FGFR3 alterations (17).

We conducted a multicenter phase II study to investigate the
antitumor activity and safety of single-agent infigratinib in patients
with FGFR-altered recurrent gliomas, particularly in tumors with
FGFR-TACC fusions.

Patients and Methods
Study design

This open-label, single-arm, multicenter, phase II study of infigra-
tinib in patients with recurrent high-grade gliomas after failure of
initial therapy that harbored FGFR alterations was conducted at 14
centers in the US, Spain, Switzerland, the Netherlands, and Belgium
(Clinicaltrials.gov ID NCT01975701). The study was not randomized.
The primary goals were to investigate efficacy, safety, and tolerability,
and to explore abnormalities of FGFR and other genes in pretreatment
archival tissue as molecular predictors of efficacy.

The study was implemented and reported in accordance with the
Good Clinical Practice Guidelines, with applicable local regulations,
and the Declaration of Helsinki. The study protocol was approved by
the ethics committee at each participating center. Patients were
required to provide written informed consent.

Patients
Originally, male or female patients aged 18 years or older and

Eastern Cooperative Oncology Group (ECOG) performance status ≤2
with recurrent gliomas harboring any FGFR abnormality (i.e., ampli-
fication, fusions, or mutations in FGFR1, FGFR2, FGFR3, or FGFR4)
determined by local or central Clinical Laboratory Improvement
Amendments (CLIA)–accredited laboratories before study entry were
eligible. Preclinical research underpinning the rationale for the study
suggested that FGFR3-TACC3 fusions were predictive of response to
FGFR tyrosine kinase inhibitors. When the study launched, it was
assumed that FGFR amplification correlated with presence of
fusions (9). The eligibility criteria were amended 17 months after
enrollment started (April 2015) to require fusions or FGFR1–3 acti-
vating mutations when further preclinical data showed that amplifi-
cation was in fact a poor surrogate for the presence of fusion (10).

Prior external beam radiotherapy and/or temozolomide was required.
Otherwise, unlimited prior surgeries and anticancer treatments
including bevacizumab were permitted, except for prior treatment
with an FGFR inhibitor which was not allowed. Patients receiving
anticonvulsant drugs that were strong inducers of CYP3A4 (e.g.,
carbamazepine, phenobarbital, phenytoin) were required to discon-
tinue therapy ≥2 weeks before enrollment. Other key entry criteria
reflecting the known safety profile of infigratinib entailed normal
calcium/phosphate homeostasis and no history of corneal/keratopathy
or retinal disorders. There were no specified criteria regarding body
weight.

Supplementary Figure S1 shows the relationship between the
different study patient populations.

Treatment
Patients were intended to receive oral infigratinib 125mg once daily

on days 1 to 21 of each 28-day cycle until disease progression or
unacceptable toxicity. No blinding was used in the study. Two
protocol-specified dose reductions (to 100 and 75 mg/day) and dose
interruptions (14 days maximum) were permitted to manage treat-
ment-emergent toxicities. Adherence to a low-phosphate diet was
recommended during therapy to manage hyperphosphatemia, a
known class effect of FGFR inhibition. Prophylactic use of a phos-
phate-binding agent, such as sevelamer, was also recommended
following a protocol amendment (August 2014).

Assessments
Molecular screening of tumor samples prior to study entry for FGFR

alterations was performed by either a local laboratory or sponsor-
designated central laboratory as part of eligibility assessments. Sepa-
rately, archival tissue (≥10 unstained formalin-fixed, paraffin-
embedded slides) was also collected when available and underwent
comprehensive genetic profiling using a clinically validated next-
generation sequencing (NGS) platform that sequences 324 genes for
mutations, indels, copy-number alterations, and select gene fusions (by
Foundation Medicine; Cambridge, MA; ref. 18) for post hocmolecular
correlative analysis. Central pathology review of diagnoses was not
performed.

Gadolinium-enhanced MRI was performed at baseline and every
8 weeks while on study. Response (or progression) was reported by the
local investigator’s interpretation of the ResponseAssessment inNeuro-
Oncology (RANO) criteria (19). Central review was not performed.
Adverse events were evaluated according to the Common Terminology
Criteria forAdverse Events, version 4.03.Ophthalmologic examinations
(visual acuity testing, slit-lamp examination of anterior eye segment,
intraocular pressure, and fundoscopy) were performed at baseline and
then on days 1 and 15 of cycle 1, and day 1 of all subsequent cycles.

Endpoints
The primary study endpoint was investigator-assessed progression-

free survival (PFS) rate at 6 months according to RANO criteria (19).
Secondary endpoints were investigator-assessed overall response rate
(ORR; complete or partial responses as best outcome), PFS, OS, safety,
and tolerability.

Statistical analysis
Sample size calculations were based on simulations of the operating

characteristics of the study, rather than a power consideration.
Assuming a true 6-month PFS rate of 50% and a uniform accrual of
1 patient per month, with a sample size of 24 evaluable patients in the
per-protocol set (�17 PFS events), there was about 86.1% chance to

Translational Relevance

This study highlights that FGFR inhibitor monotherapy has
limited efficacy in patients with recurrent gliomas harboring any
FGFR alteration. However, durable disease control was apparent in
4 patients with tumors with activating FGFR1 or FGFR3mutations
or FGFR3-TACC3 fusions. Further studies of FGFR inhibitors with
refined biomarker inclusion criteria are warranted.
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achieve success at the end of the study, where a 6-month PFS rate of
<16% was defined as unacceptable efficacy, 16% to 25% as demon-
strating limited efficacy, 25% to 40% as demonstrating moderate
efficacy, and >40% was consistent with clinically relevant efficacy.

Efficacy analyses were performed in the full analysis set (FAS),
which included all patients who received ≥1 dose of infigratinib
(n ¼ 26). ORR was evaluated in patients from the FAS who had
measurable disease per RANO criteria at their baseline scan and
who were also reassessed during treatment (n ¼ 21). Safety analyses
were based on the safety set, which included all patients who
received ≥1 dose of infigratinib and had ≥1 valid post-baseline
safety assessment (n ¼ 26).

The Kaplan–Meier method was used to analyze time-to-event
endpoints and provide estimates of survival rates and median values
with 95% confidence intervals (CI). For PFS, patients who discon-
tinued the study andwere lost to follow-up on or before the cut-off date
were censored at the date of their last available tumor assessment. For
OS, patients who were alive at the time of completion of the study were
censored at the last contact date or end of treatment visit date if the
patient elected not to be followed post–study treatment. If the patient
was still being followed, the patient was censored at the data cut-off
date. Statistical analyses were generated using Statistical Analysis
System (SAS) software, version 9.4 or later (RRID:SCR_008567; SAS
Institute Inc.). No formal statistical comparative tests were performed.

Data availability
The data generated in this study are available within the article and

its supplementary data files.

Results
Between December 2013 andMay 2016, 731 patients were screened

of whom 26 patients (3.6%) were enrolled into the study and included
in the FAS; 11 (1.5%) and 15 (2.1%) patients, respectively, were
enrolled before and after the protocol amendment that excluded
patients with FGFR amplifications only. At the cut-off date (December
4, 2018), all patients had completed study treatment (progressive
disease, n ¼ 22; withdrawal by subject/guardian, n ¼ 2; physician
decision, n ¼ 1; adverse event, n ¼ 1).

Patients had a median age of 55 years (range, 20–76), 16 (61.5%)
were male, and 18 (69.2%) had an ECOG performance status of ≤1
(Table 1). FGFR1 amplifications, mutations, or fusions were identified
in 1 (3.8%), 3 (11.5%), and 1 (3.8%) patients, respectively, and FGFR3
amplifications, mutations, or fusions were identified in 11 (42.3%), 2
(7.7%), and 10 (38.5%) patients, respectively (Supplementary Figs. S2
and S3). Three patients (11.5%) had evidence of both FGFR3 ampli-
fications and FGFR3-TACC3 fusions. No FGFR2 or FGFR4 alterations
were identified.

Treatment exposure
Themedian duration of infigratinib therapy was 1.4months (range,

0.5–31.1). Nineteen patients (73.1%) received infigratinib for
≤2 months, and 4 patients (15.4%) for >12 months. Mean relative
dose intensity, defined as actual cumulative dose divided by planned
cumulative dose for actual treatment duration, was 89.4% (SD�17.9).

Efficacy
Efficacy findings are presented in Table 2. In the FAS, the 6-month

PFS rate, the primary endpoint, was 16.0% (95% CI, 5.0–32.5) and
median PFS was 1.7 months (95% CI, 1.1–2.8; Supplementary Fig. S4;
Supplementary Table S1).

A swimmer plot showing outcomes for individual patients at each
assessment is presented in Fig. 1. Four patients had durable disease
control with infigratinib lasting >1 year; 1 patient had a partial
response (FGFR1 K656E mutation) with a PFS of 21.9 months, and
3 patients had stable disease (FGFR1 K656E mutation, PFS,
13.2 months; FGFR3-TACC3 fusion, PFS, 30.2 months; FGFR3
K650E mutation, PFS, 12.9 months). Two of the patients with stable
disease (FGFR1 K656E and FGFR3-TACC3 fusion) had received two
prior lines of systemic treatment including bevacizumab. In both cases
treatedwith bevacizumab before infigratinib, the timing of progression

Table 1. Baseline characteristics (FAS).

Variable
Infigratinib
(N ¼ 26)

Age, years
Median (range) 55 (20–76)

Sex, n (%)
Male 16 (61.5)
Female 10 (38.5)

Race, n (%)
Caucasian 26 (100)

ECOG performance status, n (%)
0 6 (23.1)
1 12 (46.2)
2 8 (30.8)

Histology, n (%)a

Glioblastoma 19 (73.1)
Anaplastic astrocytoma 5 (19.2)
Other glioma 2 (7.7)

Measurable disease at baseline, n (%) 22 (84.6)
IDH1/IDH2 status, n (%)

IDH1 mutation (R132H) 2 (7.7)
FGFR1 status, n (%)b

Amplification 1 (3.8)
Fusion (ARHGEF18) 1 (3.8)
Mutation 3 (11.5)

K656E 2 (7.7)
N546K 1 (3.8)

FGFR3 status, n (%)b,c

Amplification 11 (42.3)
Fusion (TACC3) 10 (38.5)
Mutation 2 (7.7)

K650E 1 (3.8)
S249C 1 (3.8)

Prior treatment, n (%)
Radiotherapy 26 (100.0)
Antineoplastic therapy 25 (96.2)

Temozolomide 23 (88.5)
Bevacizumab 10 (38.5)
Other 1 (3.8)

Prior antineoplastic regimens, n (%)
0 1 (3.8)
1 11 (42.3)
2 9 (34.6)
≥3 5 (19.2)

Abbreviation: IDH, isocitrate dehydrogenase.
aBoth diagnoses of “other glioma” were subsequently clarified post hoc as
glioblastoma and one of “anaplastic astrocytoma” would likely be currently
defined as a molecular glioblastoma (IDH–wild-type, TERT-mutant diffuse
astrocytoma; Supplementary Fig. S6 with references therein).
bFGFR alterations for enrollment by local CLIA-accredited or central laboratory
during screening, as reported by the investigator.
cThree patients had more than one FGFR3 alteration.
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for which infigratinib was started (approximately 8 years after radio-
therapy and 10 months after radiotherapy in one case each) makes
enrollment for pseudoprogression extremely unlikely; moreover, in
one of these cases, there was histologically proven recurrence before
starting infigratinib. In 1 patient with partial response, the pattern of
progression after chemoradiotherapy (newly enhancing, leptomenin-
geal, outside the high-dose radiotherapy field) and biomarker pattern
(H3 K27M mutation which is nearly always mutually exclusive with
MGMT promoter; refs. 20, 21) also makes it unlikely the patient was
treated with infigratinib for pseudoprogression (22) rather than
disease refractory to standard treatment. Magnetic resonance images
of all 4 patients with durable stable disease or partial response are
shown in Supplementary Figs. S5–S8.

In patients with measurable disease at baseline and who were
reassessed during treatment (n ¼ 21), ORR was 4.8% (1 partial
response; Table 2). Seven patients experienced tumor shrinkage, with
best percent change ranging from –13% to –100%. In addition to 1
RANO-confirmed partial response, 1 patient had a decrease of –64%
that was not confirmed on follow-up assessment, and another had a
decrease of –48%. The single patient with a RANO-confirmed partial
response harbored an FGFR1 K656E mutation, whereas a further 6
patients (33.3%) had stable disease (FGFR1: mutation, n ¼ 2; FGFR3:
mutation, n¼ 1; FGFR3-TACC3 fusion, n¼ 2; amplification, n¼ 1). A
waterfall plot of the percentage change in tumor size in patients with
measurable disease is presented in Fig. 2.

OS analysis ismature. In the FAS, 24 patients (88.5%) had died at the
time of data cut-off. Median OS was 6.7 months (95% CI, 4.2–11.7;

Table 2. Efficacy.

Variable Outcome

Primary endpoint
PFS (n ¼ 26)

6-month PFS rate (95% CI), % 16.0 (5.0–32.5)
Median (95% CI), months 1.7 (1.1–2.8)

Secondary endpoints
Best response

Efficacy analysis set (n ¼ 21), n (%)a

Objective response rate 1 (4.8)
(95% CI) (0.1–23.8)
Partial response 1 (4.8)
Stable disease 6 (28.6)
Progressive disease 13 (61.9)

FAS (n ¼ 26), n (%)
Objective response rate 1 (3.8)
(95% CI) (0.1–19.6)
Partial response 1 (3.8)
Stable disease 6 (23.1)
Progressive disease 15 (57.7)
Unknown/missing 4 (15.4)

OS (n ¼ 26)
Median (95% CI), months 6.7 (4.2–11.7)

Note: Full Analysis Set (FAS; n ¼ 26) unless otherwise stated.
aPatients with measurable lesions at baseline and who were reassessed during
treatment.
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Figure 1.

Swimmer plot of time on infigratinib therapy and response (per local investigator) at each assessment (n ¼ 26).
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Supplementary Fig. S4). The 6-month and 12-month OS rates were
53.8% (95%CI, 33.3–70.6) and 29.6% (95%CI, 13.5–47.7), respectively
(Supplementary Table S2).

Exploratory biomarker analyses
Sufficient tumor tissue for comprehensiveNGSwas available for 16of

26 patients (Supplementary Figs. S1 and S3). The number of deleterious
genetic alterations in each tumor ranged from2 to 25, and therewere too
few tumors with any single alteration to correlate formally with efficacy.
Testing encompassed analysis for other molecular abnormalities com-
mon in glioma. For example, IDH1 R132H, common in lower-grade
gliomas and associated with a favorable prognosis independent of
treatment, was identified in 2 patients with FGFR3 amplification: 1
patient with progressive disease and 1 patient with stable disease as best
response; however, IDH mutation was mutually exclusive with FGFR
fusions, consistent with prior publications (9). IDH mutation was also
mutually exclusive with FGFR point mutations. Mutations in the TERT
promoter, known toactivate telomerase expression,weremostprevalent
(11/16, 69%), followed by alterations in CDKN2A (7/16, 44%), ampli-
fication of CDK4 (5/16, 31%), CDKN2B deletions (5/16, 31%), altera-
tions in PTEN (5/16, 31%), and known mutations in TP53 (4/16, 25%).
Mutations in the H3K27 methyltransferase KMT2C genes, which are
associated with poor prognosis, were identified in 6 of 16 patients (37%)
including 1 patient with a partial response. Known deleterious muta-
tions in ATRX (3/16, 19%) and NF1 (3/16, 19%), that are commonly
mutated in gliomas, were also identified (Supplementary Fig. S3).
Discordance between NGS and another assay occurred in 6 of 8 cases
with detailed response and molecular data (Supplementary Fig. S3;
Supplementary Table S3 with additional case-level detail).

Safety
Hyperphosphatemia was the most frequently reported treatment-

related adverse event [all-grade, 20 patients (76.9%); grade 3, 1 patient
(3.8%)]. For the management of hyperphosphatemia, 22 patients
(84.6%) used a phosphate-lowering agent, primarily sevelamer, and
5 patients (19.2%) required infigratinib dose reductions or interrup-
tions. Other common all-grade treatment-related adverse events were
fatigue in 7 patients (26.9%) and diarrhea in 5 patients (19.2%). Other
grade 3 treatment-related adverse events were hyperlipasemia in 2
patients (7.7%), hypophosphatemia in 2 patients (7.7%), and diarrhea,
fatigue, stomatitis, and nail disorder in 1 patient each (3.8%). Themost
common treatment-related adverse events are reported inTable 3, and
a safety summary is presented in Supplementary Table S4.

There were no grade 4 or 5 treatment-related toxicities. One patient
experienced a serious adverse event, which was suspected to be
treatment-related (hyperphosphatemia). No patients had treatment-
related adverse events requiring discontinuation of infigratinib. There
was no apparent cumulative toxicity reported for subjects receiving
infigratinib for >1 year.

Discussion
We tested targeted therapy with an FGFR1–3 inhibitor, infigratinib,

in a multicenter phase II study in patients with recurrent gliomas and
FGFR alterations. At the outset, the study was designed to include
patients with any FGFR abnormality (i.e., amplification, fusions, or
mutations) in the hope that broad selection criteria would enrich the
population of responders. The inclusion criteria were subsequently
restricted to FGFRmutations and fusions after it became apparent that
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FGFR amplification alone did not predict benefit preclinically or serve
as a surrogate for fusion (10). Our data further support this observa-
tion, as most patients with FGFR1/3 amplification had progressive
disease and the only RANO-confirmed response was observed among
the 16 patients with FGFR fusions or mutations. One patient with an
FGFR3 amplification that achieved a 64% decrease in tumor size from
baseline had a concurrent IDH1 R132H mutation that may have
contributed to the patient’s best response of stable disease. This
absence of response for amplification-positive patients is consistent
with other cancers where point mutations/deletions rather than
amplification alone, predict response to tyrosine kinase inhibitors,
for example EGFR mutations in non–small cell lung cancer (23).
Perhaps impacted by the inclusion of amplification-only patients, our
study showed that FGFR inhibitor monotherapy had limited efficacy,
with a 6-month PFS rate of 16% and ORR <5%. Although this
technically met the prespecified threshold for 6-month PFS rate as
meriting further study, treatment of patients with broad FGFR selec-
tion criteria is not warranted in this disease setting.

Our study was also limited by lack of consistent ormandated central
confirmation of the FGFR alterations used for eligibility, with discor-
dance for FGFR3 amplification between the screening assays and post
hoc NGS observed commonly (Supplementary Table S3; Supplemen-
tary Fig. S3). We view NGS as a “gold standard” for the detection of
FGFR alterations absent a suitable and reliable alternative, and we
recommend that future studies use a single, central assay formolecular
screening to homogenize the biomarker-selected population for
FGFR3 fusions or activating pointmutations in determining eligibility.

Regardless of the small ORR, durable disease control lasting >1 year
was observed in 4 patients, one of whom continues to receive infi-
gratinib on a compassionate-use basis with stable disease lasting
46.5 months (as of January 17, 2020). It is also notable that 2 of the
4 patients with prolonged benefit had received prior bevacizumab, a
patient profile with a particularly poor prognosis. Molecular profiling
in these cases with durable response or stabilization revealed the
presence of FGFR3-TACC3 fusions (n ¼ 1) or activating mutations
in FGFR1 K656E (n ¼ 2) or FGFR3 K650E (n ¼ 1) which occur at

analogous positions in these two receptors (Supplementary Fig. S9).
While it has been reported previously that the presence of FGFR-
TACC3 fusions in patients with glioma confers sensitivity to FGFR
tyrosine kinase inhibitors (10), we are unaware of any reports describ-
ing clinical activity through FGFR inhibition in glioma tumors with
FGFR point mutations. Therefore, our study provides additional
information about genetic lesions that sensitize gliomas to FGFR
inhibition. Of note, the patient with a durable partial response had
a FGFR1 K565E-positive midline glioma with a H3K27M mutation, a
condition that is associatedwith a poor prognosis and is not sensitive to
standard treatment options (24). Collectively, our data suggest that a
future trial of infigratinib, either alone or in combination with another
targeted agent and/or radiotherapy, in patients with gliomas harboring
FGFR point mutations and/or FGFR3 fusions or FGFR-mutated mid-
line gliomas would be of interest. Coincident alterations in cell-cycle
genes (CDK4, CDKN2A, and CDKN2B) or H3F3A observed in our
study population provide insight into possible combination partners
with targeted inhibitors of CDKs and histone deacetylase enzymes.

Unlike the more common activating mutations that occur in the
extracellular IgG-like domains in FGFR2 in cholangiocarcinoma (16)
and FGFR3 in urothelial carcinoma (17), the activating mutations that
were detected in this glioma cohort occurred within the intracellular
kinase domains in both FGFR1 (N546K and K656E) and FGFR3
(K650E). Of the 4 patients with mutations in the intracellular kinase
domain, 3 had durable benefit as described above and the fourth
patient, with an FGFR1 N546K mutation, had a decrease of 32%. The
stable disease control observed for patients with kinase domain
mutations is supported by in vitro cell growth inhibition assays, which
showed that the growth of Ba/F3 cells transformed by FGFR1-N546K,
FGFR1-K656E, FGFR3b-K652E, and FGFR3c-K650E could be inhib-
ited efficiently by infigratinib (ref. 25; Supplementary Fig. S10). These
observations lend further support to the importance of activating point
mutations at FGFR1/3 as both are transforming and adequately
targeted by infigratinib. Infigratinib also showed clinical activity in
2 patients with recurrent glioblastomas andFGFR3 fusions, the same as
we found here, in a separate basket trial (Supplementary Table S5;
Clinicaltrials.gov ID NCT02160041; ref. 26).

Our findings are particularly encouraging in a disease setting where
there is currently no established therapy beyond radiotherapy and
alkylating chemotherapy for patients with recurrent gliomas (27), and
outcomes with available treatment options are generally poor. For
example, nitrosoureas (lomustine or carmustine), recommended for
patients with recurrent disease after standard radiotherapy and temo-
zolomide (27), provide only short-lived disease control (median PFS,
1–4months; ref. 28–30). Future clinical investigation in glioma should
consider further refinements to the FGFR biomarker criteria and
glioma subtypes that are most likely to benefit from FGFR inhibition.
Combinatorial trials with an FGFR inhibitor and existing treatments
may help to identify specific biomarker cohorts that show increased
sensitivity to radiotherapy and alkylating chemotherapy. Of note,
FGFR-mediated phosphorylation of PTEN (pY240-PTEN) has been
identified as a mechanism of radiation resistance and actionable target
for improving radiotherapy efficacy (31).

Similar to most anticancer drugs, FGFR inhibitors were not devel-
oped specifically for CNS tumors, and the distribution of FGFR
inhibitors within intracranial tumors is largely unknown because of
a lack of supporting pharmacokinetic studies (13). Preclinical studies in
Wistar rats suggest that infigratinibpenetrates into theCNS: infigratinib
was detectable in the brain for up to 12 hours with a brain-to-plasma
under the time-concentration curve ratio of 0.68 after a single oral
10-mg/kg dose (data on file, QED Therapeutics). The protocol design

Table 3. Most common treatment-related adverse events
occurring in at least 5% of patients (Safety set).

Infigratinib (N ¼ 26)
Adverse event, n (%) All grades Grade 3a

Total 22 (84.6) 7 (26.9)
Hyperphosphatemia 20 (76.9) 1 (3.8)
Fatigue 7 (26.9) 1 (3.8)
Diarrhea 5 (19.2) 0
Hyperlipasemia 4 (15.4) 2 (7.7)
Stomatitis 4 (15.4) 1 (3.8)
Dry skin 4 (15.4) 0
Hypophosphatemia 3 (11.5) 2 (7.7)
Alopecia 3 (11.5) 0
Decreased appetite 3 (11.5) 0
Dyspepsia 3 (11.5) 0
Onycholysis 3 (11.5) 0
Palmar-plantar erythrodysesthesia 3 (11.5) 0
Nail disorder 2 (7.7) 1 (3.8)
Constipation 2 (7.7) 0
Dermatitis acneiform 2 (7.7) 0
Dry eye 2 (7.7) 0
Mucosal inflammation 2 (7.7) 0

aNo grade 4 or 5 treatment-related toxicities were reported.
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encompassed a surgical arm to explore tissue pharmacokinetics, but it
did not accrue any patients, which is a limitation of our study. Addi-
tional preclinical and clinical studies to investigate the CNS penetration
of infigratinib are currently in progress and will be reported separately.

The most commonly reported treatment-related adverse events
with infigratinib at the oncologic doses used in this study included
hyperphosphatemia, fatigue, and diarrhea, a safety profile that is
consistent with previous clinical trials (16, 17, 32). Hyperphosphate-
mia, a class effect thought to be due to FGFR inhibition of FGF-23–
mediated renal phosphate homeostasis (33), was the most common
toxicity. A proactive strategy, including an intermittent dosing sched-
ule, active monitoring, early intervention with dose interruptions or
dose reductions, dietary restrictions, and prophylactic use of a phos-
phate-lowering agent (32), appeared to be effective for the manage-
ment of hyperphosphatemia in our study.

In conclusion, single-agent infigratinib had limited efficacy in a
population of patients with recurrent gliomas without robust molec-
ular selection other than harboring any FGFR alteration. However,
durable disease control lasting >1 year was observed in a patient subset
with activating FGFR1 or FGFR3 point mutations or FGFR3 fusions.
Further trials with refined biomarker inclusion criteria and centrally
conducted molecular analyses are under development.
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