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Abstract

As synaptic vesicles fuse, they must continually be replaced with new docked, fusion-competent 

vesicles to sustain neurotransmission. It has long been appreciated that vesicles are recruited 

to docking sites in an activity-dependent manner. However, once entering the sites, vesicles 

were thought to be stably docked, awaiting calcium signals. Based on recent data from 

electrophysiology, electron microscopy, biochemistry, and computer simulations, a picture 

emerges in which vesicles can rapidly and reversibly transit between docking and undocking 

during activity. This ‘transient docking’ can account for many aspects of synaptic physiology. 

In this review, we cover recent evidence for transient docking, physiological processes at the 

synapse that it may support, and progress on the underlying mechanisms. We also discuss an open 

question: what determines for how long and whether vesicles stay docked, or eventually undock?

Introduction

As soon as synaptic vesicle exocytosis was first hypothesized to be the basis for 

neurotransmitter release, it was clear that vesicles must continually flow towards the site 

of fusion during activity [1]. Decades before any fusion machinery had been identified, 

Bernard Katz imagined vesicles fluttering back and forth at the active zone before crashing 

into the membrane to fuse (Katz, Nobel Lecture, 1970). However, the view of this dynamic 

vesicle movement was later abandoned, owing to our understanding of the molecular state 

of a synaptic vesicle ready for fusion. To allow for fast, synchronous neurotransmitter 
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release at each active zone, synaptic vesicles are tightly attached to the plasma membrane 

within sites of concentrated release machinery at which one vesicle may dock and fuse 

at a time: release sites [2–4]. Vesicles are primed, or docked, with a large supramolecular 

complex around a core assembled SNARE complex, awaiting calcium influx to trigger 

fusion [5]. This docking state is thought to be static, with these vesicles constituting most 

or all of the readily-releasable pool [6]. However, recent experiments have shown that 

vesicles rapidly transition between docked and undocked states, reviving Katz’s original 

vision (see [7] and [8] for recent reviews). Furthermore, the balance between docking 

and undocking can be shifted transiently based on activity levels to ultimately determine 

synaptic outputs. Here, we review the evidence for fast and reversible synaptic vesicle 

docking at mammalian central synapses, its potential key role in presynaptic plasticity, 

candidate molecular mechanisms, and processes that may govern the speed at which vesicles 

dock and undock.

The replacement site-docking site model and the discovery of transient 

docking

When a synaptic vesicle has entered a release site and become poised for fusion, it is 

referred to as ‘docked’ (Figure 1). In this state, the ternary SNARE complex has been 

formed and converted from a loose to a tight trans conformation [9,10]. Thus, the vesicle 

is docked and molecularly primed for calcium-triggered fusion. Since SNARE complex 

assembly and zippering is highly exergonic [5], this is often assumed to be a static state. 

However, docking, priming, and SNARE complex assembly/zippering are fundamentally 

reversible [11–13]. In fact, electrophysiological data have suggested that docked vesicles 

are in constant equilibrium with ‘replacement’ vesicles that replenish docked vesicles 

after activity-dependent fusion—a process which is accelerated by calcium [8,14–22]. This 

replacement site-docking site model predicts that vesicles are able to dock very quickly (as 

fast as several ms) and reversibly, and as such all these vesicles can be release-ready during 

activity, comprising the total readily-releasable pool [7,14,15].

In the last decade, methods have been developed to stimulate neurons then freeze them at 

precise time points for electron microscopy observation (referred to as flash-and-freeze for 

optical stimulation via channelrhodopsin and zap-and-freeze for electrical field stimulation). 

In such time-resolved electron microscopy experiments, docked vesicles are depleted by 

single and trains of action potentials, consistent with this being the final stage of readiness 

before fusion [23–29].

As predicted by the replacement site-docking site model, a wave of newly-docked 

vesicles replenish vacated docking sites. In flash-and-freeze experiments either using high 

extracellular calcium (4 mM) or trains of stimulation, docking is restored to the baseline on 

the order of seconds [26]. However, whether vesicles toggle between docked and undocked 

states was not clear, perhaps due to the temporal resolution in these studies. In fact, in a 

recent study using zap-and-freeze, which allows temporal precision of freezing relative to 

action potentials down to the millisecond, vesicle docking is reversible and occurs in two 

phases: milliseconds and seconds [28]. Docked vesicles are depleted by 40 % at 5 ms after 
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an action potential – consistent with flash-and-freeze studies [26,27]. However, by 15 ms, 

docking is completely restored. Surprisingly, these vesicles undock within ~100 ms, and 

then, over the course of 10 s, docking is again restored. These data suggest that release sites 

can be replenished in two phases. Furthermore, in line with the replacement site-docking site 

model, they argue for the existence of fast and reversible ‘transient docking’ (Figure 2).

Kinetics and calcium dependence of docking

The discovery that vesicles dock and undock immediately after action potentials raises two 

obvious questions. 1) What determines the speed at which vesicles dock and undock, and 2) 

what differentiates whether vesicles stably dock or ultimately undock?

Since residual calcium is the main trigger for transient docking [14,28,30], it is 

parsimonious to suggest that the dynamics of docking are dictated by the dynamics 

of calcium and the relevant calcium-sensing proteins (more discussion in Molecular 

mechanisms). In line with this, transient docking [27,28] after a single action potential 

follows a similar time course to residual calcium [31], peaking at ~15 ms and declining over 

~100 ms, suggesting that calcium dynamics dictate the time course of transient docking.

In contrast, docking at the steady-state and recovery of docking to the steady-state after 

activity may not be entirely dependent on calcium. For example, raising the extracellular 

calcium concentration by almost 4-fold had no effect on docking at the steady state 

[28]. Even more convincingly, while loading cells with EGTA (which strongly lowers 

basal calcium) completely blocked transient docking, it had no effect on docking at rest, 

suggesting that calcium is not involved in steady-state docking. These findings conflict with 

electrophysiological data, which indicate that more docking sites are filled at higher basal 

calcium concentrations [21,30]. Nevertheless, it is clear that baseline docking takes place 

in the absence of calcium. Indeed, even activity-dependent recovery is itself not entirely 

calcium-dependent. Synapses always eventually recover from depression, they simply do so 

much more slowly without a sustained rise in calcium [16,32]. Therefore, while calcium 

clearly biases vesicles towards docking, there must be calcium-independent mechanisms 

setting baseline docking and undocking rates to which synapses naturally return after bouts 

of activity.

All this raises the question: what differentiates the recently-discovered transient rise in 

docking from the well-established recovery of docked vesicles [16,18]? For a synapse to 

eventually return to a baseline, the fate of newly-docked vesicles would be expected to be 

opposite: in transient docking, they must eventually undock, while in recovery, opposite is 

true. For now, what determines for how long a newly-docked vesicle will stay docked is a 

mystery.

Potential functions of transient docking: presynaptic plasticity and 

asynchronous release

Transient docking can make vesicles available for the next action potential on the order 

of milliseconds, and thus could be a major contributor to presynaptic potentiation. The 
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fastest but most fleeting form of presynaptic enhancement is facilitation, in which a single 

stimulus engenders a calcium-dependent increase in release in response to subsequent 

stimuli [33–35]. Although docking observed in zap-and-freeze experiments only return 

to baseline, lacking the overshoot of baseline docking that would produce facilitation, 

changes in docking after an action potential still match paired-pulse responses at different 

time points: weak facilitation in release over the course of 50 ms (synapses of cultured 

hippocampal neurons do not facilitate strongly) and depression of release to ~40% over the 

course of 500 ms [36]. In replacement site-docking site models, transient docking accounts 

for facilitation patterns better than increasing the fusion probability of docked vesicles, and 

experimentally the same perturbations that block docking site filling also block facilitation 

[7,14,37]. A similar model has been applied to Drosophila neuromuscular junctions, where 

a combination of superresolution and electron microscopy suggested that facilitation can be 

only explained by activity-dependent inhibition of undocking or recruitment of new docking 

sites [38]. Thus, transient docking may support synaptic facilitation. This idea still needs 

to be tested more thoroughly, particularly the relative contributions of transient docking vs. 

fusion probability of already-docked vesicles to the balance of facilitation and depression.

While transient docking as described so far sets in after single stimuli and decays quickly, 

complex stimuli could induce a longer-lasting increase in docking to support longer-lasting 

forms of presynaptic potentiation. Each of these has a characteristic stimulation strength 

that induces them, time of onset, and decay time [34]. Mild trains of action potentials 

induce augmentation, an increase in release that sets in after several seconds and decays 

over the course of a minute [39,40]. The size of the readily-releasable pool does not change 

during augmentation [40,41]. Instead, the enhancement has been ascribed to ‘superpriming’ 

of synaptic vesicles [41,42]: the same number of vesicles fuse over the course of a high-

frequency stimulus, but a greater proportion of ‘superprimed’ vesicles fuse early in the train. 

This apparent superpriming can be accounted for by a shift of vesicles from the replacement 

pool to the docked pool [15]. In fact, augmentation is driven by increased recruitment to 

the plasma membrane of Munc13 [41], a key docking/priming protein [43] (see molecular 

mechanisms). Thus, increased docking may be the basis for augmentation, but this needs to 

be tested directly.

Currently, the most direct evidence for an increase in vesicle docking as the basis for 

plasticity of neurotransmitter release is in post-tetanic potentiation (PTP). PTP is induced by 

intense stimuli, sets in over the course of ~30 s, and lasts for minutes [34,44]. Using flash-

and-freeze of hippocampal mossy fiber synapses in acute slices, a PTP-inducing stimulus at 

first strongly depletes docked vesicles [25]. However, once PTP has set in after 20 s, docked 

vesicles not only recover but are 25% more abundant than at rest. This rise in docking, as 

well as an increase in the number of large docked vesicles characteristic of this synapse, 

corresponds to a larger readily-releasable pool [25].

Docking may also be involved in long-term forms of presynaptic plasticity that last hours or 

more. The readily-releasable pool grows larger during presynaptic homeostatic plasticity 

[45,46], docked vesicles increase in number during long-term potentiation [47], and a 

recently-discovered form of presynaptic enhancement triggered by mechanical stimuli is 

associated with greater assembly of trans-SNARE complexes [48]. A shared characteristic 
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of many of these longer-lasting forms of potentiation is that, unlike in augmentation and 

facilitation, the size of the readily-releasable pool increases. This could correspond to an 

increase in both docked and replacement vesicles. Such slower changes could also result 

from building new release/docking sites [49], as opposed to changing the proportion of 

occupied docking sites. Nevertheless, docking has now been implicated in every known form 

of presynaptic plasticity.

All the possible contributions of docking to plasticity share a common principle: vesicles 

dock, but not fuse, so they are available for fusion upon a subsequent stimulus (Figure 

2, facilitation and potentiation). But what if a vesicle docked and then immediately 

fused (Figure 2, ‘two-step release’)? In such a scenario, transient docking would supply 

vesicles for asynchronous release [50]. Indeed, slower and asynchronous release during 

high-frequency trains can be accounted for in simulations by the replacement site-docking 

site model [15,30], and the same perturbations (EGTA-AM and latrunculin) that block 

transient docking also block slow/asynchronous release [15]. This would help explain why 

asynchronous release is always more prominent during train stimulation than after single 

action potentials, since release during trains will be dominated by newly-docked vesicles 

[15]. This is all in line with the idea that the ‘readily-releasable pool’ comprises both 

docked vesicles and replacement site vesicles [14] (and maybe also vesicles upstream of 

the replacement site, which can also be quickly recruited [53]), since replacement site 

vesicles, while not at the final stage of fusion-competence, can dock and then fuse within 

milliseconds. Two-step release may account for the curious finding that, in mutants where 

the active zone is disrupted and there are almost no baseline docked vesicles, vesicles can 

still fuse and the readily-releasable pool is mostly intact [51]. It remains to be tested whether 

this two-step process is entirely responsible for asynchronous release, or if already-docked 

vesicles can also fuse asynchronously.

Molecular mechanisms of transient docking

As discussed in The discovery of transient docking, tightening and loosening of already-

assembled trans-SNARE complexes probably accounts for the final docking/undocking 

step that underlies transient docking. Less is known about loading into the replacement 

site that vesicles transit through before docking. This would presumably correspond to 

initial assembly of the trans-SNARE complex, as well as steps of vesicle attachment to the 

active zone further upstream of SNARE complex assembly. It is clear that these steps are 

also reversible [12,13] and vesicles are loaded into the replacement site during activity 

[52,53]. This could explain why the increase in docked vesicles observed by electron 

microscopy during transient docking does not correspond to a loss of undocked vesicles 

close to the active zone [27,28]. Indeed, the pool of undocked vesicles close to the plasma 

membrane at the active zone (within 100 nm) seems very resistant to depletion, even during 

high-frequency stimulation [36]. This indicates that there must be a robust mechanism that 

sustains them. One exciting recent proposal is that all vesicles in the readily-releasable pool 

are captured in or attached to a phase-separated domain constituting the active zone [54,55].

But what drives transient docking? Vesicles dock during activity in a residual 

calcium-[14,15,28] and actomyosin-dependent [14,15] manner. Therefore, there must 
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be mechanisms involving calcium-sensing and cytoskeleton-regulating proteins. Such 

mechanisms would not be required for baseline docking or fusion itself, but only for biasing 

the docked/undocked balance in favor of docking during activity. Here we discuss proteins 

that have been implicated in transient docking, either based on direct evidence or their role 

in short-term plasticity.

A variety of C2 domain-containing proteins, which bind membranes with increased affinity 

upon calcium binding, interact with the exocytic machinery and regulate neurotransmitter 

release in a calcium-dependent manner [56]. The most well-studied and essential of these 

is Synaptotagmin 1 (Syt1), the major calcium sensor for synchronous neurotransmitter 

release [57,58]. Baseline docking is reduced ~35% in Syt1 knockouts [27,43], although 

this has been attributed in some cases to an overall reduction in synaptic vesicles rather 

than a specific effect on docking [43]. This raises the question of whether Syt1 could 

promote docking, in addition to fusion, during activity. Indeed, the initial discovery of 

transient docking by electron microscopy was in the context of Syt1. Mutations that 

disrupt membrane/SNARE complex binding and baseline docking render Syt1 unable to 

efficiently trigger fusion, but in its place these mutants trigger transient docking [27]. Syt1’s 

function in baseline docking does not depend on calcium binding, but transient docking 

is completely absent when the mutant Syt1s cannot bind calcium. However, there are two 

key features of transient docking as measured in wild-type synapses that are inconsistent 

with Syt1 being the sole calcium sensor. First, Syt1 is a low-affinity calcium sensor, and 

due to its fast kinetics, its activity would not be expected to last as long as transient 

docking does [59]. However, vesicles undock over the course of ~100 ms in these mutants, 

similarly to the time course for transient docking in wild-type synapses, suggesting that 

Syt1 can operate on longer time scales or collaborate with other sensors that remain active 

for longer. Second, loading cells with the slow calcium chelator EGTA only minimally 

interferes with Syt1-driven processes like fast neurotransmitter release, but completely 

blocks transient docking [14,28]. Thus, while Syt1 contributes to synaptic vesicle docking at 

rest in a calcium-independent manner and may amplify this function after calcium binding, 

other C2 domain-containing proteins with slower kinetics that respond to lower calcium 

concentrations must also be involved.

Another candidate for transient docking is Munc13. Munc13 is the single most essential 

protein for synaptic vesicle exocytosis: without it docking, priming, and neurotransmitter 

release are absent [43,60–62]. Munc13 supports docking and priming through various 

means, most notably by templating SNARE complex assembly [63]. In addition to its 

indispensable constitutive function, Munc13 is also a convergence point for many forms of 

presynaptic plasticity, both through interactions with other proteins and its own domains 

that respond to calcium, phosphatidylinositol 4,5-bisphosphate, and diacylglycerol [60]. 

Relevant to transient docking, membrane-binding domains at either end of Munc13 have 

been proposed to bridge the synaptic vesicle membrane and plasma membrane [64–67]. One 

of these, the C2B domain, operates similarly to the synaptotagmins, binding membrane in 

response to calcium with high affinity [68]. A recent study using knock-in point mutations 

highlights the importance of this domain for short-term plasticity [69]. At the Calyx of 

Held, preventing calcium binding to the C2B domain does not affect single action potential 

responses but accelerates depression during trains and slows recovery from depression. A 
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mutation that enhances calcium binding does the opposite, slowing train depression and 

accelerating recovery. This combination of docking, calcium-sensitive regulation of short-

term plasticity, and membrane bridging makes the C2B domain of Munc13 a likely sensor 

for transient docking.

Calcium-sensing proteins that are not important for basal transmission, but critical for 

short-term plasticity, are ideal candidates for triggering transient docking. Synaptotagmin 7 

(Syt7) has emerged in the last five years as the most important driver of synaptic facilitation 

[70,71]. Syt7 knockout causes more dire problems for short-term plasticity than any other 

known protein: normally facilitating synapses tend to strongly depress starting with a second 

stimulus and continue to depress more quickly than normal throughout a train [70,72,73]. 

Some non-facilitating synapses also depress more quickly and profoundly in the absence 

of Syt7 [32,74,75], and Syt7 can also support the slower process of recovery from train 

depression in some cases [32,72,74]. These functions, particularly in facilitation, have been 

ascribed to an increase in release probability of docked vesicles [35,70]. A mathematical 

model in which release-ready vesicles are present in two pools, one of which has very 

low initial release probability that increases during activity in a Syt7-dependent manner, 

could account for all these phenotypes [74]. As discussed in The discovery of transient 

docking and potential functions of transient docking, all these physiological phenomena: 

facilitation, resisting depression, recovery from depression, and apparent mobilization of 

reluctant or slow-releasing vesicles to a higher release probability pool, could be explained 

by transient docking. Critically, there is direct ultrastructural evidence for Syt7’s role in 

supporting docking during activity. By time-resolved electron microscopy, Syt7 knockouts 

have a normal complement of docked vesicles at baseline, but 30% fewer at 5 ms after both 

single and trains of action potentials. Furthermore, the second phase of docking that takes 

place over seconds is slower [36]. These data directly implicate Syt7 in activity-dependent 

docking at both millisecond and second timescales. This docking function could explain 

some, or all, of Syt7’s physiological roles.

Another high-affinity member of the synaptotagmin family, Syt3, has also been shown 

to be critical for facilitation, resistance to and recovery from train depression [76]. In 

mathematical models, the experimental data could be recapitulated by Syt3 promoting 

transient docking, but not by Syt3 increasing the fusion probability of already-docked 

vesicles. Unlike Syt1, Syt3 and Syt7 both act on the plasma membrane, not synaptic vesicles 

[32,36,76]. This raises the possibility that, like Munc13, they could function in part by 

bridging the membrane between synaptic vesicles and the plasma membrane upon calcium 

binding. In summary, these C2 domain-containing proteins may support facilitation, as well 

as resistance to and recovery from synaptic depression, by acting as calcium sensors for 

transient docking.

While dispensable for baseline docking and exocytosis, an intact actomyosin cytoskeleton 

is absolutely required for transient docking [14,15]. This is consistent with the well-known 

role of the cytoskeleton in synaptic recovery and short-term plasticity [77]. However, the 

nature and dynamics of actin networks that support docking are unknown, as the specific 

actin regulatory proteins involved have not been identified. Do actin dynamics help propel 

vesicles towards the docked state, or is it just a stable scaffold that is required? Several 
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recent studies show that specific cytoskeleton proteins can regulate different steps of the 

synaptic vesicle’s journey to the active zone in unexpected ways [78,79], highlighting the 

importance of 1) disrupting individual proteins and 2) analyzing specific phenotypes. Future 

studies should focus on individual actin regulators and specifically test their role in transient 

docking. Some clues come from work in chromaffin cells, where the actin-regulating protein 

Intersectin-1 and the BAR-domain containing protein Endophilin A1 collaborate to maintain 

fusion by enhancing priming [80]. More such studies are needed at synapses before we can 

speculate on the mechanism by which actin controls transient docking.

We should point out that the different molecules that support activity-dependent docking 

are likely to vary between synapse types, not only in which are present but in their relative 

importance. For example, while both Syt3 and Syt7 are expressed at the Calyx of Held, 

deleting Syt3 has a potent effect [76], whereas Syt7 is less important [81] compared to 

at hippocampal synapses [70]. Conversely, expression of individual proteins seems to be 

necessary and sufficient in some cases. Increased expression of Syt7 during development 

is correlated with a change from depression to frequency invariance at Purkinje cell to 

deep cerebellar nuclei and vestibular synapses [74]. Further, introducing Syt7 via transgene 

expression at climbing fiber to Purkinje cell synapses, where it is not normally present, by 

itself converts these depressing synapses to facilitation [82]. Therefore, finding that a given 

protein is not required at a given synapse should not be taken to rule out its importance in 

general. Double and triple knockout studies will also be important to address redundancy 

and quantify relative contributions. This diversity makes functional sense given the broad 

tapestry of synapse types. The balance of docked and undocked vesicles at rest has been 

proposed as a basis for different plasticity patterns, for example in facilitating vs. depressing 

synapses [7,83]. Release at facilitating synapses could be dominated by replacement site 

vesicles, which do not fuse initially but transiently dock to boost release, whereas depressing 

synapses have many docked vesicles but few replacement site vesicles, so they exhaust their 

readily-releasable pool quickly [7,83]. Thus, molecular diversity in the control of transient 

docking could contribute to the wildly diverse plasticity patterns of synapses.

Conclusion

Within the last five years, the activity-dependent dynamics of vesicle docking have emerged 

as a key control point for neurotransmitter release. An important lesson from the progress 

made so far is to interpret physiological, ultrastructural, genetic, computational, and 

biochemical data in the context of each other. Soon after the replacement site-docking site 

model was proposed based on electrophysiology, just such a transient docking event had 

been identified and corresponding dynamics of the trans-SNARE complex verified in vitro. 

Looking forward, some open questions are obvious and can be readily addressed by current 

methods, such as the identity of calcium sensors and the diversity of docking dynamics at 

different synapse types and in different plasticity regimes. Others, such as how different 

stages of docking and recruitment correspond to different biochemical states, need new 

approaches. Ultimately, we should also keep an eye toward how the nanoscale fluttering 

back and forth of synaptic vesicles can help give rise to the function of neurons, circuits, and 

brains.
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Highlights:

• During neuronal activity, synaptic vesicles transition between docked and 

undocked states on time scales ranging from milliseconds to seconds.

• Docking has been implicated in all known forms of presynaptic plasticity, as 

well as asynchronous release.

• Residual calcium and the actin cytoskeleton are essential for transient 

docking; candidate calcium sensors include Syt1, Syt3, Syt7, and Munc13.

• What determines kinetics and reversibility of docking during synaptic activity 

is still uncertain.
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Figure 1. 
The strict definition of synaptic vesicle docking.

What is meant by ‘docking’ in synaptic ultrastructure varies from study to study. This term 

is often used for all vesicles within 30–40 nm of the plasma membrane at the active zone 

(measuring the nearest distance between the edge of the vesicle membrane and plasma 

membrane). Here, we refer to docking by a strict definition: structurally, docking is the 

closest synaptic vesicles can get to the plasma membrane at the active zone before fusion as 

observed by electron microscopy. (a) In high-pressure frozen and freeze-substituted samples, 

docked vesicles make a ‘point contact’ with the plasma membrane, visible in both (a) 2D 

thin sectioning EM and (b) 3D electron tomography (solid arrowheads indicate vesicles with 

visible plasma membrane contact in the tomograph slice shown, hollow arrowheads indicate 

vesicles that are docked and make contact with the plasma membrane, but the contact is 

not visible in this slice; green vesicles in the 3D rendering are docked), with no apparent 

space between vesicle membrane and plasma membrane down to the effective resolution 

of this technique (0–2 nm) [28,43]. (c) In cryo-electron tomography, which visualizes the 

native state of tissue under vitreous ice without any staining, dehydration, or fixation, the 

closest vesicles get to the plasma membrane in synapses at rest is ~5 nm [84–86], and by 

our definition these constitute docked vesicles. This means the apparent 0–2 nm distance 

in freeze substituted samples is likely an artifact. However, the two characteristic distances 

in these techniques are likely both meaningful and correspond to the same vesicles. ~75% 

of all vesicles within 20 nm of the plasma membrane accumulate at this closest distance 

in cultured hippocampal synapses, regardless of which technique is used [28,84]. [27,82]. 

Accumulation at this specific distance is unique to docking, as undocked vesicles within 100 

nm are roughly evenly distributed in distance from the active zone. Only this closest stage 

of approach requires SNARE complex assembly [27,43], only docked vesicles are depleted 

by stimulation [26,28], and in cryo-electron tomography only these vesicles are connected 
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to the membrane by a stereotyped protein density that may correspond to the docking/fusion 

machinery [84]. All these lines of evidence together strongly argue that docked vesicles, 

and only docked vesicles, are at the final stage of priming and readiness for fusion. Vesicles 

that are close to the plasma membrane, but not docked, we refer to simply as undocked or 

as ‘replacement vesicles’ (these vesicles are sometimes referred to as ‘tethered’). In terms 

of distance from the plasma membrane by EM, our definition of docking corresponds to 

the term ‘tightly docked’ often used in the field [7]. Note that any studies using traditional 

chemical fixation for electron microscopy, rather than fast freezing, cannot resolve the 

distinctions discussed here. Aldehyde fixation of living tissue causes severe deformations 

in cellular structures [87] and directly triggers synaptic vesicle exocytosis [88], making 

evaluation of fine structure near the active zone inaccurate. For example, under chemical 

fixation, preventing SNARE complex assembly has no apparent effect on docking [89].

(a) and (c) are reproduced, with permission, from [43] and [84], respectively. (b) is 

reproduced from [26].
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Figure 2. 
Proposed scheme for docking and undocking of synaptic vesicles at rest and during activity. 

Middle row: At steady state, vesicles reversible dock and undock as the trans-SNARE 

complex tightens and loosens, shuttling between a ‘docking site’ and ‘replacement site. 

Upon calcium binding to Syt1, docked vesicles fuse. Top row: in ‘two-step’ release, calcium 

binding to a calcium sensor(s) triggers docking then immediate fusion, perhaps giving rise 

to asynchronous release. While Syt1 is shown here, other higher-affinity calcium sensors 

may mediate docking or fusion during two-step release. Bottom row: docking is enhanced 

during activity as high-affinity calcium sensors such as Syt3 and Syt7 (and/or other signaling 

molecules) push vesicles into the dock state, or lock them there. Biasing the reaction 

coordinate towards docking makes more docked vesicles available for the next round 

of fusion, giving rise to synaptic potentiation and resistance to synaptic depression. For 

simplicity, only the SNARE complex, and not other essential parts of the docking machinery 

like Munc13, is shown. Adapted from an unpublished figure by Erik M. Jorgensen, with 

inspiration from [7]. Note that molecular structures are hypothetical.
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