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Abstract

The sense of touch is ubiquitous in vertebrates, and relies upon the detection of mechanical forces 

in the skin by the tactile end-organs of low-threshold mechanoreceptors. Significant progress 

has been made in understanding the mechanism of tactile end-organ function using mammalian 

models, but the detailed mechanics of touch sensation in Meissner and Pacinian corpuscles, 

the principal detectors of transient touch and vibration, remain obscure. The avian homologues 

of these corpuscles present an opportunity for functional study of mechanosensation in these 

structures, due to their relative accessibility and high abundance in the bill skin of tactile foraging 

waterfowl. Here, we review the current knowledge of mechanosensory end-organs in birds, and 

highlight the utility of the avian model to understand general principles of touch detection in 

glabrous skin of vertebrates.

Introduction

The sensation of non-painful touch in vertebrates is mediated by low threshold 

mechanoreceptors (LTMRs), pseudounipolar somatosensory neurons originating from the 

dorsal root ganglia or the trigeminal ganglia. Somatosensory afferents projecting from 

LTMRs detect mechanical stimuli in the skin and transmit tactile information through 

the corresponding somatosensory pathways in the central nervous system. In glabrous 

skin, such as that covering the human palm, LTMRs form four types of terminal end-

organs: the Pacinian corpuscle, the Meissner corpuscle, the Ruffini corpuscle, and the 

Merkel cell-neurite complex. Comprehensive reviews on these mechanoreceptors and 

mechanotransduction in mammals can be found elsewhere [1–4]. Here we will focus on 
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the current knowledge of these mechanoreceptors in birds, with an emphasis on the avian 

homologues of Pacinian and Meissner corpuscles, the principal detectors of transient touch 

and vibration. Furthermore, we will highlight the potential of avian model organisms to 

contribute to our understanding of each tactile end-organ and vertebrate mechanosensation 

as a whole.

While much of what is known about the structure and function of LTMRs has been acquired 

from research on mammals, birds provide a particularly useful and underutilized model to 

study tactile sensation. Many mechanosensory mechanisms and structures are conserved 

across vertebrates. Similar to mammalian mechanoreceptors, avian LTMRs can be classified 

as slowly-adapting (SA) or rapidly-adapting (RA) receptors, depending on their firing 

pattern in response to mechanical stimulation. The most prominent and well-studied end-

organs in birds are Grandry and Herbst corpuscles, which are innervated by RA-LTMRs, 

and are structurally and functionally analogous to, respectively, Meissner and Pacinian 

corpuscles found in mammals [5–7]. Merkel cell-neurite complexes and Ruffini corpuscles, 

which are innervated by SA-LTMRs, are also found in birds, although their structure, 

location, and density may vary among species [8].

Mechanosensory end-organs are complex structures composed of the LTMR afferent and 

non-neuronal cells, such as Merkel cells or various types of lamellar cells. Traditionally, the 

afferent has been thought of as the sole mechanoreceptive entity within end-organs, whereas 

the non-neuronal components have been thought to play supportive and regulatory roles 

[9]. However, studies in mice have revealed that Merkel cells detect touch and modulate 

the function of the afferent [10–12], challenging this traditional view. Meanwhile, the 

role of the non-neuronal components in Meissner and Pacinian corpuscles is less clear, 

because these structures are poorly accessible to direct functional studies in mouse skin. 

In precocial birds, such as ducks, the development of the somatosensory system largely 

completes before hatching [13,14], which permits electrophysiological analysis of the non-

neuronal components of mechanosensory end-organs using the skin of late-stage embryos 

[7]. Because of this advantage, birds provide a unique opportunity to study LTMRs and 

understand the basic principles of touch detection in vertebrates.

Mechanosensation in avian species

The sense of touch is indispensable to the survival of many forms of life, and birds 

are no exception. Just as some fish, reptiles, and mammals have evolved specialized 

mechanosensory organs [15–17], some birds have done so as well. In many avian species, 

the bill or beak has emerged as this tactile organ, and a fine sense of touch may extend to 

the tongue [18–21] and oropharynx [22]. In many waterfowl of the Anatidae family, which 

includes ducks (Figure 1a), swans, and geese, Grandry and Herbst corpuscles are present at 

an exceptionally high density in the skin covering the bill (Figure 1b–c), tongue and oral 

cavity, and are thought to underlie sophisticated tactile-based foraging [17,23–25]. In the 

Mallard duck (Anas platyrhynchos), bill-localized mechanosensation is required for effective 

feeding in a dark environment, where the sense of touch dominates foraging behavior [26]. 

Similarly, the New Zealand kiwi (Apteryx mantelli) relies upon tactile foraging in lieu of 

visually-guided foraging, utilizing the mechanoreceptors and corpuscles located in its bill 
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[27,28]. Behavioral and anatomical evidence for a specialized mechanosensory bill/beak 

also exists in other birds, including emus, ostriches [22], finches [29–31], ibises [32], parrots 

[33], and various shorebirds [34], but mechanosensation may be enhanced in some species 

compared to others. Indeed, tactile specialist birds have a significantly higher proportion 

of mechanoreceptors in their trigeminal ganglia compared to visual foragers [35], and 

display a larger volume of the trigeminal nucleus, the brainstem region that perform the 

initial processing of sensory information from trigeminal LTMRs [36,37]. Consequently, 

in many of these specialist species, especially tactile-foraging ducks, the mechanosensory 

function of the bill can be considered equivalent to that of the human hand. As most of 

our understanding of the physiology of peripheral mechanotransduction in the skin of birds 

comes from tactile specialist waterfowl, we will focus on them when discussing the function 

of cutaneous LTMRs.

Importantly, the major molecular mechanism of mechanotransduction in LTMRs appears to 

be conserved between birds and mammals. In Pekin ducks, the domesticated descendants 

of the Mallard, the mechanosensitive ion channel Piezo2 [38] mediates a portion of the 

excitatory mechanically activated (MA) current in somatosensory neurons [14], and is likely 

responsible for mechanotransduction in a subset of avian LTMRs, as it is in mice [39]. 

There is a significant increase in the duration of Piezo2-mediated MA current in duck 

mechanoreceptors compared to mice [14], the consequences of which are not yet clear, but 

it is possible that the longer-lasting MA current increases the chance of action potential 

firing in response to a light mechanical stimulus. When assayed in heterologous cells, 

most functional properties of duck Piezo2 appear to be highly conserved with mammalian 

orthologues, including fast inactivation [14] and cold-induced potentiation [40] of MA 

current. Additionally, Piezo2 is expressed in a large proportion of duck TG neurons, which 

display larger MA currents compared to other birds and mice [35,41]. This likely reflects the 

incredibly high density of trigeminal RA-LTMRs and associated sensory corpuscles in the 

bill (Figure 1b,c). Because of these conserved mechanisms and physiological advantages, 

investigation into the LTMRs and end-organs of avian tactile specialists may yield valuable 

insight into the function of these structures across vertebrates.

Grandry (Meissner-like) corpuscle

Grandry corpuscles are ovoid end-organs innervated by RA-LTMRs that detect velocity and 

low frequency vibration (Figure 1d) [5,6]. These structures are found in the bill of waterfowl 

at a density up to 65 corpuscles per square millimeter [23]. Grandry corpuscles contain as 

few as two lamellar cells that surround the nerve ending [7], although this number can be as 

high as 12 in some species [6]. The lamellar cells are derived from Schwann cells and form 

a stacked column in which nerve endings are sandwiched between pairs of cells, altogether 

encapsulated by satellite cells [13,23,42]. Similar formations called “Merkel corpuscles” 

have been previously characterized in nonaquatic birds, but these often bear a striking 

morphological resemblance to Grandry and Meissner corpuscles [31] and they are likely 

variations of the same structure [43] which are distinct from Merkel cell-neurite complexes. 

As stated previously, Grandry corpuscles are analogous to the Meissner corpuscle, the type 

II RA-LTMR of mammals.
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Similar to the Grandry corpuscle, Meissner corpuscles detect velocity and low frequency 

vibration [44,45]. These structures are found in the glabrous skin of the human and primate 

hands [2,46] and mouse paws [47,48]. The nerve ending of the Meissner corpuscle is 

also surrounded by several lamellar cells of Schwann cell origin [9,49,50]. Interestingly, 

Meissner corpuscles are often innervated by more than one type of neuron [44,51,52], 

which can have different responses to the same mechanical stimulus [44]. It remains to 

be seen whether this multifaceted innervation and divergent physiology is present in the 

Grandry corpuscle of birds. Additionally, mammalian Meissner corpuscles are innervated 

by RA-LTMR afferents that express the mechanically gated ion channel Piezo2 [39,53]. 

Even though Piezo2 is expressed in ~70% of trigeminal neurons of the tactile specialist 

Pekin duck [14], whether Grandry corpuscles are innervated by Piezo2-expressing afferents 

remains to be tested.

Lamellar cells in Grandry and Meissner corpuscles are thought to be important for their 

function, though their exact role is currently obscure. The afferent is typically considered 

the sole entity within corpuscles that detects touch, whereas the role of lamellar cells is 

thought be auxiliary and supportive. A recent study showed USH2A, a putative tether 

protein which is implicated in human hearing and inner ear function [54,55], is not only 

expressed in lamellar cells of Meissner corpuscles, but necessary for vibration detection 

and proper function of the mechanoreceptor in mice [45]. This suggests that the lamellar 

cell may act as an anchor that supports mechanotransduction in the nerve ending by a yet 

unknown mechanism. Alternatively, or in addition, lamellar cells could actively participate 

in touch detection, and shape the response of the afferent, similar to the paradigm discovered 

in Merkel cell-neurite complexes, whereby both the Merkel cells and the afferent detect 

touch [10–12]. This idea is supported by a recent electrophysiological investigation of the 

lamellar cells of Grandry corpuscles in duck bill skin [7]. It was shown that mechanical 

stimulation triggers depolarization in lamellar cells via opening of mechanically gated ion 

channels of a yet unidentified type. This leads to generation of action potentials in lamellar 

cells via R-type voltage-gated calcium channels. Although lamellar cells detect touch, it 

remains unclear how, if at all, they communicate the tactile information with the afferent. 

Numerous large dense-core vesicles in these cells can be detected in the cytosol of lamellar 

cells using electron microscopy [7,56], raising the possibility that the lamellar cells help 

transduce mechanical forces and induce/modulate the afferent response via a chemical 

secretory mechanism, similar to the Merkel cell-neurite complex characterized in mice 

[57,58].

Herbst (Pacinian-like) corpuscle

In many birds, including tactile specialist waterfowl, Herbst corpuscles are the most 

common end-organ encountered in the skin. Herbst corpuscles are present throughout the 

class Aves [6,18,22,23,29,30,32,34,59–61], but as mentioned previously, have an incredibly 

high density in the bills of ducks [23] and geese [6], up to 140 corpuscles per square 

millimeter. Herbst (and Pacinian) corpuscles are ellipsoid structures composed of multiple 

layers of lamellar cells that surround the terminal of RA-LTMRs (distinct from Grandry-

innervated RA-LTMRs), which detect high frequency vibration (Figure 1e). An outer 

capsule is formed by several concentric lamellae made up of flattened cells referred to 
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as “outer core lamellar cells.” This capsule surrounds the inner core, a bilateral row of 

Schwann cell-derived “inner core lamellar cells” which extend complex, interdigitating 

lamellae around the nerve terminal at the center of the corpuscle [56].

Similarly, the mammalian Pacinian corpuscle has an encapsulated, lamellar structure and is 

present at varying densities in glabrous skin and other tissues, depending on the species. 

These corpuscles are found in the human hand [2,62], the mesentery of cats [63], and 

the foot/paw of many other mammals, including dogs [64], raccoons [65], and elephants 

[66]. However, Pacinian corpuscles are restricted to the joints [67] and periosteum [68] of 

rodents and are less experimentally accessible compared to the Herbst corpuscles in the 

bill of waterfowl [6,23]. Physiological data and computational models show that despite 

differences in size and number of outer lamellae, both the mammalian Pacinian corpuscle 

and avian Herbst corpuscle are rapidly adapting and tuned to high frequency vibration 

[5,69–71]. Thus, though there is some structural variation between the end-organs, their 

basic microanatomical features and functional roles are very similar.

The lamellar cells of the Herbst and Pacinian corpuscles are thought to be an integral 

passive component responsible for shaping the mechanical forces experienced by the nerve 

at the center of the structure. Removing the outer layers of these cells from the end-organ 

prolongs the generator potential produced by mechanically gated channels in the neuron 

of cat Pacinian corpuscles [72]. At the same time, lamellar cells possibly play a more 

active role in lamellated corpuscle signal transduction. Potential evidence for such a role 

exists in the Herbst corpuscle; lamellar cells of the outer layers of this corpuscle respond 

to touch in the form of MA current [7]. However, these lamellar cells lack voltage-gated 

ion channels and are located far from the neuron, so the functional consequences of their 

mechanosensitivity is unclear. It is possible that the MA current in these cells is important 

for mechanotransduction of the corpuscle as a whole, but this remains to be shown. Further 

work in this system is warranted to investigate the functional role of these lamellar cells in 

Herbst/Pacinian corpuscles and identify the molecule(s) responsible for their MA current.

The lamellar cells of the inner core of the Herbst corpuscle are also potentially critical: they 

form close junctions with the afferent via a complex network of thin lamellae. Additionally, 

these inner core cells express various calcium binding proteins [73,74] and the ion channels 

Trpv4 and Asic2 [75], which could have some physiological purpose within the corpuscle. 

Immunohistochemical and functional studies suggest a possible mechanochemical synaptic-

like communication between inner core cells and the afferent in Pacinian corpuscles [76,77], 

but direct evidence for active touch detection in inner core cells is missing. Importantly, the 

structure of the inner core is mostly complete at embryonic days 24–28 in ducks [78], the 

time at which Herbst corpuscles are functional. At this stage, electron micrographs show 

vesicles and high density junctions located near membranes of the inner core, though it is 

unclear if these structures are located in the nerve terminal or lamellae of inner core cells 

[79]. While the outer lamellar cells could previously be removed from the cat Pacinian 

corpuscle, it was impossible to remove all of the inner core structure [80], and thus it was 

impossible to test the function of the inner core cells. The Herbst corpuscle may act as a 

more flexible experimental medium for investigating the inner core given the corpuscle’s 

accessibility and density in the duck bill. It would be worthwhile to know whether inner 
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core cells can detect touch, and whether they play a role in shaping afferent responses, given 

their intimate association with the nerve terminal. However, electrophysiological properties 

of inner core lamellar cells have not been reported in any species.

Ruffini corpuscle and the Merkel cell-neurite complex

Ruffini corpuscles are traditionally considered to be innervated by type II SA-LTMRs, 

though this association is questionable due to discrepancies between physiological and 

anatomical data [81]. These structures are rare and difficult to identify in many species, 

including humans [81,82], and thus pose a challenge to investigate in any organism. Merkel 

cell-neurite complexes, on the other hand, are well characterized from studies in mammals, 

and are known to be innervated by type I SA-LTMRs. Recent work has revealed that in 

both hair follicles and touch domes of mice, Merkel cells detect mechanical stimuli and 

help shape the responses of corresponding afferents to touch [10–12]. A chemical synapse 

between the Merkel cell and the afferent mediates this interaction. In mice, this synapse 

has been reported to be either serotonergic or adrenergic [57,58]. It is unclear if avian 

Merkel cells perform a similar function, due to the absence of functional knowledge of these 

receptors in birds.

While physiological investigation of Ruffini corpuscles and Merkel-cell neurite complexes 

in birds is lacking, some anatomical and structural studies have been performed. Histological 

and ultrastructural evidence of Ruffini corpuscles and Merkel cells has been found in bill/

beak skin and oral mucosa of the Muscovy duck (Cairina moschata) and Japanese quail 

(Corturnix coturnix japonica) [8,83], though both end-organs were rarer in the former. 

Confusion exists around the existence and identity of the avian Merkel cell-neurite complex 

due to the presence of previously mentioned “Merkel corpuscles,” which more closely 

resemble mammalian Meissner corpuscles and Grandry corpuscles of waterfowl [31]. 

Merkel cells can be found independent of these structures in the duck [84]; these cells may 

be more closely related to the Merkel cell-neurite complex seen in mammals. In the shoulder 

joint of the domestic pigeon (Columba livia domestica), Ruffini corpuscles were also 

identified [61], but it is unclear how common they are in other anatomical locations such as 

the beak. Within the avian Ruffini corpuscle, the nerve terminal forms a complex branching 

structure surrounded by specialized terminal Schwann cells and fibrous elements [82,83], 

components also seen in the Pacinian, Meissner, Herbst, and Grandry corpuscles. The 

function of these Schwann-like cells of Ruffini corpuscles and Merkel cells in birds is still 

unknown. Further investigation of the Ruffini corpuscle and the Merkel cell-neurite complex 

across different species may provide insight into evolutionarily conserved mechanisms of 

mechanotransduction and physiological properties of these mechanoreceptors.

Concluding remarks

Many questions remain about the precise physiological workings of vertebrate LTMRs. 

Of particular interest is the role of lamellar cells in the Herbst (Pacinian) and Grandry 

(Meissner) corpuscles. Thorough functional studies will be required to dissect the cellular 

and molecular mechanisms by which the neuronal and non-neuronal components of these 

end-organs interact with each other and transduce mechanical stimuli. Because of the high 
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density and experimental accessibility of Grandry and Herbst corpuscles in tactile-foraging 

birds, these organisms remain powerful experimental models with which to study rapidly 

adapting mechanoreceptors. Avian species will be further useful for exploring conserved 

mechanisms of mechanosensation found throughout various vertebrate organisms and touch 

receptors.
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Highlights

• The neurophysiology of touch sensation is conserved across birds and 

mammals

• Bird mechanoreceptors innervate Grandry (Meissner) and Herbst (Pacinian) 

corpuscles

• Grandry and Herbst corpuscles densely populate the bill skin of tactile 

foragers

• Grandry and Herbst corpuscles detect transient touch, velocity, and vibration

• Lamellar cells are critical to sensory corpuscle structure and function
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Figure 1. The structure and function of Grandry and Herbst corpuscles within the 
mechanosensory bill of waterfowl.
(a) The neuroanatomy underlying tactile sensation in the bill. LTMRs from the trigeminal 

ganglia (TG) project to the skin of the bill. (b) Trigeminal LTMRs form terminal end-organs 

in the bill dermis, most of which are Grandry and Herbst corpuscles. (c) Image of the bill 

dermis under a brightfield microscope. Grandry (yellow arrows) and Herbst (red arrows) 

corpuscles are present at a cumulative density of up to 200 corpuscles per square millimeter 

of skin, and can be easily distinguished by size and morphology. (d) Higher magnification 

image and diagram of a Grandry corpuscle. The Grandry corpuscle is composed of 2–12 
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lamellar cells which are layered above and below the terminals of the RA-LTMR. The 

structure is encapsulated by satellite cells. Below the diagram, example stimuli (black) and 

LTMR afferent responses (blue) are shown. The LTMR of the Grandry corpuscle detects 

changes in transient force, low frequency vibration, and velocity; the impulses/second 

of the LTMR response increase with increasing velocity of the mechanical stimulus. (e) 
Higher magnification image and diagram of a Herbst corpuscle. The Herbst corpuscle is 

composed of an outer capsule formed by outer core lamellar cells, which encloses an inner 

core comprised of inner core lamellar cells. The outer core and inner core lamellar cells 

form concentric lamellae surrounding the mechanoreceptor afferent. Below the diagram, 

example stimuli (black) and LTMR afferent responses (blue) are shown. The LTMR of 

Herbst corpuscles detects transient force and high frequency vibration.
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