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SUMMARY

Resolving glial contributions to Alzheimer’s disease (AD) is necessary because changes in 

neuronal function, like reduced synaptic density, altered electrophysiological properties, and 

degeneration, are not entirely cell autonomous. To improve understanding of transcriptomic 

heterogeneity in glia during AD, we used single nuclei RNA sequencing (snRNA-seq) to 
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characterize astrocytes and oligodendrocytes from APOE ε2/3 human AD and age- and genotype-

matched non-symptomatic (NS) brains. We enriched for astrocytes before sequencing and 

characterized pathology from the same location as the sequenced material. We characterized 

baseline heterogeneity in both astrocytes and oligodendrocytes, and identified global and subtype-

specific transcriptomic changes between AD and NS astrocytes and oligodendrocytes. We 

also take advantage of recent human and mouse spatial transcriptomics resources to localize 

heterogeneous astrocyte subtypes to specific regions in the healthy and inflamed brain. Finally, we 

integrated our data with published AD snRNA-seq datasets, highlighting the power of combining 

datasets to resolve previously unidentifiable astrocyte subpopulations.

eTOC Blurb

Transcriptomic and functional changes in glia are hallmarks of Alzheimer’s disease. In this 

issue of Neuron, Sadick, O’Dea, et al. define transcriptomic differences in astrocytes and 

oligodendrocytes in Alzheimer’s disease at the single nuclei level. They also localize human 

Alzheimer’s-associated transcription profiles to strategic location in the inflamed mouse brain.

INTRODUCTION

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder in 

the world and accounts for about 70% of the 50 million people worldwide with dementia, 

with an estimated 10 million new cases each year, or close to 20 new cases every minute 

(Alzheimer’s Association, 2021). With an aging population, greater understanding of AD 

pathogenesis is imperative for development of effective therapies. Defined by progressive 

memory and cognitive loss, AD is a disease of proteopathic stress associated with abnormal 

beta-amyloid (Aβ) and tau aggregation, and neuron death (De Strooper and Karran, 

2016; Ginsberg et al., 2006; Mattsson et al., 2016; Yue and Jing, 2015). More recently, 

research highlights non-neuronal central nervous system (CNS) cells, namely glia, as active 

contributors to AD pathophysiology. Increasing evidence supports a pathological role of 

‘reactive’ astrocytes in acute and chronic diseases, like AD (Carter et al., 2012; Owen et al., 

2009; Sadick and Liddelow, 2019; Schipper et al., 2006). This includes changes in normal 

physiological functions like synapse maintenance (Hong et al., 2016), blood-brain barrier 

(BBB) integrity (de la Torre, 2004; Farkas and Luiten, 2001; Viswanathan and Greenberg, 

2011), metabolism (Gonzalez-Reyes et al., 2017), and structural support (Mohamed et al., 

2016; Teaktong et al., 2003; Wu et al., 2015). Many studies implicate reactive astrocytes 

induced by immune cell dysfunction and inflammatory responses to pathogenic proteins 

(Aβ and tau) and dying cells (Hasel et al., 2021; Liddelow et al., 2017; Shi et al., 2017; 

Zamanian et al., 2012). Oligodendrocytes are also of interest in AD pathology given their 

role in myelin production and axon support (Funfschilling et al., 2012; Saab et al., 2016). 

White matter abnormalities (e.g. lesions, decreased volume, microstructural deterioration), 

and demyelination are well documented in AD (Lee et al., 2016; Radanovic et al., 2013). 

Beyond these broad physiological changes, many questions remain, such as how subtypes of 

astrocytes and oligodendrocytes are altered in AD.

Single nuclei RNA sequencing (snRNA-seq) has been used to assess cellular heterogeneity 

at the transcriptomic level in human AD postmortem brains (Del-Aguila et al., 2019; Gerrits 
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et al., 2021; Grubman et al., 2019; Lau et al., 2020; Leng et al., 2021; Mathys et al., 

2019; Zhou et al., 2020). In most studies however, astrocytes are underrepresented, making 

up only ~3-18% of nuclei. Therefore, we posit that these studies may not provide large 

enough samples to confidently define biologically important, but lowly abundant, astrocyte 

subpopulations - a hypothesis supported by the fact that similar subpopulations are not 

identified across published datasets. In contrast, oligodendrocytes are well-represented in 

snRNA-seq studies, with some agreement in identified subpopulations. In addition, given 

the important spatially-confined responses of astrocytes to AD pathology (e.g. surrounding 

amyloid plaques, or near degenerated brain regions), no studies have combined pathological 

characterization with sequencing efforts on the same tissue samples. Several studies 

provided pathological analysis of contralateral or adjacent brain regions, but these may be 

far-removed from local pathology-induced microenvironments (Gerrits et al., 2021; Leng et 

al., 2021; Mathys et al., 2019). A lack of concordance may also be reflective of variability 

with respect to pathological load and/or underlying genetic variance across donors.

Here we present a snRNA-seq dataset characterizing astrocytes and oligodendrocytes 

isolated from human postmortem prefrontal cortex samples from AD and age-matched 

non-symptomatic (NS) patients. All individuals were genotyped and controlled for 

apolipoprotein (APOE) genotype ε2/3. We chose this patient population as it is under-

represented in other sequencing studies, and individuals present with AD dementia onset at 

later ages (onset ~80 years (Reiman et al., 2020)), making age matching between NS and 

AD patients more similar. In addition, APOEε2/3 individuals have a low odd-risk ratio of 

contracting AD compared to individuals that carry an APOEε4 allele (Goldberg et al., 2020; 

Reiman et al., 2020).

In order to improve astrocyte capture for snRNA-seq, we enriched for astrocytes by sorting 

nuclei based on LIM Homeobox 2 (LHX2)-positive/NeuN-negative staining followed by 

10X Genomics-based snRNAseq. This method enriches for astrocytes while maintaining 

capture rates of oligodendrocytes and depleting neurons. We characterized the pathology of 

donor tissue from the same location that nuclei were isolated for sequencing. We identified 

global and subtype-specific transcriptomic changes between AD and NS astrocytes and 

oligodendrocytes. Additionally, we localized heterogeneous astrocyte subtypes to specific 

cortical regions in the healthy and inflamed brain using published human and mouse 

spatial transcriptomics datasets. Last, we integrated our data with published AD snRNA-seq 

datasets and resolve unique astrocyte subpopulations present across datasets. Overall, we 

provide a paired sequencing and pathology assessment resource that can be used to further 

explore the breadth of astrocyte and oligodendrocyte transcriptomic changes in AD.

RESULTS

Defining a well-controlled patient cohort is key for defining AD-associated gene 
expression profiles

We first decided to reanalyze and compare three recent studies (Grubman et al., 2019; 

Mathys et al., 2019; Zhou et al., 2020) and found that astrocytes made up on average 15% ± 

8.7% of total nuclei captured (2,300-23,000 per study – on average less than 400 astrocytes 

per donor; Figure S1A–C, Table S1). Given astrocytes are one of the most abundant CNS 
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cell types (Nedergaard et al., 2003; von Bartheld et al., 2016), this low capture rate was 

surprising. In contrast, other cell populations were well represented. In addition, donors 

varied in APOE genotype, which may confound resulting profiles of astrocytes given they 

highly express APOE (Zhang et al., 2016). Therefore we focused on APOE ε2/3 donors, a 

population of patients that has been understudied. Our approach enabled us to: (1) conduct 

a highly stringent evaluation of our donor cohort, and (2) optimize enrichment methods for 

astrocytes prior to sequencing for improved astrocyte capture rates.

We characterized our patient cohort by verifying APOE genotype (Figure S1D) and 

evaluating pathological load of donor tissue for Aβ (4G8), phosphorylated tau (AT8), glial 

fibrillary acidic protein (GFAP), and Bielschowsky’s silver staining (Figure 1A, Table S2). 

Each stain was quantified for normalized staining density, total count of features (i.e., 

number of 4G8+ Aβ plaques or AT8+ cell bodies), and average cross-sectional area of 

each feature (Table S2). We evaluated diffuse plaques, neuritic plaques, and neurofibrillary 

tangle loads (Table S2). In line with clinical diagnoses, phosphorylated tau staining density 

and total number of AT8+ cell bodies were significantly higher in AD donors compared 

to NS donors (p = 0.0047). In contrast, we did not detect major differences in Aβ plaque 

staining density or area or GFAP+ staining density or area between disease conditions. 

Interestingly, individual AT8+ cell bodies were significantly larger in NS donors than AD 

donors (p = 0.022) – likely driven by differences in the number of AT8+ cell bodies detected 

between disease conditions (AT8+ cell bodies counted: 141 NS versus 57,829 AD). Based 

on Bielschowsky’s silver staining, we classified NS donors as having no or low pathology 

loads, while AD donors had moderate or severe pathology loads.

We next sought to improve astrocyte capture for snRNA-seq by enriching for astrocytic 

nuclei prior to sequencing (Figure S2). Initially, we attempted astrocyte enrichment via 

SOX9 sorting (Figure S1E–G, S2A), given SOX9 is a transcription factor highly and 

uniquely expressed in astrocytes (Zhang et al., 2016). However, this strategy proved 

ineffective at increasing astrocyte capture yields, likely due to non-specific SOX9 antibodies 

(Table S3). Instead, we turned to a dual immunolabeling strategy pioneered by Nott and 

colleagues (Nott et al., 2019) by sorting samples based on LHX2+NeuN− (Figure S1H–M, 

S2B, Table S3). Using this strategy, we enriched for astrocytes, maintained oligodendrocyte 

numbers, and depleted neurons (Figure 1C–G). While optimizing this process, we sorted 

a single donor using both sorting strategies, highlighting significant improvement in total 

astrocyte capture (Figure S1H–M). Overall, in our final donor cohort, 51.5% of nuclei 

captured were astrocytes, totaling 41,340 astrocytes and averaging 2,756 ± 1,087 astrocytes 

per donor (Figure 1E–G). In addition, 29.7% of nuclei captured were oligodendrocytes, 

totaling 23,840 oligodendrocytes and averaging 1,589 ± 1,342 oligodendrocytes per donor 

(Figure 1E–G).

Putative loss of critical oligodendrocyte functions in Alzheimer’s disease

We identified five unique oligodendrocyte transcriptomically defined clusters (Figure 2A–B) 

and evaluated these gene sets on their own and by gene ontology (GO)/pathway analysis 

(Table S4). We did not identify any singular sample variable, such as disease state, sex, 

RNA quality, age of donor, or post mortem interval (PMI), that was exclusively associated 
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with a cluster (Figure 2C, Figure S3). While few genes were exclusively expressed by a 

single cluster, several were enriched in some clusters over others. Oligodendrocyte cluster 

1 for example was enriched for transcripts involved in glial cell development (PLP1, 

CNP, CD9) and apoptotic signaling (SEPTIN4, SERINC3). Oligodendrocyte cluster 2 

was enriched for transcripts associated with cholesterol metabolism (MSMO1, FDFT1, 
LSS). Oligodendrocyte clusters 2, 3, and 4 enriched transcripts were involved in synapse 

assembly and organization. Additionally, oligodendrocyte cluster 4 expresses transcripts 

involved in antigen processing/presentation (PSMB1, B2M, HLA-A) and innate immunity-

associated pathways, such as interleukin-1 signaling, tumor-necrosis factor signaling, and 

NFκB signaling. Finally, although we did not identify any statistically significant GO terms 

associated with oligodendrocyte cluster 0, based on cluster-enriched differentially expressed 

genes (DEGs), we inferred that this cluster was associated with synapse organization and 

aspects of metabolism (Table S3).

We next evaluated differential gene expression between AD and NS oligodendrocytes 

using edgeR paired with zinbwave-generated observational weights. We identified 358 

unique upregulated and 227 unique downregulated DEGs in AD oligodendrocytes (Table 

S4). We did not find any transcriptomic changes that were conserved/common across 

all oligodendrocyte subpopulations, but instead find highly cluster-specific transcriptomic 

changes based on disease state (Figure 2D–I).

We next classified our findings by assigning ‘GO descriptions’ – a manual evaluation of 

oligodendrocyte cluster-specific or cluster-shared GO terms. This allowed us to summarize 

multiple identified GO terms associated with either upregulated or downregulated pathways, 

for single or multiple oligodendrocyte clusters (Figures S4, S5, Table S4). Oligodendrocyte 

‘GO descriptions’ associated with AD fell into two broad categories: upregulation of 

synaptic maintenance, or downregulation of synaptic maintenance. For example, cluster 

1 AD oligodendrocytes upregulate GO terms associated with axonogenesis and synapse 

organization (example associated DEGs include LRP4, TIAM1, CDH2). Decreases in 

synaptic cell adhesion protein N-cadherin (CDH2) have previously been reported in 

AD temporal cortex (Ando et al., 2011). Therefore, upregulation of CDH2 in this 

subpopulation of AD oligodendrocytes is an interesting discovery and may reflect a 

neuroprotective response to maintain contacts between axons and oligodendrocyte lineage 

cells (Schnadelbach et al., 2001). Cluster 2 AD oligodendrocytes upregulate pathways 

related to cholesterol metabolism. Cholesterol is an essential component of myelin (Saher 

et al., 2011), so identification of transcripts associated with cholesterol metabolism here 

(e.g. FM05, FDFT1) is not surprising. However, in the context of AD, upregulation of 

these transcripts in an oligodendrocyte subpopulation may suggest neurosupportive and/or 

neurotoxic effects (Guttenplan et al., 2021). For example, conditional knockdown of 

squalene synthase (FDFT1), a rate-limiting enzyme in cholesterol synthesis, significantly 

delays myelination in vivo (Saher et al., 2005). However, high cholesterol is also a risk 

factor for AD (Shepardson et al., 2011) and may exacerbate AD pathology by increasing 

Aβ production (as seen in APP/PS1 mice on a high cholesterol diet) (Refolo et al., 

2000) or Aβ aggregation (Yip et al., 2001). Clusters 0 and 2 AD oligodendrocytes 

downregulate pathways involved in amino acid synthesis (Figure S4C). Fatty acid synthesis 

by oligodendrocyte lineage cells is critical for both myelination and remyelination, as seen 
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in acute lesions in a focal spinal cord demyelination model (Dimas et al., 2019). Decreased 

expression of stearoyl-CoA desaturase (SCD), a rate-limiting enzyme in monounsaturated 

fatty acid synthesis (Paton and Ntambi, 2009), in these oligodendrocytes may reflect a loss 

of function regarding endogenous fatty acid synthesis and could imply limited myelination/

remyelination capabilities. Cluster 0, which makes up almost 80% of all oligodendrocytes 

identified in our snRNA-seq dataset, downregulate GO terms associated with synapse 

transmission, synaptic vesicle regulation, and ion transmembrane transport (Figure S4D). 

In contrast to cluster 1 AD oligodendrocytes, those in cluster 0 downregulate a number of 

synaptic cell adhesion molecules like E-cadherin (CDH1) (Kilinc, 2018), liprin-α (PPFIA2) 

(Lie et al., 2018), and disrupted in schizophrenia 1 (DISC1) (Hattori et al., 2010), which 

suggests decreased contacts between oligodendrocytes and axons. Also, cluster 0 AD 

oligodendrocytes downregulate GO terms associated with metabolism (example DEGs 

include PDE8A, PDE10A, PDE1A, CNP, RORA). Inhibition of phosphodiesterases (PDEs), 

a group of enzymes that regulate cyclic nucleotide cAMP and cGMP levels, is used in the 

treatment of cardiovascular diseases, inflammatory airway diseases, and erectile dysfunction 

(Boswell-Smith et al., 2006) and have been evaluated as a therapy in AD (Prickaerts et 

al., 2017; Wu et al., 2018). In addition to the potential broader cognitive improvement 

by PDE inhibition, downregulation of PDEs (specifically PDE4) promotes oligodendrocyte 

lineage cell differentiation and remyelination in a focal demyelination model (Syed et 

al., 2013), suggesting these transcriptomic changes may serve a neuroprotective role 

in this specific oligodendrocyte subpopulation. We therefore hypothesize that some AD-

associated transcriptional and functional changes in oligodendrocytes may also arise in 

other degenerative diseases like multiple sclerosis – even if the entire complement of 

transcriptional changes is not the same.

Integration of oligodendrocytes from multiple datasets recovers overlapping subtypes

Given the abundance of high quality, well-powered AD patient oligodendrocyte snRNAseq 

datasets in the literature (Del-Aguila et al., 2019; Gerrits et al., 2021; Grubman et al, 

2019; Leng et al., 2021; Mathys et al., 2019; Zhou et al., 2020), we next sought to 

determine if we could resolve the same transcriptomic differences previously reported. 

We evaluated oligodendrocyte subtypes in each individual dataset and compared them 

to our own (Table S1, Figures S3I, S6–S8). By analyzing each dataset in isolation, we 

identified 5 oligodendrocyte clusters (M0-M4) in the Mathys dataset, 4 oligodendrocyte 

clusters (G0-G3) in the Grubman dataset, and 10 oligodendrocyte clusters (Z0-Z9) in the 

Zhou dataset (Figure 3A–B, Table S1). Using our oligodendrocyte subpopulation profiles 

as a reference (from now on referred to as oligodendrocyte clusters S0-S4), we identified 

subpopulations which were also recognizable in the individual datasets. This included S1-

like oligodendrocytes (clusters M0, M3, G0, G3; defined by high expression of FTH1, 
CRYAB, CNP, and FRY) and S2-like oligodendrocytes (clusters M2, G1; defined by 

RBFOX1, RASGRF1, ACTN2, and SYNJ2). In the Grubman dataset, we also identified S4-

like oligodendrocytes (cluster G2; which highly expresses S100A6, ITPKB, and NEAT1). 

The remaining oligodendrocyte clusters in the Mathys dataset were defined by either no 

highly unique transcripts (cluster M1; only enriched transcript is X-chromosome gene XIST, 

even though donors of both sex are represented in this cluster) or significantly fewer 

genes/UMI counts per nucleus compared to other clusters (cluster M4). In contrast, we 
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identified twice as many oligodendrocyte subpopulations in the Zhou dataset compared to 

our own. However, although we detected more transcriptomically definable oligodendrocyte 

subpopulations, many of these clusters reflect gradations of transcript expression across 

multiple clusters. For example, oligodendrocyte clusters Z2, Z5, and Z9 express increasing 

levels of PLP1, CNP, CNTN1, FRY, and KCNIP4 (similar to S1 oligodendrocytes), and 

oligodendrocyte clusters Z4 and Z7 express ACTN2I, DTNA, RASGRF1, and RASGRF2 
(similar to S2 oligodendrocytes). Overall, we found 3 out of 5 subpopulations were present 

in the Zhou dataset (spread over 7 clusters). The remaining three clusters are defined by 

either higher mitochondrial transcript expression and low gene/UMI counts per nucleus 

(cluster Z3) or have uniquely identified profiles that do not have a corresponding profile in 

our snRNA-seq dataset.

In addition to evaluating oligodendrocytes from published datasets in isolation, we also 

integrated these datasets with our own. By doing so, we defined 7 oligodendrocyte 

subpopulations (clusters Int0-Int6) and found highly consistent representation of clusters 

from each dataset (Figure 3C–D, Table S5). To determine if all datasets equally 

contributed to cluster-defining transcript expression, we evaluated the top five integrated 

oligodendrocyte cluster-enriched transcripts by cluster and dataset (Figure 3E). Overall, 5 

out of 7 integrated oligodendrocyte clusters were well defined across all datasets (clusters 

Int1 and Int3-Int6). Oligodendrocyte cluster Int0 was unremarkably defined (i.e. lacked 

unique or highly enriched transcript features) across all datasets. Comparing transcriptomic 

profiles between integrated oligodendrocyte clusters with our own oligodendrocyte dataset, 

two clusters had a high degree of similarity. Oligodendrocyte cluster Int0 expresses 

SVEP1 and PLXDC2 (similar to S0 oligodendrocytes), and Int6 oligodendrocytes express 

NRP2, LUCAT1, and CAMK2D (similar to S4 oligodendrocytes). In contrast to these 

oligodendrocyte subpopulations, in the integrated dataset, we identified two pairs of clusters 

in which expression gradation of transcripts were now well definable across all datasets 

(and not just in the Zhou dataset). Specifically, clusters Int1 and Int4 share expression 

of transcripts FTH1, PLP1, APOD, and DBNDD2. In addition, Int4 oligodendrocytes 

highly expresses SGCZ, MDGA2, CNTN1, KCNIP4, and FRY (which we identified in 

S1 oligodendrocytes).

Transcriptionally distinct astrocyte subtypes are independent of disease state

Following our investigation into oligodendrocyte gene expression changes, we next 

investigated our captured astrocytes. We sought to determine if the increased numbers 

enabled us to detect novel subpopulations that had previously been missed. We identified 

9 astrocyte subpopulations with unique transcriptomic signatures (Figure 4A–B) and also 

evaluated them by GO/pathway analysis to infer potential biological relevance (Table S6). 

For example, astrocyte clusters 0, 4, and 8 express unique sets of transcripts involved in 

synapse assembly, organization, and transmission (Cluster 0: EGFR, LRRC4C, EPHB1; 

Cluster 4: DCLK1, NTNG1, and several semaphorins; Cluster 8: EPHA4, AKAP12, 
NLGN4X). Astrocyte clusters 4 and 6 highly express transcripts involved in glutamate 

signaling (GRIA1, GRIK4, SHISA6). Clusters 2 and 5 express transcripts involved 

in extracellular matrix organization (Cluster 2: ADAMTSL3, L3MBTL4; Cluster 5: 

ADAMTSL3, FBN1), while cluster 5 also expresses transcripts involved in actin cytoskeletal 
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organization (SORBS1, SPIRE1). The inclusion of ADAMTSL3 in clusters 2 and 5 may 

point to a protective role of (some) AD or aged astrocytes, as it has reported protective role 

in ischemia and cerebrovascular integrity in the APP/PS1 mouse model of AD (Cao et al., 

2019). In contrast, cluster 3 astrocytes express transcripts involved in acute inflammatory 

responses (e.g. SERPINA3, C3, OSMR) that we have reported on previously in both mouse 

(Hasel et al., 2021; Liddelow et al., 2017) and human (Barbar et al., 2020). Astrocyte cluster 

1 is highly enriched for transcripts involved in oxidative stress (PSAP, COX1, ND1/3) and 

associated with Aβ trafficking (e.g. APOE, CLU) and processing (e.g. ITM2B/2C). The 

inclusion of AD-risk genes, APOE and CLU, with integral membrane protein (ITM2B/2C) 

genes associated with cerebral amyloid angiopathy (Nelson et al., 2013; Vidal et al., 1999) 

in the same astrocyte cluster suggests a putative interaction. Astrocyte clusters 1 and 6 are 

both enriched in a number of metallothioneins and other transcripts involved in response 

to metal ions. Finally, cluster 7 expresses transcripts associated with apoptotic signaling 

and response to DNA damage. Most importantly, we did not identify any donor that 

singularly drove the identification of an astrocyte cluster (Figure S3A, F; see Figure S3A for 

rationale of why two donors were removed from final analyses). Like our oligodendrocyte 

populations, astrocyte heterogeneity was not driven by any definable underlying sample 

variable, including disease state, sex, RNA quality, age of donor, or PMI.

Astrocytes have both common and cluster-specific transcriptomic changes in Alzheimer’s 
disease

We next analyzed samples for AD-associated differential gene expression and identified 

both common and cluster-specific transcriptomic changes between AD and NS astrocytes. 

In total, we identified 1,084 unique upregulated DEGs and 450 unique downregulated 

DEGs between astrocyte clusters that were presumably driven by AD (Table S6). When 

comparing the top 10 up-/down-regulated DEGs by cluster and disease state through 

hierarchical clustering, all AD and NS astrocyte subpopulations clustered separately 

(Figure 4D–E). Across all clusters, AD astrocytes upregulate transcripts including HPSE2, 
SLC39A11, PFKP, NEAT1, RANBP3L, PLPP1, and PLCG2. HPSE2, a heparanase 

homolog, antagonizes heparanase activity (e.g., degradation of heparan sulfate proteoglycans 

in the extracellular matrix – important for removal of Aβ deposits that can aggregate with 

heparan sulfates (Lorente-Gea et al., 2017; O’Callaghan et al., 2008)). Given that HPSE2 

acts as a competitive inhibitor of HPSE, increased HPSE2 release by astrocytes may enable 

expansion of Aβ deposits (Lorente-Gea et al., 2017), and therefore inhibition of astrocyte-

produced HPSE2 may provide therapeutic benefit. NEAT1 (nuclear enriched abundant 

transcript 1) is also an enticing target for future investigation as it is upregulated in several 

mouse models of AD, including APP/PS1 mice, and is putatively associated with regulation 

of PINK1 degradation and impaired mitophagy (Huang et al., 2020). Additionally, 

across all clusters, AD astrocytes downregulate transcripts including SLC14A1, C1orf61, 
CIRBP, and SAT1. Some of these transcripts have important putative protective roles in 

neurodegenerative disease, so their decreased expression levels could be problematic. For 

instance, catabolic polyamine enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1) 

levels are reduced by treatment with the dimanazene aceturate drug Berenil, which leads 

to worsened pathology in patients with Parkinson’s disease (Lewandowski et al., 2010). In 

contrast to these pan-astrocytic DEGs, we also identified DEGs that were unique to single 
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or combinations of astrocyte clusters (Figure 4F–G) and evaluated these gene sets by GO/

pathway analysis (Figure 4H–I). By doing so, we were able to contextualize transcriptomic 

expression differences between AD and NS astrocytes in a cluster-specific manner and 

ultimately infer the potential biological role of astrocyte subpopulations in AD.

Astrocytes have both putative gain and loss of function in Alzheimer’s disease

We next evaluated astrocyte cluster-specific ‘GO descriptions’ associated with either 

upregulated or downregulated pathways (Figures 5, S9, S10, Table S6). Cluster 1 AD 

astrocytes upregulate GO terms associated with cell death and oxidative stress (Figure 5A, 

e.g. RGCC, PRDX1, DDIT4). The Regulator of Cell Cycle protein (RGCC), previously 

reported as upregulated in AD patients (Counts and Mufson, 2017), may be important for the 

re-entry of post-mitotic astrocytes to the cell cycle to enable proliferation around regions of 

pathology/degeneration. In comparison, peroxiredoxin (PRDX1), which is increased in AD 

patient hippocampi at the protein level (Chang et al., 2014), may have important antioxidant 

protection functions and suggests a supportive role of these astrocytes in AD. Cluster 5 

AD astrocytes upregulate pathways related to lipid storage and fatty acid oxidation (Figure 

5B, e.g. C3, ABCA1, PPARGC1, ACACB). We, and others, have reported upregulation of 

complement component 3 (C3) in a specific sub-state of reactive astrocytes that respond to 

inflammation in a range of neurodegenerative diseases (Diaz-Castro et al., 2019; Guttenplan 

et al., 2020; Liddelow et al., 2017; Shi et al., 2017) including AD (Liddelow et al., 2017) and 

AD mouse models (Lian et al., 2016; Wu et al., 2019). C3+ astrocytes are associated with 

a neurotoxic function and are only found in regions of neurodegeneration. As such, their 

inclusion here is not surprising given we completed pathological analysis and snRNA-seq on 

regions with high pathology load. We performed immunofluorescent quantification of C3+ 

astrocytes in NS and AD patient samples and report no difference at the protein level (Figure 

S11) – though this may be a result of a reported increase in C3+ astrocytes with normal 

aging (Boisvert et al., 2018; Clarke et al., 2018), broader transcription versus translation 

differences between gene expression and protein levels, or the fact that these DEGs are 

specific to only a few subtypes of astrocytes in our dataset and therefore quantifying 

samples using single markers poses difficulties as it is unclear if these astrocytes belong 

to the subtypes under investigation. We also quantified another cluster 5 DEG, SPARC, 

and report no difference in the number of SPARC+GFAP+ cells or overall fluorescence 

intensity between NS and AD patient cortex (Figure S11) – which given our sequencing 

of astrocyte nuclei from prefrontal cortex may also be a result of reported upregulation of 

SPARC in cortical astrocytes with normal aging (Clarke et al., 2018). Clusters 0, 1, 4, and 

6 AD astrocytes share upregulation of pathways involved in response to metal ions (Figure 

S9A). DEGs associated with these GO terms include features that are cluster-specific (e.g. 

PRKN in cluster 0) as well as those that are shared by multiple clusters (e.g., DUSP1 in 

clusters 4 and 6; MT1G in clusters 0, 1, 4, and 6). Upregulation of DUSP1 (dual-specificity 

phosphatase, also known as mitogen-activated protein kinase, MKP1) has previously been 

reported in models of Parkinson’s disease (Collins et al., 2013) and Huntington’s disease 

(Taylor et al., 2013) as well as following ischemic stroke (Boutros et al., 2008; Ramsay et 

al., 2019) and seizures (Kedmi and Orr-Urtreger, 2007). DUSP1 upregulation is associated 

with repression of pro-apoptosis and neuronal cell death pathways in neuroblastoma (Nunes-

Xavier et al., 2019), suggesting another putatively important protective response in astrocyte 
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subpopulations in AD. Cluster 4 and 6 AD astrocytes also share upregulation of protein 

folding/unfolding pathways (example DEGs include HSPA1B, DNAJB1, ATF3I; Figure 

S9A) as well as downregulation of signaling receptor activity and axonal guidance pathways 

(e.g. GRIA1, NLGN1; Figure S9B). Increased expression of activating transcription factor 

3 (ATF3) suggests a response to endoplasmic reticulum stress, a pathway that propagates 

through the induction of eukaryotic initiation factor 2 (eIF2) kinase-associated genes (Jiang 

et al., 2004). In addition, since these astrocyte clusters downregulate transcripts critical for 

both synaptogenesis and astrocyte morphogenesis (like neuroligin-1, NLGN1), this may 

implicate that putative decreased synaptic maintenance functions could be due to stunted/

altered astrocyte territories and limited infiltration of surrounding neuropil (Stogsdill et al., 

2017). The intersection of unfolding protein response (UPR) and synaptic maintenance 

mechanisms was recently evaluated by Smith and colleagues who found that chronic 

PERK-eIFα signaling in astrocytes induced an UPR-associated reactivity state in which 

astrocytes lose synaptic support functions and ultimately induce neuron death in vitro and 

in prion infection in mice (Smith et al., 2020). Cluster 3 AD astrocytes downregulate 

GO terms associated with angiogenesis regulation and BBB maintenance (Figure 5C). As 

a key modulator of vascular permeability and angiogenesis, downregulation of vascular 

endothelial growth factor A (VEGFA) may be a protective astrocyte response to limit 

BBB breakdown. Administration of human recombinant VEGF165 1 hour post-ischemic 

stroke exacerbated BBB leakage in a middle cerebral artery occlusion rat model (Zhang 

et al., 2000), and inhibition of VEGFA improved BBB integrity around active lesions 

in an experimental autoimmune encephalomyelitis mouse model, decreasing immune cell 

infiltration and reducing overall demyelination (Argaw et al., 2012).

Astrocyte subtypes are regionally heterogeneous in human and mouse

Given recent discoveries highlighting astrocytes as increasingly variable across the CNS 

(Bayraktar et al., 2020), we next sought to explore whether our heterogeneous astrocyte 

subtypes reside in different cortical locations. However, examining regional differences in 

these astrocyte subtypes or disease-associated reactive sub-states is a challenging prospect 

given many clusters are defined by slight differences in expression of dozens or hundreds 

of genes rather than expression of individual DEGs specific to a single cluster, making it 

difficult to evaluate these gene signatures using traditional in situ methods. To overcome 

these challenges, we leveraged published spatial transcriptomics datasets to explore regional 

differences in our astrocyte subtypes in the NS human brain (Maynard et al., 2021) and 

compared this with the healthy and inflamed mouse brain (Hasel et al., 2021).

To determine the likely location of each astrocyte population, we created modules of marker 

genes from each cluster (Hasel et al., 2021; Tirosh et al., 2016) and examined the expression 

of the modules across the human and mouse spatial transcriptomics data (Figure S12A). We 

found that all astrocyte cluster modules exhibited significant differences in expression in at 

least one cortical layer (Kruskal-Wallis test, p < 0.05); however, there were large differences 

in the degree to which cluster gene signatures were region-specific (Figure S12F). Some 

cluster modules were strongly enriched in select regions. For example, the Cluster 6 gene 

signature is significantly enriched in layer 1 and the white matter (WM) in both human and 

mouse brain (Figure 6A). Several Cluster 6 marker genes, like ID1, ID3, and AGT, have 
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been previously reported in WM and L1 astrocytes in the mouse (Bayraktar et al., 2020), 

supporting this localization. Cluster 8, in contrast, was enriched in upper cortical layers 

L1-L3 in both species (Figure 6B), fitting with the recent description of several genes in 

this set having elevated expression in upper cortical astrocytes, such as GRM3, SLCO1C1, 

and EPHB1 (Bayraktar et al., 2020). In aggregate, we found significant heterogeneity in the 

cortical regions most enriched for each astrocyte cluster (Figure 6C; Figure S12G). Regional 

cluster enrichment was similar between the human and mouse datasets, supporting the 

robustness of the gene module approach and suggesting the astrocyte subtypes we identified 

may be conserved between species (Figure 6D).

Cluster 3 astrocytes were denoted by several genes previously described as upregulated in 

response to acute inflammation. Correspondingly, it was less well defined in the NS human 

and healthy mouse brain (Figure S12G) as compared to the inflamed mouse brain where 

this gene signature was upregulated across nearly all cortical regions (Figure 6E). This may 

indicate that Cluster 3 astrocytes are not region-specific but rather generally associated with 

inflammation. To explore whether some of the AD-associated gene expression changes in 

each astrocyte subtype may also be associated with inflammation, we next compared the 

expression of AD gene modules for each cluster between the healthy and inflamed mouse 

brain. We found that the Cluster 5 AD module was upregulated across all cortical layers 

in the inflamed mouse brain (Figure 6F), suggesting these AD-associated gene expression 

changes may be attributable to inflammatory mechanisms. Notably, AD gene signatures for 

nearly all other astrocyte clusters were not significantly enriched in the inflamed mouse 

brain relative to the healthy control brain (Figure S12H), indicating non-inflammatory 

mechanisms may be responsible for these changes.

Data integration increases astrocyte numbers and enables consistent identification of 
unique subpopulations

While we defined 9 transcriptomically distinct astrocyte clusters in our snRNA-seq dataset 

(from now on referred to as astrocyte clusters S0-S8), when reanalyzing published astrocyte 

datasets in isolation, we identified 5 clusters (M0-M4) in the Mathys dataset, 5 clusters 

(G0-4) in the Grubman dataset, and 7 clusters (Z0-Z6) in the Zhou dataset (Figure 7A–B, 

Table S1). With our dataset serving as a reference, we identified one or two previously 

defined astrocyte subpopulations in the Mathys and Grubman datasets: S1-like astrocytes 

(clusters M0, G1; which are defined by high expression of CST3, FTH1, APOE, and 

ITM2C) and S0-like astrocytes (cluster G0; which highly expresses CACNB2, GPC5, and 

RORA). In contrast to the Mathys and Grubman datasets, we identified 6 out of 9 astrocyte 

subpopulations in the Zhou dataset, which were similar to S0-S5 astrocytes. Like with our 

own astrocyte snRNA-seq dataset, we did not identify any singular sample variable that was 

exclusively associated with a single astrocyte cluster across all three datasets (Figure S7). 

This is in contrast with original findings presented in Grubman et al. (2019), which reported 

differences in the proportion of astrocyte clusters between AD and NS patients. However, 

we believe these detected differences may stem from lack of sample integration.

Cross-comparing astrocyte subpopulation profiles between datasets is a useful exercise 

to evaluate what potential similarities and differences exist. In doing so, we defined 9 
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astrocyte subpopulations (referred to as astrocyte clusters Int0-Int8) (Figure 7C) and found 

that these astrocyte subpopulations had markedly similar proportions in each dataset (Figure 

7C–D, Table S5). This is exciting as it highlights the feasibility of improving subpopulation 

identification post-hoc via data integration, thereby overcoming limitations in total number 

of astrocytes captured and depth of sequencing levels in individual datasets (Figure S8A). 

To determine if all datasets equally contributed to cluster-defining transcript expression, 

we evaluated the top five integrated astrocyte cluster-enriched transcripts by cluster and 

dataset (Figure 7E). Remarkably, 7 out of 9 integrated clusters were well-defined across 

all datasets (clusters Int0-Int6), and their corresponding transcriptomic profiles were similar 

to S0-S6 astrocytes. In contrast, cluster Int7 defining features were primarily present in 

the Zhou dataset and our dataset, and its profile most resembles astrocyte cluster Int0. 

However, this cluster had lower total genes and UMIs identified per nucleus, which is 

likely why it was identified as unique. Additionally, cluster Int8 was primarily identified 

in Mathys, Grubman, and Zhou datasets, and its profile is defined by higher expression of 

oligodendrocyte-associated and mitochondrial transcripts.

This integration method enabled identification of unique astrocyte subpopulations not 

previously resolvable in published astrocyte datasets. Next we explored whether AD-

associated astrocyte transcriptional changes originally reported in each study were 

resolvable when integrating these datasets with our own (Figure S13A–D). Only the DEGs 

highlights in the Zhou et al. dataset were detectable in the integrated dataset (upregulated 

– Z5/Int2; downregulated – Z2/Int5; Figure S13D), likely due to increased numbers of 

sequenced astrocytes. Other reported disease-associated astrocyte DEGs were not specific to 

individual integrated clusters. Conversely, reverse-probing for previously described disease-

associated oligodendrocyte cluster-specific DEGs was more successful (Figure S13E–H).

This highlights we can leverage large astrocyte datasets to better resolve astrocyte 

subpopulations in smaller datasets. For example, we were originally unable to detect a 

C3+ astrocyte subpopulation in both Mathys and Grubman datasets (Figure S11H). In 

comparison, we identified C3+ astrocytes in both our dataset (astrocyte clusters S3 and 

S5) and the Zhou dataset (astrocyte cluster Z2; however, this identification was driven by 

a single donor) (Tables S1 and S3). Once all datasets were evaluated together, this C3+ 

astrocyte subpopulation was uniquely ascribed to astrocyte clusters Int4 and Int5 (Figure 

S11G, Table S5), with all datasets contributing to C3 expression in astrocyte cluster Int4 and 

our dataset primarily contributing to C3 expression in astrocyte cluster Int5. This difference 

may be due to differences in pathological loads of the same samples being sequenced – 

as we previously reported C3+ astrocytes are only present in high pathology brain regions 

(Liddelow et al., 2017). Given the cluster-specific transcriptomic changes we identified 

between AD and NS patients, we believe this underscores the importance of resolving these 

unique astrocyte subpopulations in the context of health and disease.

DISCUSSION

Here we present a snRNA-seq dataset and paired pathology assessment resource for both 

astrocytes and oligodendrocytes from a well-defined human AD and age-matched NS 

patient cohort. This approach enabled us to identify putative biologically important astrocyte 
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subpopulations. To localize these transcriptomically distinct populations of astrocytes we 

profiled 10X Visium spatial transcriptomics datasets and localized astrocyte subgroups in 

both the human and mouse brain. In addition, by leveraging our astrocyte snRNA-seq 

dataset with published astrocyte snRNA-seq datasets, we identified unique and previously 

undefinable astrocyte subpopulations in all datasets.

Integral for the success of this resource, we limited donor genetic variance and characterized 

the pathology of donor tissue from the same sample as sequenced material. Given the 

spatial heterogeneity that can occur due to differences in disease pathology and progression 

in adjacent brain regions (Komarova and Thalhauser, 2011; Murray et al., 2011), we are 

enormous proponents of being self-critical about what is driving results throughout analyses 

– being particularly wary of outlier donors and/or donor features. For example, after the 

first round of analyzing our astrocyte snRNA-seq data, we identified one cluster that was 

entirely representative of a single donor (D5). When evaluating this cluster, we found that 

it was highly enriched for transcripts associated with neuroinflammation and interferon 

gamma signaling (e.g., IFIT-1/2/3/6, IFI-44/44L/H1; see Figure S3A–E). Classified as a NS 

control, we double-checked our pathology characterization, which corroborated this donor 

as seemingly NS due to very low pathology load. However, upon further investigation of 

clinical evaluations associated with this donor, we discovered D5 had vascular dementia. 

This unique astrocyte subpopulation shares remarkable similarity to an interferon responsive 

subpopulation of neuroinflammatory reactive astrocytes following acute inflammation in 

mice and several neurodegenerative disease models, including AD, that we published 

recently (Hasel et al., 2021).

While our dataset and integration with published datasets highlight novel and putative 

functional populations of glia in AD, future functional studies are required to evaluate 

these subpopulations and their potential for modulation by therapies. How heterogeneity 

of astrocyte and oligodendrocyte responses might differ with disease progression or 

other patient cohort characteristics, like AD-associated mutations, secondary disease 

contraindications, or ethnic backgrounds, is an open question. Future human stem cell 

organoid and novel AD mouse models and isolated rodent cells used in in vitro functional 

testing will be able to address these questions. We also hope that continued integration of 

our data with future snRNA-seq and spatial datasets will add greater insight to these and 

many new questions.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—For further information and resource/reagent requests, please direct all 

inquiries to the Lead Contact, Shane Liddelow (shane.liddelow@nvulanqone.org).

Materials availability—This study did not generate any unique reagents.

Data and code availability

• Raw snRNA-seq data generated in this study (including both FASTQ and Cell 

Ranger-generated matrix files) are available at GEO (GSE167494). Microscopy 
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data reported in this paper are available through the Cell Image Library 

(www.cellimagelibrary.org, CIL group#: 54423).

• All code for analysis of original and previously published snRNA-seq, scRNA-

seq, and spatial transcriptomic datasets are available on the Liddelow Lab 

GitHub page: https://github.com/liddelowlab/Sadick_et_al._2022.

• Analyzed snRNA-seq and pseudobulk snRNA-seq data is available on an 

open-access, interactive website: www.qliaseq.com. Any additional information 

required to reanalyze the data reported in this paper is available from the lead 

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Postmortem human cohorts

Pilot cohort.: Five de-identified human donor prefrontal cortex samples (non-symptomatic 

patients (NS), N = 3; AD patients, N = 2) were provided by Rhode Island Hospital’s 

Brain Tissue Resource Center (Title 45 CRF Part 46.102(f)) and New York University’s AD 

Research Center (ADRC). All tissues were donated with pre-mortem informed consent as 

regulated by Institute Review Boards at each respective Institution. In total, this donor cohort 

was comprised of one female and four male donors with ages ranging between 60-90 years 

of age and APOE genotypes of ε2/3, ε3/3, and ε3/4. Post-mortem intervals ranged between 

12-24 hours for all tissues.

Final cohort.: Sixteen de-identified human donor prefrontal cortex samples (NS patients, 

N = 6; AD patients, N = 10; with an additional N = 6 NS and AD patient samples for 

immunostaining validation studies) were provided by NYU Grossman School of Medicine’s 

Alzheimer’s Disease Research Center and University of California San Diego Shiley-Marcos 

ADRC. All tissues were donated with pre-mortem informed consent as regulated by Institute 

Review Boards at each respective Institution. In total, this donor cohort was comprised of 

7 female and 9 male donors with ages ranging between 56-100 years of age. All donors 

had APOE genotypes of ε2/3. Postmortem intervals ranged between 5-100 hours across 

all tissues. All samples had RNA Integrity Number (RIN) scores greater than 8. Based 

on sequencing analysis, two donors (Donors 5 and 9) were removed from final analyses, 

resulting in a total of 5 NS and 9 AD patients. Additional donor information is listed in 

Table S2 (any patient-specific information that is not included in these de-identified tables 

can be obtained from the original brain bank – donor IDs provided for coordination).

METHOD DETAILS

Tissue RNA quality verification—In order to ensure high quality outputs from snRNA-

seq experiments, all donor tissue samples were first evaluated for bulk RNA quality, as 

quantified by RIN scores. Bulk RNA was extracted from each donor (~15-30 mg of 

postmortem frozen human prefrontal cortex tissue) using QIAshredder (QIAGEN, 79656) 

and RNeasy Plus Mini kits (QIAGEN, 74136), following manufacturer’s instructions. In 

brief, after each tissue was homogenized in lysis buffer using a Wheaton Dounce tissue 

grinder (DWK Life Sciences, 357538), samples were transferred to QIAshredder columns, 

flowthroughs were processed using RNeasy spin columns, and RNA from each sample was 
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eluted in 30 μL DNase- and RNase-free water (Invitrogen, 10977015). RIN scores were then 

generated using an Agilent 2100 Bioanalyzer (Table S2).

APOE genotype verification—To confirm APOE genotype identification provided by 

NYU and UCSD ADRCs, all final human cohort samples were validated in-house by PCR 

using single nucleotide polymorphism-specific primers for each allele (i.e., ε2, ε3, ε4) and 

loading positive control β-actin, as designed by Zhong and colleagues (Zhong et al., 2016). 

The HotSHOT method was followed to isolate genomic DNA (gDNA). In brief, 10-30 

mg of postmortem frozen human prefrontal cortex tissue per sample was digested in 75 

μL of alkaline lysis reagent (25 mM NaOH, 0.2 mM EDTA in DNase- and RNase-free 

water) at 98°C in a thermomixer for 1 hour. To stop the reaction, 75 μL of neutralizing 

reagent (40 mM Tris-HCl, pH 5.5 in DNase- and RNase-free water) was added to each 

sample, and the solution was centrifuged at 4,000 rpm for 3 minutes. The supernatant, 

now containing gDNA, was then used in all following PCR reactions. Twenty-five μL PCR 

reactions were prepared for each sample and primer combination using GoTaq Green Master 

Mix (Promega, M7123) and respective primers (working dilution of 0.25 μM), following 

manufacturer’s instructions. PCR products were then run on 1.5% agarose gels (Thermo 

Fisher Scientific, 16-500-100) with ethidium bromide (VWR, 470024-556) for 40 minutes 

and were imaged using a Bio-Rad Gel Doc system (Figure S1D).

Immunohistochemistry and imaging of postmortem frozen human prefrontal 
cortex tissue—To evaluate pathological load in the final donor cohort, ~100 mg of 

postmortem frozen human prefrontal cortex tissue per donor was sent to the Neuropathology 

Brain Bank and Research CoRE at the Icahn School of Medicine at Mount Sinai for 

tissue fixation/embedding, sectioning, and staining. In brief, flash frozen tissues were fixed 

in 10% neutral buffered formalin and were then embedded in paraffin. Five μm sections 

were cut of each sample block for subsequent immunohistochemistry (IHC) assessments 

(N = 2-5 sections per stain). Primary antibodies used for IHC stains included: Anti-

amyloid-β (4G8) (BioLegends, 800701, 1:8000), anti-phosphorylated tau (AT8) (Thermo 

Fisher Scientific, MN1020, Ser202/Thr205 monoclonal, 1:1000), and anti-glial fibrillary 

acidic protein (GFAP) (Ventana, 760-4345, 1:10). Primary antibodies were detected using 

DISCOVERY universal secondary biotinylated antibody cocktail (Roche, 760-4205). Roche 

ultraView reagents were used in the preparation of all IHCs, and IHC stains were performed 

on a Ventana Benchmark XT following manufacturer’s instructions. All IHC slides were 

counterstained with Hematoxylin prior to visualization. In addition to IHC stains, donor 

samples were prepared with a modified Bielschowksy’s silver stain in order to visualize 

diffuse plaques, neuritic plaques, and neurofibrillary tangles. Slides were scanned using 

a Leica SCN400 F whole-slide scanner through NYU Langone’s Experimental Pathology 

Core. All slides were blinded for imaging and subsequent evaluation/quantification using 

QuPath (v0.2.3) software (Bankhead et al., 2017). Raw images are available through the Cell 

Image Library (CIL group#: 54423).

Quantification of4G8 andAT8 IHC.: For 4G8 and AT8 quantification, hematoxylin and 

DAB stains were separated using the default H-DAB color deconvolution settings for 

downstream quantifications. To quantify the area of each tissue section, the region of the 
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section was defined using a custom pixel classifier, classifying pixels at a resolution of 2 μm, 

with a hematoxylin channel threshold of 0.01 after applying a gaussian filter (sigma = 2). To 

quantify amyloid-β plaques, 4G8 staining within each section’s region of interest (ROI) was 

quantified using a second custom pixel classifier, which classified pixels at a resolution of 

0.25 μm, with a DAB stain value greater than 0.2 as 4G8-positive and excluded any positive 

signal that was < 5 μm2 in area. To quantify neurofibrillary tangles, AT8 staining within 

each section’s ROI was quantified using a second custom pixel classifier, which classified 

pixels at a resolution of 0.25 μm, with a DAB stain value greater than 0.5 as AT8-positive. 

Additionally, to count AT8+ cell bodies, the same custom pixel classifier was applied with 

an additional parameter to remove any AT8+ signal that was smaller than 60 μm2 or larger 

than 1200 μm2 (completed post-hoc in R). For both 4G8 and AT8 staining, normalized pixel 

density (4G8 or AT8 staining/total tissue area) was calculated in R (v4.0.3), and total counts 

and areas of each feature (i.e., 4G8+ plaques and AT8+ cell bodies) were also tallied. All raw 

quantifications for 4G8 and AT8 are provided in Table S2.

Quantification of GFAP IHC.: For GFAP quantification, hematoxylin and DAB stains 

were first separated using the default H-DAB color deconvolution settings to separate stains 

for downstream quantification. To quantify the area of each tissue section, the region of 

the section was defined using a custom pixel classifier, classifying pixels at a resolution of 

2 μm, with a value greater than or equal to 215 after applying a gaussian filter (sigma = 

1.5). Continuous regions of pixels exceeding the threshold were classified as belonging to 

the tissue section, after excluding small regions less than 10,000 μm2 in area which were 

detached from the majority of the section. Densely stained regions of artifact on the edges 

of the sections, if present, were manually selected using the brush tool and excluded from 

the final ROI defining the section. Next, the total area of GFAP staining within each section 

was quantified. The area of GFAP staining within each section’s ROI was then quantified 

using a second custom pixel classifier, which classified pixels at a resolution of 0.25 μm, 

with a DAB stain value greater than 0.25 as GFAP-positive. To normalize across sections of 

different areas, GFAP staining was reported as the proportion of the pixels in the section’s 

ROI that were GFAP+. The average proportion of pixels that were GFAP+ for the sections 

from each donor was then calculated using R.

In addition to normalized pixel density, the average area of the astrocytes in each section was 

quantified using QuPath, Fiji (Schindelin et al., 2012), and R. First, quantifiable astrocytes 

in each section were identified manually as GFAP+ cells with an identifiable cell body 

and several processes that could be distinguished from the processes of adjacent astrocytes. 

All quantifiable astrocytes from a given section were numbered, and a maximum of 8 

astrocytes from each section were randomly selected for quantification using R. In sections 

from two (out of 16) donors (specifically D2 and D6), no quantifiable astrocytes could 

be identified, and thus these donors were excluded from further analysis. Each randomly 

chosen astrocyte was then analyzed using Fiji. ROIs were manually drawn around each 

astrocyte using the freehand tool such that the GFAP staining contained within each ROI 

appeared to correspond to only the chosen astrocyte. The region outside the ROI was then 

excluded, and the included astrocyte was then segmented via manual thresholding using the 

default method. Then, the area of the segmented astrocyte was measured. The average area 
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of the astrocytes from each donor was then calculated using R. All raw quantifications for 

GFAP are provided in Table S2.

Semi-quantification of Bielschowsky’s silver stain.: At 15X magnification, 5 ROIs were 

drawn randomly in each tissue section for manual assessment. Diffuse plaques, neuritic 

plaques, and neurofibrillary tangles were manually counted in each ROI. Based on total 

pathology feature counts, samples were given broad descriptors indicating none, low, 

moderate, or severe pathology. Raw pathological feature counts and overall descriptors are 

listed in Table S2.

Validation of transcriptomic DEGs using antibody staining.: Formalin-Fixed Paraffin-

Embedded (FFPE) human brain tissue was sectioned to 5 μm and mounted on microscope 

slides. The sections were dewaxed at 60 °C for 30 min and then transferred into HistoChoice 

(Sigma) for 2 washes for 5 min each. Sections were then moved into 100%, 95% and 

70% ethanol for rehydration followed by three washes in PBS. For C3 staining, sections 

underwent antigen retrieval in M6 buffer (2.1% citric acid monohydrate, 2.94% tri-sodium 

citrate in dH2O, pH 6) at 95 °C for 10 min.

Sections were then blocked in blocking buffer containing 10% normal goat serum (NGS), 

0.4% Triton X-100 (Sigma) in PBS for 1h at room temperature. The following primary 

antibodies were used: C3d (Dako A0063, rabbit 1:600), GFAP (Dako Z0034, rabbit, 

1:500), GFAP (Sigma G3893, mouse, 1:400) and SPARC (R&D MAB941, mouse, 25 

ug/mL). Sections were incubated in the primary antibodies over night at 4 °C in blocking 

buffer followed by three washes in PBS. Sections were then incubated in the following 

secondary antibodies: goat anti-rabbit Alexa 594 (Invitrogen) and goat anti-mouse Alexa 

488 (Abeam) at room temperature for 1h. Sections were then washed in PBS, incubated in 

TrueBlack (biotium) for 1 min, counter-stained with DAPI and mounted using Fluoromount-

G (SouthernBiotech). All images were acquired on a Keyence BZ-X710 using a 20x 

objective and processed in Fiji.

Isolation of nuclei from postmortem frozen human prefrontal cortex tissue—
The protocol followed to isolate nuclei from postmortem frozen human brain tissue was 

based off of a previously published study (Hodge et al., 2019). Processing of tissue was 

completed on ice or at 4°C for the entirety of the protocol. In brief, ~100 mg of postmortem 

frozen human prefrontal cortex per donor was homogenized in 2 mL homogenization buffer 

(10 mM Tris pH 8 (Invitrogen, Am9010), 250 mM sucrose (Invitrogen, Am9010), 25 mM 

KCl (Invitrogen, Am9010), 5 mM MgCl2 (Invitrogen, Am9010), 0.1% Triton X100 (Sigma, 

T8787), 1%RNasin Plus (Promega, N2615), 1X Protease inhibitor (Promega, G6521), and 

0.1 mM DTT (Sigma, D9779) in DNase- and RNase-free water) using a Wheaton Dounce 

tissue grinder (10 strokes with loose pestle, followed by 10 strokes with the tight pestle). 

Then, the homogenized tissue was filtered through 30 μm pre-separation filters (Miltenyi, 

130-041-407) to remove major debris. Samples were then centrifuged at 900 g for 10 

minutes at 4°C, and resulting nuclei pellet was resuspended in blocking buffer in preparation 

for immunolabel-based sorting.
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Fluorescence-activated cell sorting for astrocytic nuclei enrichment—All 

procedures were completed on ice or at 4°C, and centrifugations were completed at 400 

g for 5 minutes at 4°C unless otherwise specified. Post-isolation, nuclei suspensions were 

incubated in blocking buffer (0.8% reagent-grade bovine serum albumin (BSA; Proliant 

Biologicals, 68700), 0.5% RNasin Plus, and 10% goat serum (MP Biomedicals, 191356) 

in 1X phosphate buffer saline (PBS; VWR, 16750-102)) for 20 minutes. Each sample was 

split into aliquots in order to prepare all respective controls for sorting, including unstained, 

secondary antibody-only, and single antibody-labeled controls. All antibody dilutions were 

prepared in fluorescence-activated cell sorting (FACS) buffer (0.8% reagent-grade BSA and 

0.5% RNasin Plus in 1X PBS). Samples were then pelleted, resuspended in either FACS 

buffer or diluted primary antibodies, and incubated on ice for 20 minutes in the dark. 

Post-incubation, samples were pelleted and washed with FACS buffer prior to resuspension 

in FACS buffer or diluted secondary antibodies. Finally, samples were pelleted and washed 

with FACS buffer prior to resuspension in FACS buffer for sorting. Immediately prior 

to sorting, samples were spiked with 4′,6 Diamidino 2 Phenylindole, Dihydrochloride 

(DAPI; Thermo Fisher Scientific, D1306, 1:10,000) in order to better visualize nuclei. All 

samples were sorted using a MoFlo XDP sorter with a 100 μm nozzle at 4°C. Unstained, 

isotype control, and single antibody-labeled controls were used to established gating scheme 

for each donor (see Figure S2 for representative gating schemes). All sorting data was 

visualized and quantified using FlowJo (v10.7.1).

S0X9 sorts.: Primary antibodies used for SOX9-based sorts included: Anti-SOX9 (Abeam, 

ab185966, 1:100) and rabbit IgG isotype control (Abeam, ab172730, 1:200). Primary 

antibodies were detected with goat anti-rabbit IgG (H&L) secondary antibody conjugated 

to Alexa Fluor 594 (Thermo Fisher Scientific, R37117, 2 drops/mL). Gates were set to 

collect DAPI+ and SOX9+ singlet events, and on average, ~75,000 DAPP/SOX9+ nuclei 

were captured per pilot donor (see Table S3 for all SOX9 sorting outputs).

LHX2+/NeuN− sorts.: Primary antibodies used for LHX2+/NeuN−-based sorts included: 

Anti-LIM Homeobox 2 LHX2 (EMD Millipore, AB5756, 1:500), anti-NeuN (Millipore 

Sigma, MAB377, 1:2500), rabbit IgG isotype control (Abcam, ab172730, 1:1000), mouse 

IgG1 isotype control (Millipore Sigma, MABC002, 1:1250). Primary antibodies were 

detected with goat anti-rabbit IgG (H&L) secondary antibody conjugated to Alexa Fluor 

488 (Invitrogen, A11034, 1:4,000) or goat anti-mouse IgG (H&L) secondary antibody 

conjugated to Alexa Fluor 647 (Invitrogen, A21235, 1:7,000), respectively. Gates were set to 

collect DAPI+, LHX2+, and NeuN− singlet events, and on average, ~88,000 DAPI+/LHX2+/

NeuN− nuclei were captured per donor (see Table S3 for all LHX2+/NeuN−sorting outputs).

Single-nuclei RNA sequencing pipeline—After sorting, collected nuclei were pelleted 

at 900 g for 10 minutes at 4°C, were resuspended in ~50 μL of 0.04% BSA in PBS, and 

counted using a hemocytometer. Based on nuclei counts, samples were then resuspended in 

additional 0.04% BSA in PBS buffer in order that nuclei concentrations were ideal for 10x 

Chromium loading (between 100-1,700 nuclei/μL). Nuclei were processed using the Single 

Cell 3’ Gene Expression kit v3 (10x Chromium, 1000076) according to manufacturer’s 

instructions. In brief, 4,800-16,000 nuclei per sample were loaded onto Single Cell Chips B 
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in order to recover as many nuclei as possible (targeting 3,000-10,000 nuclei per sample), 

while limiting potential for doublets. Using a Chromium Controller, Gel Bead-In Emulsions 

were generated, and samples were subsequently processed to isolate and amplify cDNA 

and ultimately construct libraries. Quality and concentration of cDNA was evaluated on an 

Agilent 2100 Bioanalyzer. Quality and concentration of libraries were evaluated by qPCR 

and on an Agilent 2200 TapeStation, and libraries were sequenced an Illumina NovaSeq 

6000 through NYU Langone’s Genomic Technology Core. Basecalling was completed using 

Illumina NovaSeq 6000 RTA v3.4.4 software, and BCL base call files were converted to 

FASTQ files using bcl2fastq Conversion software (v2.20). Using Cell Ranger software suite 

(v4.0.0) (1 OX Genomics), FASTQ files were aligned to a premRNA-modified GRCh38 

human reference genome (modification steps provided by 10x Genomics), and gene-barcode 

count matrices were generated for all demultiplexed samples.

Single-nuclei RNA sequencing data analysis—The majority of code used to evaluate 

snRNA-seq data is based off of analysis completed in the original muscat R package 

vignette (Crowell et al., 2019). This process was repeated separately for the SOX9-sorted 

pilot donor cohort as well as for iterations of LHX2+/NeuN−-sorted donor cohort. Exact 

code used to analyze each dataset analysis is provided on the Liddelow Lab GitHub page: 

hhttps://github.com/liddelowlab/Sadick_et_al.2022.

Quality control.: All sample raw gene-barcode count matrices were converted into a 

SingleCellExperiment (SCE) object in R (v3.6.1 - 4.0.3) for initial quality control filtering 

(Amezquita et al., 2020). Undetected genes were removed based on the total summed counts 

per gene. Doublets were removed using scds, in which a threshold was applied assuming 

that 1% of every 1,000 nuclei captured was a doublet. Sample-specific outliers were 

identified using scater::isOutlier, and nuclei were removed if total counts, total features, 

and/or percentage of mitochondrial genes was greater than 2.5 median absolute deviations 

away from the sample median. Finally, genes were only kept if they had a count of at least 

one in more than 20 nuclei. After filtering SOX9-sorted donor pilot data, a total of 18,991 

nuclei remained across 2 NS and 3 AD patients, with a median of 8,885 counts and 3,406 

features per nucleus. After filtering LHX2+/NeuN−-sorted donor data (final donor cohort), 

a total of 80,247 nuclei remained across 5 NS and 9 AD patients, with a median of 6,714 

counts and 2,929 features per nucleus.

Normalization, integration, and dimension reduction.: Functions in the Seurat (v3.2.2) 

package were used for the following analyses (Stuart et al., 2019). Data were log 

normalized, and the top 2,000 variable features were identified on a per sample basis. 

Samples were then anchored and integrated using Canonical Correlation Analysis (dims = 

30). After scaling the data, linear and non-linear dimension reduction was performed by 

Principle Component Analysis of variable features and t-Distributed Stochastic Neighbor 

Embedding (tSNE) analysis, respectively, using the top 30 principle components. For each 

dataset, the number of dimensions used for dimensional reduction analyses was determined 

based on the inflection point on an Elbow plot.
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Clustering, annotation, and marker identification.: Clustering was calculated using 

the functions FindNeighbors and FindClusters, with a range in resolution between 0.1-1. 

Ultimately, for each dataset, a resolution of 0.1 was used for initial clustering. To identify 

major cell types present, the FindAllMarkers function (log2 fold change > 0.25, using 

Wilcoxon Rank Sum test, adjusted p-value < 0.05 using the Bonferroni correction) was 

used to determine unique and/or highly enriched differentially expressed genes (DEGs) in 

one cluster compared to all other clusters. These cluster-specific features were then queried 

against a set of canonical cell type-specific markers from the literature. Data were visualized 

using Seurat package functions, including DimPlot, FeaturePlot, DotPlot, VlnPlot, and 

DoHeatmap. For SOX9-positive sorted data, only 6.6% of nuclei were astrocytes, while 

the vast majority of nuclei (72.2%) were neurons. For LHX2+/NeuN−-based sorted data, 

astrocytes made up the largest captured nuclei population (51.5%), with the second largest 

captured nuclei population as oligodendrocytes (29.7%). Please refer to Table S3 for cell 

type captures and DEGs identified for each sorting strategy.

Cell type-specific sub-clustering.: Using the function Seurat::subset, astrocyte and 

oligodendrocyte nuclei were reanalyzed in isolation. For SOX9-based sorts, 1,832 astrocytes 

were analyzed. For LHX2+/NeuN−-based sorts (final cohort), 41,340 astrocytes and 23,840 

oligodendrocytes were analyzed, respectively. Astrocyte- and oligodendrocyte-specific 

analyses were completed as described above (from identifying a new set of top 2,000 

variable features through clustering and marker identification). Please note that two rounds 

of subsetting and analysis were required for LHX2+/NeuN−-sorted astrocytes in order to 

remove contaminating, non-astrocytic nuclei. Please see to Table S3 for the number of 

principle components and resolutions used in each analysis as well as astrocyte- and 

oligodendrocyte-specific DEGs. Data were visualized using Seurat package functions (as 

listed above). Additionally, DEGs for LHX2+/NeuN−-sorted astrocytes and oligodendrocytes 

were evaluated by pathway analysis. In brief, cluster-specific astrocyte or oligodendrocyte 

DEG gene IDs were converted to ENSEMBL IDs (using AnnotationDbi package 

org.Hs.eg.db::mapIDs) and then to Entrez IDs (using biomaRt::getBM). For each individual 

cluster in each cell type, Entrez IDs were analyzed using clusterProfiler::enrichGO, and 

gene ontology (GO) terms were identified (adjusted p-values < 0.05 using the Benjamini-

Hochberg method, false discovery rate < 0.1) (Table S3).

Cluster-specific differential gene expression and pathway analysis—Differential 

gene expression and pathway analysis was completed for LHX2+/NeuN−-sorted astrocyte 

and oligodendrocyte clusters in parallel. For each cluster in each cell type, these analyses 

were completed based on disease state (i.e., comparing all NS donors with AD donors). 

Data was read in using the Seurat::subset function. The subsetted Seurat object was then 

converted into a SCE object for additional threshold filtering. Lowly expressed genes were 

removed, as identified by having fewer than 5 transcripts counted in less than 5 cells. Then, 

the top 2000 variable genes were identified using scater::modelGeneVar and getTopHVG 

functions, and the zinbwave function was run using observational weights generated for 

each gene (K = 0, epsilon = 1e12) (Risso et al., 2018). The remaining DEG analysis was 

completed using the edgeR package (Robinson et al., 2010) by calculating normalized 

factors, estimating dispersion, model fitting using glmFit, comparing disease state (i.e., NS 
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versus AD), and passing zinbwave-generated observational weights to the glmWeightedF 

function. Genes were identified as DEGs if they had an adjusted p-value < 0.05 using the 

Benjamini-Hochberg method and had a log2 fold change > ±0.25. For pathway analysis, 

all DEGs were converted to their ENSEMBL IDs and subsequently their Entrez IDs (as 

described above) prior to being separated into upregulated and downregulated lists with 

their accompanying log2 fold changes. Each list was then analyzed separately to determine 

upregulated and downregulated GO terms (as described above). DEGs were visualized using 

ComplexHeatmap::Heatmap function. Upregulated and downregulated DEGs as well as GO 

terms were compared across clusters and were visualized using UpSetR package. Lists of 

DEGs and pathways are provided in Tables S4 and S5.

Reanalysis of previously published snRNA-seq and scRNA-seq datasets—We 

obtained FASTQ files from previously published snRNA-seq (Grubman et al., 2019; Mathys 

et al., 2019; Zhou et al., 2020) datasets in order that all datasets were analyzed under 

identical protocols to our own generated data, as described above beginning at alignment 

using the Cell Ranger software suite (v4.0.0). All snRNA-seq datasets were aligned to 

the premRNA-modified GRCh38 human reference genome. As described above, each 

dataset was processed for quality control, normalization, anchoring, integration, dimension 

reduction, clustering, annotation, and marker identification (Figure S6). For each dataset, 

astrocyte and oligodendrocyte nuclei were subsetted as unique Seurat objects for reanalysis 

in isolation (Figures 3 and 7). For Mathys astrocyte and oligodendrocyte subsetted analyses, 

multiple donors were removed because their nuclei yields were lower than the number of 

principle components used to evaluate the data (donors removed are listed in Table S1). 

Please note that reference-based integration was used for all objects in Mathys and Zhou 

datasets due to memory constraints (parameters listed in Table S1). Additionally, please note 

that two rounds of subsetting and analysis were required for Zhou astrocytes in order to 

remove contaminating, non-astrocytic nuclei/cells. Principle components/resolution used for 

analyses, cell type captures, and DEGs identified per cluster per dataset are listed in Table 

S1.

Cell type-specific multi-dataset analyses—Once only astrocyte and oligodendrocyte 

Seurat objects were created for each dataset, we merged either all astrocyte-or 

oligodendrocyte-specific objects to create two multi-dataset objects: (1) astrocyte nuclei 

from Mathys, Grubman, Zhou, and our LHX2+/NeuN−-sorted snRNA-seq datasets (Figure 

7) and (2) oligodendrocyte nuclei from Mathys, Grubman, Zhou, and our LHX2+/NeuN−-

sorted snRNA-seq datasets (Figure 3). Once individual dataset cell type-specific Seurat 
objects were merged using the function Seurat::merge, multi-dataset objects were processed 

as described above (from identifying a new set of top 2,000 variable features through 

clustering and marker identification). Reference-based integration was used for astrocyte and 

oligodendrocyte nuclei snRNAseq merged objects due to memory constraints (parameters 

listed in Table S5). Please refer to Table S5 for multi-dataset cell type-specific cluster yields 

and DEGs identified.

Analysis of previously published spatial transcriptomic data—Code used to 

analyze the spatial localization of astrocyte gene signatures is available on the Liddelow 
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Lab GitHub page: https://github.com/liddelowlab/Sadick_et_al.2022. All statistics, plots, 

and analysis for this portion of the manuscript were created with R (v4.1.1).

Datasets.: Previously published 10X Visium spatial transcriptomics data from twelve 

pathology-free human dorsolateral prefrontal cortex (DLPFC)88 samples (3 donors) 

was obtained from the Globus repository (available at http://research.libd.org/globus/

jhpce_HumanPilot10x/index.html) in the form of filtered feature-barcode matrices, 

corresponding TIFF images, and spot coordinate TSV files. We also utilized our lab’s 

recently published 10X Visium data from whole hemisphere saline or LPS-injected mice (n 

= 3 per condition), referred to in this manuscript as “healthy”/“control” and “inflamed” (data 

available at the Gene Expression Omnibus repository: Series GSE165098).25 These mice 

were injected intraperitoneally with saline or 5 mg/kg lipopolysaccharide (LPS), and tissue 

was collected 24 hours post-injection.25

Creating astrocyte cluster gene modules.: We defined gene signatures for each astrocyte 

cluster using positive marker genes (log2-fold change > 0.3, adjusted p-value < 0.05) from 

our earlier differential expression testing (see Cluster-specific differential gene expression 

and pathway analysis and Table S3). To explore expression of these gene signatures in the 

mouse data as well, we created mouse gene modules comprised of one-to-one orthologs 

of the human module genes, which we identified using the biomaRt R package (v2.48.3) 

(Durinck et al., 2009). These mouse gene modules were then filtered to remove genes 

not expressed in the spatial transcriptomics data. The resultant modules of genes for each 

astrocyte cluster are available in Table S7. We also created mouse modules using these same 

methods for genes upregulated in each astrocyte cluster in AD (log2-fold change > 0.5, 

adjusted p-value < 0.05) using our differential expression testing results (see Cluster-specific 

differential gene expression and pathway analysis and Table S6). The genes comprising 

these AD gene modules are also available in Table S7.

Regional annotation.: Human: The spots in the human spatial transcriptomics dataset were 

previously manually annotated with their cortical layer locations by Maynard et al.88, and 

these annotations were retrieved using the spatialLIBD R package (v1.4.0) (Pardo et al., 

2021). Layers 2 and 3 were combined and labeled layer 2/3 to aide in comparison to the 

mouse dataset. Mouse: To first identify spots as white matter or gray matter, we assigned 

white matter scores to individual spots on the basis of expression of white matter/myelin 

genes (Mbp, Mobp, Plp1, Mag, Mog, and Mal) using the AddModuleScore function in 

Seurat (v4.0.5) (Hao et al., 2021) (Figure S12C, see Differential Enrichment Testing for 

detailed explanation of module score calculations). Initial classification of spots as white 

matter or gray matter was then determined by thresholding the white matter module score; 

spots with a module score greater than the 78.75th percentile were classified as white 

matter, and spots below this threshold were classified as gray matter. This threshold was 

chosen based on agreement with anatomy apparent from the H&E staining. Individual 

spot classification was then manually adjusted to correct mistaken assignments (e.g. a spot 

clearly in the corpus callosum but assigned as gray matter). Gray matter spots were then 

labeled with their cortical layer location based on gene expression. To this end, spot-level 

gene expression data was log-normalized. Then top 3,000 highly variable genes most 
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common across the six samples were identified using the FindIntegrationFeatures function. 

Technical variables (the number of genes detected per spot, the number of UMIs per spot, 

and the percentage of UMIs mapping to the mitochondrial genome per spot) were regressed 

against each gene in the normalized feature-barcode matrix, and the residuals were scaled 

and centered. PCA was then performed on the scaled data, using the previously identified 

highly variable genes. The resulting PCA embeddings were then iteratively corrected to 

remove the effects of sample identity and condition (LPS or saline) using the Harmony 
R package (v0.1.0) (Korsunsky et al., 2019). UMAP dimensionality reduction was then 

performed using the first 15 principal components from the integrated, corrected PCA 

embeddings. A shared nearest-neighbor graph was constructed using the FindNeighbors 
function, and unbiased Louvain clustering was performed using the FindClusters function 

with a resolution parameter of 0.6. Several resolution parameters were examined, and 0.6 

was selected because the resultant clusters appeared to map most closely to the layers of 

the cortex. Four clusters appearing largely in the retrosplenial and somatomotor areas were 

subsetted, re-integrated, and sub-clustered using identical methods to capture the cortical 

layers in those regions (with 2,000 variable features, 20 principal components for UMAP 

dimensionality reduction and clustering, and a clustering resolution parameter of 0.5). In 

aggregate, clustering and sub-clustering the cortical mouse Visium spots resulted in 11 

clusters, which were each largely contained within one cortical layer. Each cluster was then 

assigned to a cortical layer – L1, L2/3, L4, L5, or L6 – based on its position in the Visium 

sections and its average expression of canonical markers. Finally, the individual layer labels 

were adjusted for individual outlier spots to match their true anatomical locations. Final 

cortical layer groups were generally well separated on the basis of gene expression (Figure 

S12D), validating their annotations. To verify that our mouse cortical layers were well 

labeled and comparable to the previously annotated human Visium data, we next sought 

to compare the cross-species similarity of each cortical layer. To this end, we z-scored the 

average expression of all one-to-one orthologous genes that were highly variable (top 3,000 

genes) in both the human and mouse Visium datasets across the cortical layers in each 

dataset (in total, 707 genes). We then calculated the Spearman correlation coefficients for all 

layer combinations between the datasets. This revealed each cortical layer in a given species 

was most highly correlated with the same cortical layer in the corresponding species (Figure 

S12E), supporting the validity of our mouse cortical layer annotations and cross-species 

comparison of the spatial transcriptomics datasets.

Differential Enrichment Testing.: To quantify enrichment of astrocyte subtype and reactive 

sub-state gene signatures across cortical regions, we first calculated expression scores 

for each gene module within each spatial transcriptomics spot using Seurat and the 

AddModuleScore function89,25. In summary, module scores reflect the average expression 

of the gene set subtracted by expression of a control gene set 100 times larger than the 

gene module, where each gene in the module is matched with 100 genes in the control 

gene set with similar expression levels 89. Subtraction of the control gene set allows 

for standardization of module scores across spots and Visium sections despite technical 

variation. Most astrocyte cluster gene modules contained dozens or even hundreds of genes, 

making these module scores robust to gene drop out and technical variation. To test whether 

each cluster gene module differed in enrichment across cortical regions, we pooled all 
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sections of a given species together and compared gene module scores between spots of each 

cortical region (L1-L6 and WM) using a Kruskal-Wallis test with a Bonferroni correction for 

multiple comparisons. All cluster gene modules exhibited statistically significant differences 

(adjusted p-value < 0.05; see Table S7 for test statistics and p-values). To compare how 

strongly different cluster modules varied in score across the cortex in Figure S12F, Kruskal-

Wallis H test statistics were z-scored within each species and a heatmap was created using 

the ComplexHeatmap R package (v2.8.0) (Gu et al., 2016). To test whether each gene 

module was enriched (more highly expressed) or de-enriched (less highly expressed) in a 

given cortical region compared to the rest of the cortex, we next performed Wilcoxon rank 

sum tests with Bonferroni multiple comparisons corrections comparing the spots from a 

given region to all other spots (pooling all other cortical regions; see Table S7 for p-values 

and test statistics). For Figure 6A–B & Figure S12G, + or − symbol indicates the gene 

module is significantly enriched or de-enriched, respectively, in a given cortical region 

compared to the rest of the cortex (adjusted p-value < 0.05). The sign of the symbol 

corresponds to the sign (positive or negative) of the median of the estimated difference 

between a spot from the cortex region in question compared to spots from the rest of the 

cortex (i.e. the median location shift). We next tested whether cluster gene modules were 

upregulated between spots from the inflamed (LPS-injected) mouse brain compared to the 

control (saline-injected) brain using Wilcoxon rank sum tests with Bonferonni corrections 

(Table S7). Lastly, we examined whether AD gene modules for each astrocyte subtype were 

upregulated in spots from the inflamed mouse brain compared to controls using Wilcoxon 

rank sum tests with Bonferonni corrections (Table S7). For Figure 6E–F and Figure S12H, + 

or − symbols indicate the gene module is significantly enriched or de-enriched, respectively, 

in spatial transcriptomics spots from the LPS-injected samples compared to spots from the 

saline-injected samples within the indicated cortical region (adjusted p-value < 0.05). For 

all box and density plots in Figure 6 and Figure S12: transecting line denotes the median; 

notches denote the 95% confidence interval surrounding the median; and whiskers denote 

1.5x the interquartile range. All box and density plots were created with the ggplot2 (v3.3.5) 

and ggdist (v3.0.1) (Kay, 2021) packages in R.

Visualization.: Visualization of astrocyte cluster gene signatures across representative 

Visium sections is challenging given sparse expression, the prevalence of gene drop out 

in spatial transcriptomics data, and the size of Visium spots (which often capture several 

cells within each spot). To overcome these difficulties, we utilized a recent Bayesian 

method of spatial gene expression resolution enhancement 93. Individual samples were 

first normalized with Seurat (Hafemeister and Satija, 2019),, then preprocessing, PCA, 

and spatial clustering were performed using the BayesSpace R package (v1.2.1)93. For the 

human samples, seven clusters (chosen based on the elbow in a log-likelihood plot) and 

15 principal components (chosen based on the elbow in a plot of the standard deviation of 

each principal component from the PCA results) were used for spatial clustering. For the 

mouse samples, 20 principal components and 17-18 clusters were used. Spatial clustering 

was then enhanced to sub-spot resolution using the spatialEnhance function with default 

parameters. Spatial gene expression for all genes was then enhanced to sub-spot resolution 

using the enhanceFeatures function, which fits a linear model for each gene with the top 

principal components from each spot and predicts sub-spot expression using this model.93 
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We then calculated enrichment scores for each sub-spot using the above module score 

method (see Differential Enrichment Testing) with the same gene modules (see Creating 

astrocyte cluster gene modules) using the resolution-enhanced expression data. Enrichment 

scores were then plotted with a minimum-maximum scale on representative sections. We 

found calculating enrichment scores using these resolution enhancement methods aided 

in recognition of spatial patterns and were generally representative of spot-level module 

score patterns within each cortical region (Figure S12B). All differential enrichment testing 

and statistical tests were performed using original, spot-level gene expression and module 

scores; Bayesian resolution-enhanced gene expression and enrichment scores were only used 

for visualization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics—Throughout this manuscript, quantified cell/nuclei outputs are displayed as the 

arithmetic mean (± s.d., if applicable), and plots were generated using the ggplot2 and 

ggpubr packages in R and/or using GraphPad Prism (v9.0.0) unless otherwise noted. Please 

note that all quantified raw values for sorting yields, IHC measurements, snRNA-seq and 

spatial transcriptomics analyses are also available in Tables S1–7.

Wilcox test.: For Figure 1A, statistical tests used were two-tailed Wilcoxon signed-rank 

tests (α = 0.05). All quantification and analysis were performed blinded to the condition of 

the donors.

Randomization.: No randomization was used in the analysis of snRNA-seq or IHC imaging 

data.

Sample size estimation.: No methods were used to predetermine the sample size used in 

this study. However, our donor cohort is similar in size to published works (Grubman et al., 

2019; Leng et al., 2021).

ADDITIONAL RESOURCES

The following datasets were produced during this study and are available for download and 

further analysis.

Cell Image Library:  http://cellimagelibrarv.org/groups/54423

All pathology imaging data are available through the Cell Image Library repository.

Raw sequencing data:  https://www.ncbi.nlm.nih.gov/geo/guery/acc.cgi?

acc=GSE167494

Raw single nuclei RNA sequencing (snRNA-seq) data generated in this study (including 

both FASTQ and Cell Ranger-generated matrix files) are available at GEO (Gene Expression 

Omnibus) under accession number GSE167494.

Analyzed snRNA-seq data (pseudobulk):  www.gliaseq.com
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We created an open-access, interactive website as a resource to share and easily navigate our 

analyzed snRNA-seq data for astrocytes and oligodendrocytes.

GitHub:  https://github.com/liddelowlab/Sadick_et_al._2022

All code for analysis of original and previously published snRNA-seq and spatial 

transcriptomic datasets are available on the Liddelow Lab GitHub page.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Astrocytes and oligodendrocytes have altered and heterogeneous 

transcriptomes in AD

• Dataset integration improves glia clustering and suggests putative altered 

function

• ‘reactive’ sub-states of glia are likely spatially restricted

• Astrocyte inflammation responses mimic some AD-associated gene 

expression changes
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Figure 1. Defining a well-controlled patient cohort is key for defining AD-associated gene 
expression profiles.
(A) Representative micrographs and corresponding quantification in non-symptomatic (NS) 

and AD donors of immunohistochemistry for amyloid-β plaques (4G8), phosphorylated 

tau (AT8), and GFAP. Scale bars are 50 μm. Raw quantification values are displayed as 

well as mean ± s.d. (B) Workflow for donor quality control and astrocyte enrichment 

strategy. (C) tSNE plot of total nuclei (N = 80,247) and (D) corresponding average scaled 

expression heatmap of cell type-specific transcripts by cluster. (E) Cell type proportions 
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of total nuclei captured, (F) total numbers of astrocytes and oligodendrocytes captured 

split by disease state, and (G) average number of astrocytes and oligodendrocytes captured 

per donor split by disease state: NS (blue), AD (red). Abbreviations: AD, Alzheimer’s 

disease; Astro., astrocyte; Endo., endothelial cell; FACS, fluorescence-activated cell sorting; 

GFAP, glial fibrillary acidic protein; IHC, immunohistochemistry; Micro., microglia; NS, 

non-symptomatic; Oligo., oligodendrocyte; OPC, oligodendrocyte precursor cell; RIN, RNA 

Integrity Number. See also Figures S1–S3.
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Figure 2. Oligodendrocytes are minimally heterogeneous but have cluster-specific transcriptomic 
changes in Alzheimer’s disease.
(A) tSNE plot of oligodendrocyte nuclei (N = 23,840) and (B) corresponding average 

scaled expression heatmap of top 5 enriched/unique transcripts per cluster. (C) Proportion 

of oligodendrocyte clusters identified in each donor. Additional donor metavariables 

highlighted include disease state (blue, NS; red, AD) and sex (green, female; yellow, 

male). Average scaled expression of the top 10 (D) upregulated and (E) downregulated 

disease-specific differentially expressed genes (DEGs) split by cluster. (F-I) UpSetR plots 
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highlighting upregulated and downregulated DEGs or GO terms that are unique to or shared 

between clusters. Bars show number of DEGs per cluster (colored at left). Lines between 

cluster highlight shared DEGs. Abbreviations: AD, Alzheimer’s disease; D#, donor number; 

DEG, differentially expressed gene; Dis., disease; F, female; GO, gene ontology; M, male; 

NS, non-symptomatic. See also Figures S4, S5.
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Integration of oligodendrocytes from multiple datasets reveals consistent identification of 
oligodendrocyte subtypes.
(A) tSNE plots of reanalyzed oligodendrocytes from published snRNA-seq datasets 

(Mathys, N = 18,229; Grubman, N = 7,604; Zhou, N = 34,949) and (B) their corresponding 

average scaled expression heatmap of the top 5 cluster-enriched/unique transcripts per 

cluster for each dataset. (C) tSNE plots of integrated oligodendrocytes (N = 84,622) 

visualized by cluster (left) and by dataset (right). (D) Proportion of integrated clusters 

split by dataset. (E) Average scaled expression heatmap of top 5 integrated oligodendrocyte 

cluster-enriched/unique transcripts by cluster and by dataset. See also Figures S6–S8, S13.
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Figure 4. Astrocytes are heterogeneous and have both common and cluster-specific 
transcriptomic changes in Alzheimer’s disease.
(A) tSNE plot of astrocyte nuclei (N = 41,071) and (B) corresponding average scaled 

expression heatmap of top 5 enriched/unique transcripts per cluster. (C) Proportion of 

astrocyte clusters identified in each donor. Additional donor metavariables highlighted 

include disease state (blue, NS donors; red, AD donors) and sex (green, female; yellow, 

male). Average scaled expression of the top 10 (D) upregulated and (E) downregulated 

disease-specific differentially expressed genes (DEGs) split by cluster. (F-I) UpSetR plots 
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highlighting upregulated and downregulated DEGs or GO terms that are unique to or 

shared between clusters. Abbreviations: AD, Alzheimer’s disease; D#, donor number; DEG, 

differentially expressed gene; Dis., disease; F, female; GO, gene ontology; M, male; NS, 

non-symptomatic. See also Figure S11.
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Figure 5. Astrocyte transcriptomic profiles suggest cluster-specific gain and loss of functional 
changes in Alzheimer’s disease.
tSNE plots highlighting several clusters of interest, unique/shared GO terms, and 

differentially expressed genes (DEGs) associated with GO terms. GO-associated DEGs are 

presented as average scaled expression heatmaps by cluster of interest and split by disease 

state (blue, NS donors; red, AD donors). DEGs are highlighted on violin plots to resolve 

the range of expression (log normalized UMI counts) across all astrocytes in single or 

multiple clusters. (A) Upregulated cell death and oxidative stress features unique to cluster 

1. (B) Upregulated lipid storage and fatty acid oxidation features unique to cluster 5. (C) 
Downregulation of angiogenesis regulation and blood brain barrier maintenance features 

unique to cluster 3. Abbreviations: AD, Alzheimer’s disease; BBB, blood-brain barrier; 

DEG, differentially expressed genes; Dep., dependent; Dis., disease; GO, gene ontology; 

H2O2, hydrogen peroxide; Neg., negative; NS, non-symptomatic; Reg., regulation; ROS, 

reactive oxygen species; UMI, unique molecular identifier. See also Figures S9–S11.
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Figure 6. Astrocyte subtypes are regionally heterogeneous.
Visualization and differential enrichment results for Cluster 6 marker genes enriched in 

Layer 1 and white matter (A), and Cluster 8 genes enriched in the upper layers of the 

cortex (B). For both: Upper: human spatial transcriptomics data from Maynard et al. (2021). 

Lower: mouse spatial transcriptomics data from Hasel et al. (2021). (leftmost) H&E staining 

and regional annotation of spots from the representative Visium section. Relative enrichment 

of cluster gene module section, and box and density plots of gene module scores across all 

spots and all sections grouped by cortical region for Clusters 6 and 8. Cluster gene modules 
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were significantly enriched (+) or de-enriched (−) in spots from the indicated region 

compared to the rest of the cortex (Wilcoxon rank sum test with Bonferroni correction). 

(C) Summary dot plot of astrocyte cluster gene modules across human (left) and mouse 

(right) cortical regions. Dots colored by z-scored average gene module score. Dot sizes 

correspond to the percentage of spots with a gene module score greater than zero, indicating 

elevated expression of the geneset compared to control genesets (see Methods). (D) Scatter 

plot comparing z-scored average gene module scores across region and clusters between 

human and mouse showing cluster module enrichment is similar. A linear regression 

line is shown (r refers to Pearson’s r correlation coefficient). (E) Relative enrichment of 

Cluster 3 module overlaid on saline (upper) and LPS (lower) sections. Box & density 

plot comparing expression of Cluster 3 module across spots in LPS-versus saline-injected 

mice (right). (F) Relative enrichment of genes upregulated in Cluster 8 in AD overlaid 

on saline (top) and LPS (bottom) sections. Box & density plot comparing expression of 

Cluster 8 AD module across cortical regions in LPS-versus saline-injected mice (right). 
For (E-F): +/− symbol represents whether the Cluster 3 module is significantly upregulated 

or downregulated in spots from the indicated region in LPS versus saline-injected mice 

(Wilcoxon rank sum test with Bonferroni correction). See Table S7 for test statistics and 

p-values. Abbreviations: AD, Alzheimer’s disease; NS, non-significant; H&E, hematoxylin 

& eosin; LPS, lipopolysaccharide. See also Figure S12.
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Figure 7. Integrating astrocyte snRNA-seq datasets allows for improved resolution of unique 
astrocyte subpopulations.
(A) tSNE plots of reanalyzed astrocytes from published snRNA-seq AD datasets (Mathys, 

N = 3,079; Grubman, N = 2,330; Zhou, N = 10,538) and (B) their corresponding average 

scaled expression heatmap of the top 5 cluster-enriched/unique transcripts. (C) tSNE plots 

of integrated astrocytes (N = 57,018) as visualized by cluster (left) and by dataset (right). 
Mathys data are in yellow, Grubman data are in dark red, Zhou data are in violet, and 

the current study’s data are in steel blue. (D) Proportion of integrated astrocyte clusters 

identified in the integrated dataset. (E) Average scaled expression heatmap of top 5 

integrated astrocyte cluster-enriched/unique transcripts by cluster and by dataset. See also 

Figures S1, S3, S6–S8, S13.
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-amyloid-beta 17-24 BioLegends Cat#800701; RRID:AB_2564633

Mouse anti-phospho-tau, Ser202/Thr205 monoclonal Thermo Fisher Scientific Cat#MN1020; RRID:AB_223647

Rabbit anti-glial fibrillary acidic protein (EP672Y) Ventana Cat#760-4345

DISCOVERY universal secondary biotinylated antibody cocktail Roche Cat#760-4205; RRID:AB_10805231

Rabbit anti-SOX9 (EPR14335-78) Abcam Cat#ab185966; RRID:AB_2728660

Rabbit IgG isotype control (EPR25A) Abcam Cat#ab172730; RRID:AB_2687931

Mouse anti-Human SPARC (Clone: 122511) R&D Systems Cat# MAB941, RRID:AB_2195073

Mouse anti-GFAP Sigma-Aldrich Cat# G3893, RRID:AB_477010

Rabbit anti-GFAP DAKO Cat# Z0034

Rabbit anti-Human C3d DAKO Cat# A0063

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed ReadyProbes 
Secondary Antibody, Alexa Fluor 594

Thermo Fisher Scientific Cat#R37117; RRID:AB_2556545

Rabbit anti-LIM Homeobox 2 LHX2 EMD Millipore Cat#AB5756; RRID:AB_92012

Mouse anti-NeuN (Clone A60) Millipore Sigma Cat#MAB377; RRID:AB_2298772

Mouse IgG1 isotype control (Clone Ci4) Millipore Sigma Cat#MABC002; RRID:AB_97846

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 488

Invitrogen Cat#A11034; RRID:AB_2576217

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 594

Invitrogen Cat# A11012, RRID:AB_2534079

Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 647

Invitrogen Cat#A21235; RRID:AB_2535804

Bacterial and Virus Strains

Biological Samples

De-identified human, post-mortem prefrontal cortex samples from 
Alzheimer’s disease and age-matched non-symptomatic patients

Rhode Island Hospital’s 
Brain Tissue Resource 
Center Table S2

https://www.brown.edu/research/facilities/
brain-tissue-resource-center/

De-identified human, post-mortem prefrontal cortex samples from 
Alzheimer’s disease and age-matched non-symptomatic patients

Alzheimer’s disease 
Research Center at NYU 
Langone Table S2

https://med.nyu.edu/departments-institutes/
neurology/divisions-centers/center-
cognitive-neurology/alzheimers-disease-
center

De-identified human, post-mortem prefrontal cortex samples from 
Alzheimer’s disease and age-matched non-symptomatic patients

Shiley-Marcos 
Alzheimer’s disease 
Research Center at 
UCSD Table S2

https://medschool.ucsd.edu/som/
neurosciences/centers/adrc/Pages/
default.aspx

Chemicals, Peptides, and Recombinant Proteins

RNase-free buffer kit Invitrogen Cat#Am9010

Triton X100 Sigma Cat#T8787

RNasin Plus Promega Cat#N2615

Protease inhibitor cocktail Promega Cat#G6521

DL-Dithiothreitol Sigma Cat#D9779

DNase- and RNase-free water Invitrogen Cat#10977015
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REAGENT or RESOURCE SOURCE IDENTIFIER

Reagent-grade bovine serum albumin Proliant Biologicals Cat#68700

Goat serum MP Biomedicals Cat#191356

4′,6 Diamidino 2 Phenylindole, Dihydrochloride Thermo Fisher Scientific Cat#D1306

Phosphate buffer saline VWR Cat#16750-102

Critical Commercial Assays

QIAshredder QIAGEN Cat#79656

RNeasy Plus Mini kits QIAGEN Cat#74136

GoTaq Green Master Mix Promega Cat#M7123

Single Cell 3’ Gene Expression kit v3 10x Chromium Cat#1000076

Deposited Data

Pathology imaging data This paper Cell Image Library: http://
cellimagelibrary.org/groups/54423

Single nuclei RNA sequencing data (FASTQ and Cell Ranger-
generated matrix files)

This paper GEO: GSE167494; https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE167494

Single nuclei RNA sequencing data (FASTQ files) Mathys et al., 2019 Synapse: syn18485175; https://
www.synapse.org/#!Synapse:syn18485175

Single nuclei RNA sequencing data (FASTQ files) Grubman et al., 2019 GEO: GSE138852; https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE138852

Single nuclei RNA sequencing data (FASTQ files) Zhou et al., 2020 Synapse: syn21670836; https://
www.synapse.org/#!Synapse:syn21670836

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

Oligonucleotides

APOE_e2_FWD: 5′-GCGGACATGGAGGACGTGT-3′ Zhong et al., 2016 N/A

APOE_e2_REV: 5′-CCTGGTACACTGCCAGGCA-3′ Zhong et al., 2016 N/A

APOE_e3_FWD: 5′-CGGACATGGAGGACGTGT-3′ Zhong et al., 2016 N/A

APOE_e3_REV: 5′-CTGGTACACTGCCAGGCG-3′ Zhong et al., 2016 N/A

APOE_e4_FWD: 5′-CGGACATGGAGGACGTGC-3′ Zhong et al., 2016 N/A

APOE_e4_REV: 5′-CTGGTACACTGCCAGGCG-3′ Zhong et al., 2016 N/A

B-actin_FWD: 5′-GACGTGGACATCCGCAAAGAC-3′ Zhong et al., 2016 N/A

B-actin_REV: 5′-CAGGTCAGCTCAGGCAGGAA-3′ Zhong et al., 2016 N/A

Recombinant DNA

Software and Algorithms

QuPath (version 0.2.3) Bankhead et al., 2017 https://qupath.github.io/; 
RRID:SCR_018257

Fiji-ImageJ (version 2.1.0) Schindelin et al., 2012 https://imagej.net/Fiji; RRID:SCR_003070

Prism (version 9.0.0) GraphPad https://www.graphpad.com/scientific-
software/prism/; RRID:SCR_002798

Flowjo (version 10.7.1) BD https://www.flowjo.com/; 
RRID:SCR_008520
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REAGENT or RESOURCE SOURCE IDENTIFIER

NovaSeq 6000 RTA (version 3.4.4) Illumina https://www.illumina.com/systems/
sequencing-platforms/novaseq.html; 
RRID:SCR_014332

bcl2fastq conversion software (version 2.20) Illumina https://support.illumina.com/downloads/
bcl2fastq-conversion-software-v2-20.html; 
RRID:SCR_015058

Cell Ranger software suite (version 4.0.0) 10x Genomics https://support.10xgenomics.com/single-
cell-gene-expression/software/pipelines/
latest/installation; RRID:SCR_017344

R (versions 3.6.2 - 4.0.3) The R Foundation https://www.r-project.org/foundation/; 
RRID:SCR_001905

SingleCellExperiment (version 1.12.0) Amezquita et al., 2020 https://bioconductor.org/packages/release/
bioc/html/SingleCellExperiment.html

Seurat (version 3.2.2) Stuart et al., 2019 https://satijalab.org/seurat/index.html; 
RRID:SCR_016341

zinbwave (version 1.12.0) Risso et al., 2018 https://bioconductor.org/packages/release/
bioc/html/zinbwave.html

edgeR (version 3.32.0) Robinson et al., 2010 https://bioconductor.org/packages/release/
bioc/html/edgeR.html; RRID:SCR_012802

All Rscripts used to analyze single nuclei RNA sequencing data This paper https://github.com/liddelowlab/
Sadick_et_al.

Other

Open-access, interactive website highlighting all analyzed single 
nuclei RNA sequencing data

This paper www.gliaseq.com
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