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SUMMARY

Resolving glial contributions to Alzheimer’s disease (AD) is necessary because changes in
neuronal function, like reduced synaptic density, altered electrophysiological properties, and
degeneration, are not entirely cell autonomous. To improve understanding of transcriptomic
heterogeneity in glia during AD, we used single nuclei RNA sequencing (SnRNA-seq) to
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characterize astrocytes and oligodendrocytes from APOE £2/3 human AD and age- and genotype-
matched non-symptomatic (NS) brains. We enriched for astrocytes before sequencing and
characterized pathology from the same location as the sequenced material. We characterized
baseline heterogeneity in both astrocytes and oligodendrocytes, and identified global and subtype-
specific transcriptomic changes between AD and NS astrocytes and oligodendrocytes. We

also take advantage of recent human and mouse spatial transcriptomics resources to localize
heterogeneous astrocyte subtypes to specific regions in the healthy and inflamed brain. Finally, we
integrated our data with published AD snRNA-seq datasets, highlighting the power of combining
datasets to resolve previously unidentifiable astrocyte subpopulations.

eTOC Blurb

Transcriptomic and functional changes in glia are hallmarks of Alzheimer’s disease. In this
issue of Meuron, Sadick, O’Dea, et al. define transcriptomic differences in astrocytes and
oligodendrocytes in Alzheimer’s disease at the single nuclei level. They also localize human
Alzheimer’s-associated transcription profiles to strategic location in the inflamed mouse brain.

INTRODUCTION

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder in
the world and accounts for about 70% of the 50 million people worldwide with dementia,
with an estimated 10 million new cases each year, or close to 20 new cases every minute
(Alzheimer’s Association, 2021). With an aging population, greater understanding of AD
pathogenesis is imperative for development of effective therapies. Defined by progressive
memory and cognitive loss, AD is a disease of proteopathic stress associated with abnormal
beta-amyloid (Ap) and tau aggregation, and neuron death (De Strooper and Karran,

2016; Ginsberg et al., 2006; Mattsson et al., 2016; Yue and Jing, 2015). More recently,
research highlights non-neuronal central nervous system (CNS) cells, namely glia, as active
contributors to AD pathophysiology. Increasing evidence supports a pathological role of
‘reactive’ astrocytes in acute and chronic diseases, like AD (Carter et al., 2012; Owen et al.,
2009; Sadick and Liddelow, 2019; Schipper et al., 2006). This includes changes in normal
physiological functions like synapse maintenance (Hong et al., 2016), blood-brain barrier
(BBB) integrity (de la Torre, 2004; Farkas and Luiten, 2001; Viswanathan and Greenberg,
2011), metabolism (Gonzalez-Reyes et al., 2017), and structural support (Mohamed et al.,
2016; Teaktong et al., 2003; Wu et al., 2015). Many studies implicate reactive astrocytes
induced by immune cell dysfunction and inflammatory responses to pathogenic proteins
(AP and tau) and dying cells (Hasel et al., 2021; Liddelow et al., 2017; Shi et al., 2017;
Zamanian et al., 2012). Oligodendrocytes are also of interest in AD pathology given their
role in myelin production and axon support (Funfschilling et al., 2012; Saab et al., 2016).
White matter abnormalities (e.g. lesions, decreased volume, microstructural deterioration),
and demyelination are well documented in AD (Lee et al., 2016; Radanovic et al., 2013).
Beyond these broad physiological changes, many questions remain, such as how subtypes of
astrocytes and oligodendrocytes are altered in AD.

Single nuclei RNA sequencing (SnRNA-seq) has been used to assess cellular heterogeneity
at the transcriptomic level in human AD postmortem brains (Del-Aguila et al., 2019; Gerrits
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et al., 2021; Grubman et al., 2019; Lau et al., 2020; Leng et al., 2021; Mathys et al.,

2019; Zhou et al., 2020). In most studies however, astrocytes are underrepresented, making
up only ~3-18% of nuclei. Therefore, we posit that these studies may not provide large
enough samples to confidently define biologically important, but lowly abundant, astrocyte
subpopulations - a hypothesis supported by the fact that similar subpopulations are not
identified across published datasets. In contrast, oligodendrocytes are well-represented in
snRNA-seq studies, with some agreement in identified subpopulations. In addition, given
the important spatially-confined responses of astrocytes to AD pathology (e.g. surrounding
amyloid plaques, or near degenerated brain regions), no studies have combined pathological
characterization with sequencing efforts on the same tissue samples. Several studies
provided pathological analysis of contralateral or adjacent brain regions, but these may be
far-removed from local pathology-induced microenvironments (Gerrits et al., 2021; Leng et
al., 2021; Mathys et al., 2019). A lack of concordance may also be reflective of variability
with respect to pathological load and/or underlying genetic variance across donors.

Here we present a SnRNA-seq dataset characterizing astrocytes and oligodendrocytes
isolated from human postmortem prefrontal cortex samples from AD and age-matched
non-symptomatic (NS) patients. All individuals were genotyped and controlled for
apolipoprotein (APOE) genotype 2/3. We chose this patient population as it is under-
represented in other sequencing studies, and individuals present with AD dementia onset at
later ages (onset ~80 years (Reiman et al., 2020)), making age matching between NS and
AD patients more similar. In addition, APOEe2/3 individuals have a low odd-risk ratio of
contracting AD compared to individuals that carry an APOEe4 allele (Goldberg et al., 2020;
Reiman et al., 2020).

In order to improve astrocyte capture for snRNA-seq, we enriched for astrocytes by sorting
nuclei based on LIM Homeobox 2 (LHX2)-positive/NeuN-negative staining followed by
10X Genomics-based snRNAseq. This method enriches for astrocytes while maintaining
capture rates of oligodendrocytes and depleting neurons. We characterized the pathology of
donor tissue from the same location that nuclei were isolated for sequencing. We identified
global and subtype-specific transcriptomic changes between AD and NS astrocytes and
oligodendrocytes. Additionally, we localized heterogeneous astrocyte subtypes to specific
cortical regions in the healthy and inflamed brain using published human and mouse
spatial transcriptomics datasets. Last, we integrated our data with published AD snRNA-seq
datasets and resolve unique astrocyte subpopulations present across datasets. Overall, we
provide a paired sequencing and pathology assessment resource that can be used to further
explore the breadth of astrocyte and oligodendrocyte transcriptomic changes in AD.

Defining a well-controlled patient cohort is key for defining AD-associated gene
expression profiles

We first decided to reanalyze and compare three recent studies (Grubman et al., 2019;
Mathys et al., 2019; Zhou et al., 2020) and found that astrocytes made up on average 15% +
8.7% of total nuclei captured (2,300-23,000 per study — on average less than 400 astrocytes
per donor; Figure SLA-C, Table S1). Given astrocytes are one of the most abundant CNS
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cell types (Nedergaard et al., 2003; von Bartheld et al., 2016), this low capture rate was
surprising. In contrast, other cell populations were well represented. In addition, donors
varied in APOE genotype, which may confound resulting profiles of astrocytes given they
highly express APOE (Zhang et al., 2016). Therefore we focused on APOE £2/3 donors, a
population of patients that has been understudied. Our approach enabled us to: (1) conduct
a highly stringent evaluation of our donor cohort, and (2) optimize enrichment methods for
astrocytes prior to sequencing for improved astrocyte capture rates.

We characterized our patient cohort by verifying APOE genotype (Figure S1D) and
evaluating pathological load of donor tissue for A (4G8), phosphorylated tau (AT8), glial
fibrillary acidic protein (GFAP), and Bielschowsky’s silver staining (Figure 1A, Table S2).
Each stain was quantified for normalized staining density, total count of features (i.e.,
number of 4G8* AB plaques or AT8" cell bodies), and average cross-sectional area of

each feature (Table S2). We evaluated diffuse plaques, neuritic plaques, and neurofibrillary
tangle loads (Table S2). In line with clinical diagnoses, phosphorylated tau staining density
and total number of AT8* cell bodies were significantly higher in AD donors compared

to NS donors (p = 0.0047). In contrast, we did not detect major differences in Ap plaque
staining density or area or GFAP* staining density or area between disease conditions.
Interestingly, individual AT8* cell bodies were significantly larger in NS donors than AD
donors (p = 0.022) — likely driven by differences in the number of AT8" cell bodies detected
between disease conditions (AT8* cell bodies counted: 141 NS versus 57,829 AD). Based
on Bielschowsky’s silver staining, we classified NS donors as having no or low pathology
loads, while AD donors had moderate or severe pathology loads.

We next sought to improve astrocyte capture for sShRNA-seq by enriching for astrocytic
nuclei prior to sequencing (Figure S2). Initially, we attempted astrocyte enrichment via
SOXQ9 sorting (Figure SIE-G, S2A), given SOX9is a transcription factor highly and
uniquely expressed in astrocytes (Zhang et al., 2016). However, this strategy proved
ineffective at increasing astrocyte capture yields, likely due to non-specific SOX9 antibodies
(Table S3). Instead, we turned to a dual immunolabeling strategy pioneered by Nott and
colleagues (Nott et al., 2019) by sorting samples based on LHX2*NeuN~ (Figure STH-M,
S2B, Table S3). Using this strategy, we enriched for astrocytes, maintained oligodendrocyte
numbers, and depleted neurons (Figure 1C-G). While optimizing this process, we sorted

a single donor using both sorting strategies, highlighting significant improvement in total
astrocyte capture (Figure SLH-M). Overall, in our final donor cohort, 51.5% of nuclei
captured were astrocytes, totaling 41,340 astrocytes and averaging 2,756 + 1,087 astrocytes
per donor (Figure 1E-G). In addition, 29.7% of nuclei captured were oligodendrocytes,
totaling 23,840 oligodendrocytes and averaging 1,589 * 1,342 oligodendrocytes per donor
(Figure 1E-G).

Putative loss of critical oligodendrocyte functions in Alzheimer’s disease

We identified five unique oligodendrocyte transcriptomically defined clusters (Figure 2A-B)
and evaluated these gene sets on their own and by gene ontology (GO)/pathway analysis
(Table S4). We did not identify any singular sample variable, such as disease state, sex,
RNA quality, age of donor, or post mortem interval (PMI), that was exclusively associated
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with a cluster (Figure 2C, Figure S3). While few genes were exclusively expressed by a
single cluster, several were enriched in some clusters over others. Oligodendrocyte cluster

1 for example was enriched for transcripts involved in glial cell development (PLPA,

CNP, CD9) and apoptotic signaling (SEPTIN4, SERINCS3). Oligodendrocyte cluster 2

was enriched for transcripts associated with cholesterol metabolism (MSMO1, FDFT1,
LSS). Oligodendrocyte clusters 2, 3, and 4 enriched transcripts were involved in synapse
assembly and organization. Additionally, oligodendrocyte cluster 4 expresses transcripts
involved in antigen processing/presentation (PSMB1, BZM, HLA-A) and innate immunity-
associated pathways, such as interleukin-1 signaling, tumor-necrosis factor signaling, and
NFxB signaling. Finally, although we did not identify any statistically significant GO terms
associated with oligodendrocyte cluster 0, based on cluster-enriched differentially expressed
genes (DEGS), we inferred that this cluster was associated with synapse organization and
aspects of metabolism (Table S3).

We next evaluated differential gene expression between AD and NS oligodendrocytes
using edgeR paired with zinbwave-generated observational weights. We identified 358
unique upregulated and 227 unique downregulated DEGs in AD oligodendrocytes (Table
S4). We did not find any transcriptomic changes that were conserved/common across

all oligodendrocyte subpopulations, but instead find highly cluster-specific transcriptomic
changes based on disease state (Figure 2D-I).

We next classified our findings by assigning ‘GO descriptions’ — a manual evaluation of
oligodendrocyte cluster-specific or cluster-shared GO terms. This allowed us to summarize
multiple identified GO terms associated with either upregulated or downregulated pathways,
for single or multiple oligodendrocyte clusters (Figures S4, S5, Table S4). Oligodendrocyte
‘GO descriptions’ associated with AD fell into two broad categories: upregulation of
synaptic maintenance, or downregulation of synaptic maintenance. For example, cluster

1 AD oligodendrocytes upregulate GO terms associated with axonogenesis and synapse
organization (example associated DEGs include LRP4, TIAM1, CDHZ2). Decreases in
synaptic cell adhesion protein N-cadherin (CDH2) have previously been reported in

AD temporal cortex (Ando et al., 2011). Therefore, upregulation of CDHZin this
subpopulation of AD oligodendrocytes is an interesting discovery and may reflect a
neuroprotective response to maintain contacts between axons and oligodendrocyte lineage
cells (Schnadelbach et al., 2001). Cluster 2 AD oligodendrocytes upregulate pathways
related to cholesterol metabolism. Cholesterol is an essential component of myelin (Saher
etal., 2011), so identification of transcripts associated with cholesterol metabolism here
(e.g. FMO5, FDFTI) is not surprising. However, in the context of AD, upregulation of
these transcripts in an oligodendrocyte subpopulation may suggest neurosupportive and/or
neurotoxic effects (Guttenplan et al., 2021). For example, conditional knockdown of
squalene synthase (FDFT1), a rate-limiting enzyme in cholesterol synthesis, significantly
delays myelination /n vivo (Saher et al., 2005). However, high cholesterol is also a risk
factor for AD (Shepardson et al., 2011) and may exacerbate AD pathology by increasing
AP production (as seen in APP/PS1 mice on a high cholesterol diet) (Refolo et al.,

2000) or AP aggregation (Yip et al., 2001). Clusters 0 and 2 AD oligodendrocytes
downregulate pathways involved in amino acid synthesis (Figure S4C). Fatty acid synthesis
by oligodendrocyte lineage cells is critical for both myelination and remyelination, as seen
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in acute lesions in a focal spinal cord demyelination model (Dimas et al., 2019). Decreased
expression of stearoyl-CoA desaturase (SCD), a rate-limiting enzyme in monounsaturated
fatty acid synthesis (Paton and Ntambi, 2009), in these oligodendrocytes may reflect a loss
of function regarding endogenous fatty acid synthesis and could imply limited myelination/
remyelination capabilities. Cluster 0, which makes up almost 80% of all oligodendrocytes
identified in our sSNnRNA-seq dataset, downregulate GO terms associated with synapse
transmission, synaptic vesicle regulation, and ion transmembrane transport (Figure S4D).

In contrast to cluster 1 AD oligodendrocytes, those in cluster 0 downregulate a number of
synaptic cell adhesion molecules like E-cadherin (CDHI) (Kilinc, 2018), liprin-a (PPFIA2)
(Lie et al., 2018), and disrupted in schizophrenia 1 (D/SCI) (Hattori et al., 2010), which
suggests decreased contacts between oligodendrocytes and axons. Also, cluster 0 AD
oligodendrocytes downregulate GO terms associated with metabolism (example DEGs
include PDESA, PDE10A, PDE1A, CNF, RORA). Inhibition of phosphodiesterases (PDES),
a group of enzymes that regulate cyclic nucleotide cAMP and cGMP levels, is used in the
treatment of cardiovascular diseases, inflammatory airway diseases, and erectile dysfunction
(Boswell-Smith et al., 2006) and have been evaluated as a therapy in AD (Prickaerts et

al., 2017; Wu et al., 2018). In addition to the potential broader cognitive improvement

by PDE inhibition, downregulation of PDEs (specifically PDE4) promotes oligodendrocyte
lineage cell differentiation and remyelination in a focal demyelination model (Syed et

al., 2013), suggesting these transcriptomic changes may serve a neuroprotective role

in this specific oligodendrocyte subpopulation. We therefore hypothesize that some AD-
associated transcriptional and functional changes in oligodendrocytes may also arise in
other degenerative diseases like multiple sclerosis — even if the entire complement of
transcriptional changes is not the same.

Integration of oligodendrocytes from multiple datasets recovers overlapping subtypes

Given the abundance of high quality, well-powered AD patient oligodendrocyte sSnRNAseq
datasets in the literature (Del-Aguila et al., 2019; Gerrits et al., 2021; Grubman et al,

2019; Leng et al., 2021; Mathys et al., 2019; Zhou et al., 2020), we next sought to
determine if we could resolve the same transcriptomic differences previously reported.

We evaluated oligodendrocyte subtypes in each individual dataset and compared them

to our own (Table S1, Figures S31, S6-S8). By analyzing each dataset in isolation, we
identified 5 oligodendrocyte clusters (M0-M4) in the Mathys dataset, 4 oligodendrocyte
clusters (G0-G3) in the Grubman dataset, and 10 oligodendrocyte clusters (Z0-Z9) in the
Zhou dataset (Figure 3A-B, Table S1). Using our oligodendrocyte subpopulation profiles

as a reference (from now on referred to as oligodendrocyte clusters S0-S4), we identified
subpopulations which were also recognizable in the individual datasets. This included S1-
like oligodendrocytes (clusters M0, M3, GO, G3; defined by high expression of FTH,
CRYAB, CNP, and FRY) and S2-like oligodendrocytes (clusters M2, G1; defined by
RBFOX1, RASGRF1, ACTNZ, and SYNJ2). In the Grubman dataset, we also identified S4-
like oligodendrocytes (cluster G2; which highly expresses S100A6, ITPKB, and NEATI).
The remaining oligodendrocyte clusters in the Mathys dataset were defined by either no
highly unique transcripts (cluster M1; only enriched transcript is X-chromosome gene X/ST7,
even though donors of both sex are represented in this cluster) or significantly fewer
genes/UMI counts per nucleus compared to other clusters (cluster M4). In contrast, we
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identified twice as many oligodendrocyte subpopulations in the Zhou dataset compared to
our own. However, although we detected more transcriptomically definable oligodendrocyte
subpopulations, many of these clusters reflect gradations of transcript expression across
multiple clusters. For example, oligodendrocyte clusters Z2, Z5, and Z9 express increasing
levels of PLP1, CNP, CNTNI1, FRY, and KCNIP4 (similar to S1 oligodendrocytes), and
oligodendrocyte clusters Z4 and Z7 express ACTNZI, DTNA, RASGRF1, and RASGRF2
(similar to S2 oligodendrocytes). Overall, we found 3 out of 5 subpopulations were present
in the Zhou dataset (spread over 7 clusters). The remaining three clusters are defined by
either higher mitochondrial transcript expression and low gene/UMI counts per nucleus
(cluster Z3) or have uniquely identified profiles that do not have a corresponding profile in
our snRNA-seq dataset.

In addition to evaluating oligodendrocytes from published datasets in isolation, we also
integrated these datasets with our own. By doing so, we defined 7 oligodendrocyte
subpopulations (clusters Int0-Int6) and found highly consistent representation of clusters
from each dataset (Figure 3C-D, Table S5). To determine if all datasets equally

contributed to cluster-defining transcript expression, we evaluated the top five integrated
oligodendrocyte cluster-enriched transcripts by cluster and dataset (Figure 3E). Overall, 5
out of 7 integrated oligodendrocyte clusters were well defined across all datasets (clusters
Intl and Int3-Int6). Oligodendrocyte cluster Int0 was unremarkably defined (i.e. lacked
unique or highly enriched transcript features) across all datasets. Comparing transcriptomic
profiles between integrated oligodendrocyte clusters with our own oligodendrocyte dataset,
two clusters had a high degree of similarity. Oligodendrocyte cluster Int0 expresses

SVEPI and PLXDCZ (similar to SO oligodendrocytes), and Int6 oligodendrocytes express
NRP2, LUCATI1, and CAMKZD (similar to S4 oligodendrocytes). In contrast to these
oligodendrocyte subpopulations, in the integrated dataset, we identified two pairs of clusters
in which expression gradation of transcripts were now well definable across all datasets
(and not just in the Zhou dataset). Specifically, clusters Intl and Int4 share expression

of transcripts FTHI1, PLP1, APOD, and DBNDD?. In addition, Int4 oligodendrocytes
highly expresses SGCZ, MDGAZ, CNTN1, KCNIP4, and FRY (which we identified in

S1 oligodendrocytes).

Transcriptionally distinct astrocyte subtypes are independent of disease state

Following our investigation into oligodendrocyte gene expression changes, we next
investigated our captured astrocytes. We sought to determine if the increased numbers
enabled us to detect novel subpopulations that had previously been missed. We identified
9 astrocyte subpopulations with unique transcriptomic signatures (Figure 4A-B) and also
evaluated them by GO/pathway analysis to infer potential biological relevance (Table S6).
For example, astrocyte clusters 0, 4, and 8 express unique sets of transcripts involved in
synapse assembly, organization, and transmission (Cluster 0: EGFR, LRRCA4C, EPHBLI,
Cluster 4: DCLK1, NTNG1, and several semaphorins; Cluster 8: EPHA4, AKAPI2,
NLGN4X). Astrocyte clusters 4 and 6 highly express transcripts involved in glutamate
signaling (GRIA1, GRIK4, SHISA®b). Clusters 2 and 5 express transcripts involved

in extracellular matrix organization (Cluster 2: ADAMTSL3, L3MBTL4, Cluster 5:
ADAMTSL3, FBNI), while cluster 5 also expresses transcripts involved in actin cytoskeletal
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organization (SORBS1, SPIREI). The inclusion of ADAMTSL3in clusters 2 and 5 may
point to a protective role of (some) AD or aged astrocytes, as it has reported protective role
in ischemia and cerebrovascular integrity in the APP/PS1 mouse model of AD (Cao et al.,
2019). In contrast, cluster 3 astrocytes express transcripts involved in acute inflammatory
responses (e.g. SERPINAS3, C3, OSMR) that we have reported on previously in both mouse
(Hasel et al., 2021; Liddelow et al., 2017) and human (Barbar et al., 2020). Astrocyte cluster
1 is highly enriched for transcripts involved in oxidative stress (PSAR, COX1, ND1/3) and
associated with A trafficking (e.g. APOE, CLU) and processing (e.g. /TMZ2B/2C). The
inclusion of AD-risk genes, APOE and CLU, with integral membrane protein (/TM2B/2C)
genes associated with cerebral amyloid angiopathy (Nelson et al., 2013; Vidal et al., 1999)
in the same astrocyte cluster suggests a putative interaction. Astrocyte clusters 1 and 6 are
both enriched in a number of metallothioneins and other transcripts involved in response

to metal ions. Finally, cluster 7 expresses transcripts associated with apoptotic signaling

and response to DNA damage. Most importantly, we did not identify any donor that
singularly drove the identification of an astrocyte cluster (Figure S3A, F; see Figure S3A for
rationale of why two donors were removed from final analyses). Like our oligodendrocyte
populations, astrocyte heterogeneity was not driven by any definable underlying sample
variable, including disease state, sex, RNA quality, age of donor, or PMI.

Astrocytes have both common and cluster-specific transcriptomic changes in Alzheimer’s

disease

We next analyzed samples for AD-associated differential gene expression and identified
both common and cluster-specific transcriptomic changes between AD and NS astrocytes.
In total, we identified 1,084 unique upregulated DEGs and 450 unique downregulated
DEGs between astrocyte clusters that were presumably driven by AD (Table S6). When
comparing the top 10 up-/down-regulated DEGs by cluster and disease state through
hierarchical clustering, all AD and NS astrocyte subpopulations clustered separately
(Figure 4D-E). Across all clusters, AD astrocytes upregulate transcripts including HPSEZ,
SLC39A11, PFKP, NEAT1, RANBP3L, PLPPI, and PLCGZ2. HPSEZ2, a heparanase
homolog, antagonizes heparanase activity (e.g., degradation of heparan sulfate proteoglycans
in the extracellular matrix — important for removal of AB deposits that can aggregate with
heparan sulfates (Lorente-Gea et al., 2017; O’Callaghan et al., 2008)). Given that HPSE2
acts as a competitive inhibitor of HPSE, increased HPSE2 release by astrocytes may enable
expansion of Ap deposits (Lorente-Gea et al., 2017), and therefore inhibition of astrocyte-
produced HPSE2 may provide therapeutic benefit. NEAT1 (nuclear enriched abundant
transcript 1) is also an enticing target for future investigation as it is upregulated in several
mouse models of AD, including APP/PS1 mice, and is putatively associated with regulation
of PINK1 degradation and impaired mitophagy (Huang et al., 2020). Additionally,

across all clusters, AD astrocytes downregulate transcripts including SLC14A1, Clorf61,
CIRBP, and SAT1. Some of these transcripts have important putative protective roles in
neurodegenerative disease, so their decreased expression levels could be problematic. For
instance, catabolic polyamine enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1)
levels are reduced by treatment with the dimanazene aceturate drug Berenil, which leads

to worsened pathology in patients with Parkinson’s disease (Lewandowski et al., 2010). In
contrast to these pan-astrocytic DEGs, we also identified DEGs that were unique to single
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or combinations of astrocyte clusters (Figure 4F-G) and evaluated these gene sets by GO/
pathway analysis (Figure 4H-I). By doing so, we were able to contextualize transcriptomic
expression differences between AD and NS astrocytes in a cluster-specific manner and
ultimately infer the potential biological role of astrocyte subpopulations in AD.

Astrocytes have both putative gain and loss of function in Alzheimer’s disease

We next evaluated astrocyte cluster-specific ‘GO descriptions’ associated with either
upregulated or downregulated pathways (Figures 5, S9, S10, Table S6). Cluster 1 AD
astrocytes upregulate GO terms associated with cell death and oxidative stress (Figure 5A,
e.g. RGCC, PRDX1, DDIT4). The Regulator of Cell Cycle protein (RGCC), previously
reported as upregulated in AD patients (Counts and Mufson, 2017), may be important for the
re-entry of post-mitotic astrocytes to the cell cycle to enable proliferation around regions of
pathology/degeneration. In comparison, peroxiredoxin (PRDX1), which is increased in AD
patient hippocampi at the protein level (Chang et al., 2014), may have important antioxidant
protection functions and suggests a supportive role of these astrocytes in AD. Cluster 5

AD astrocytes upregulate pathways related to lipid storage and fatty acid oxidation (Figure
5B, e.g. C3, ABCA1, PPARGCI1, ACACB). We, and others, have reported upregulation of
complement component 3 (C3) in a specific sub-state of reactive astrocytes that respond to
inflammation in a range of neurodegenerative diseases (Diaz-Castro et al., 2019; Guttenplan
et al., 2020; Liddelow et al., 2017; Shi et al., 2017) including AD (Liddelow et al., 2017) and
AD mouse models (Lian et al., 2016; Wu et al., 2019). C3* astrocytes are associated with

a neurotoxic function and are only found in regions of neurodegeneration. As such, their
inclusion here is not surprising given we completed pathological analysis and ShRNA-seq on
regions with high pathology load. We performed immunofluorescent quantification of C3*
astrocytes in NS and AD patient samples and report no difference at the protein level (Figure
S11) - though this may be a result of a reported increase in C3* astrocytes with normal
aging (Boisvert et al., 2018; Clarke et al., 2018), broader transcription versus translation
differences between gene expression and protein levels, or the fact that these DEGs are
specific to only a few subtypes of astrocytes in our dataset and therefore quantifying
samples using single markers poses difficulties as it is unclear if these astrocytes belong

to the subtypes under investigation. We also quantified another cluster 5 DEG, SPARC,

and report no difference in the number of SPARC*GFAP™ cells or overall fluorescence
intensity between NS and AD patient cortex (Figure S11) — which given our sequencing

of astrocyte nuclei from prefrontal cortex may also be a result of reported upregulation of
SFPARC in cortical astrocytes with normal aging (Clarke et al., 2018). Clusters 0, 1, 4, and

6 AD astrocytes share upregulation of pathways involved in response to metal ions (Figure
S9A). DEGs associated with these GO terms include features that are cluster-specific (e.g.
PRKN in cluster 0) as well as those that are shared by multiple clusters (e.g., DUSPI in
clusters 4 and 6; MT1G in clusters 0, 1, 4, and 6). Upregulation of DUSPI (dual-specificity
phosphatase, also known as mitogen-activated protein kinase, MKP1) has previously been
reported in models of Parkinson’s disease (Collins et al., 2013) and Huntington’s disease
(Taylor et al., 2013) as well as following ischemic stroke (Boutros et al., 2008; Ramsay et
al., 2019) and seizures (Kedmi and Orr-Urtreger, 2007). DUSPI upregulation is associated
with repression of pro-apoptosis and neuronal cell death pathways in neuroblastoma (Nunes-
Xavier et al., 2019), suggesting another putatively important protective response in astrocyte
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subpopulations in AD. Cluster 4 and 6 AD astrocytes also share upregulation of protein
folding/unfolding pathways (example DEGs include HSPA1B, DNAJBI, ATF3I; Figure
S9A) as well as downregulation of signaling receptor activity and axonal guidance pathways
(e.9. GRIAIL, NLGNI, Figure S9B). Increased expression of activating transcription factor
3 (ATF3) suggests a response to endoplasmic reticulum stress, a pathway that propagates
through the induction of eukaryotic initiation factor 2 (elF2) kinase-associated genes (Jiang
et al., 2004). In addition, since these astrocyte clusters downregulate transcripts critical for
both synaptogenesis and astrocyte morphogenesis (like neuroligin-1, NLGNI), this may
implicate that putative decreased synaptic maintenance functions could be due to stunted/
altered astrocyte territories and limited infiltration of surrounding neuropil (Stogsdill et al.,
2017). The intersection of unfolding protein response (UPR) and synaptic maintenance
mechanisms was recently evaluated by Smith and colleagues who found that chronic
PERK-elFa signaling in astrocytes induced an UPR-associated reactivity state in which
astrocytes lose synaptic support functions and ultimately induce neuron death /in vitroand
in prion infection in mice (Smith et al., 2020). Cluster 3 AD astrocytes downregulate

GO terms associated with angiogenesis regulation and BBB maintenance (Figure 5C). As
a key modulator of vascular permeability and angiogenesis, downregulation of vascular
endothelial growth factor A (VEGFA) may be a protective astrocyte response to limit
BBB breakdown. Administration of human recombinant VEGF465 1 hour post-ischemic
stroke exacerbated BBB leakage in a middle cerebral artery occlusion rat model (Zhang

et al., 2000), and inhibition of VEGFA improved BBB integrity around active lesions

in an experimental autoimmune encephalomyelitis mouse model, decreasing immune cell
infiltration and reducing overall demyelination (Argaw et al., 2012).

Astrocyte subtypes are regionally heterogeneous in human and mouse

Given recent discoveries highlighting astrocytes as increasingly variable across the CNS
(Bayraktar et al., 2020), we next sought to explore whether our heterogeneous astrocyte
subtypes reside in different cortical locations. However, examining regional differences in
these astrocyte subtypes or disease-associated reactive sub-states is a challenging prospect
given many clusters are defined by slight differences in expression of dozens or hundreds

of genes rather than expression of individual DEGs specific to a single cluster, making it
difficult to evaluate these gene signatures using traditional /n s/tu methods. To overcome
these challenges, we leveraged published spatial transcriptomics datasets to explore regional
differences in our astrocyte subtypes in the NS human brain (Maynard et al., 2021) and
compared this with the healthy and inflamed mouse brain (Hasel et al., 2021).

To determine the likely location of each astrocyte population, we created modules of marker
genes from each cluster (Hasel et al., 2021; Tirosh et al., 2016) and examined the expression
of the modules across the human and mouse spatial transcriptomics data (Figure S12A). We
found that all astrocyte cluster modules exhibited significant differences in expression in at
least one cortical layer (Kruskal-Wallis test, p < 0.05); however, there were large differences
in the degree to which cluster gene signatures were region-specific (Figure S12F). Some
cluster modules were strongly enriched in select regions. For example, the Cluster 6 gene
signature is significantly enriched in layer 1 and the white matter (WM) in both human and
mouse brain (Figure 6A). Several Cluster 6 marker genes, like /D1, /D3, and AGT, have
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been previously reported in WM and L1 astrocytes in the mouse (Bayraktar et al., 2020),
supporting this localization. Cluster 8, in contrast, was enriched in upper cortical layers
L1-L3 in both species (Figure 6B), fitting with the recent description of several genes in

this set having elevated expression in upper cortical astrocytes, such as GRM3, SLCOI1C],
and £PHBI (Bayraktar et al., 2020). In aggregate, we found significant heterogeneity in the
cortical regions most enriched for each astrocyte cluster (Figure 6C; Figure S12G). Regional
cluster enrichment was similar between the human and mouse datasets, supporting the
robustness of the gene module approach and suggesting the astrocyte subtypes we identified
may be conserved between species (Figure 6D).

Cluster 3 astrocytes were denoted by several genes previously described as upregulated in
response to acute inflammation. Correspondingly, it was less well defined in the NS human
and healthy mouse brain (Figure S12G) as compared to the inflamed mouse brain where
this gene signature was upregulated across nearly all cortical regions (Figure 6E). This may
indicate that Cluster 3 astrocytes are not region-specific but rather generally associated with
inflammation. To explore whether some of the AD-associated gene expression changes in
each astrocyte subtype may also be associated with inflammation, we next compared the
expression of AD gene modules for each cluster between the healthy and inflamed mouse
brain. We found that the Cluster 5 AD module was upregulated across all cortical layers

in the inflamed mouse brain (Figure 6F), suggesting these AD-associated gene expression
changes may be attributable to inflammatory mechanisms. Notably, AD gene signatures for
nearly all other astrocyte clusters were not significantly enriched in the inflamed mouse
brain relative to the healthy control brain (Figure S12H), indicating non-inflammatory
mechanisms may be responsible for these changes.

Data integration increases astrocyte numbers and enables consistent identification of
unique subpopulations

While we defined 9 transcriptomically distinct astrocyte clusters in our SnRNA-seq dataset
(from now on referred to as astrocyte clusters S0-S8), when reanalyzing published astrocyte
datasets in isolation, we identified 5 clusters (M0-M4) in the Mathys dataset, 5 clusters
(G0-4) in the Grubman dataset, and 7 clusters (Z0-Z6) in the Zhou dataset (Figure 7A-B,
Table S1). With our dataset serving as a reference, we identified one or two previously
defined astrocyte subpopulations in the Mathys and Grubman datasets: S1-like astrocytes
(clusters MO, G1; which are defined by high expression of CS73, FTH1, APOE, and
ITMZ2C) and SO-like astrocytes (cluster GO; which highly expresses CACNBZ, GPC5, and
RORA). In contrast to the Mathys and Grubman datasets, we identified 6 out of 9 astrocyte
subpopulations in the Zhou dataset, which were similar to SO-S5 astrocytes. Like with our
own astrocyte snRNA-seq dataset, we did not identify any singular sample variable that was
exclusively associated with a single astrocyte cluster across all three datasets (Figure S7).
This is in contrast with original findings presented in Grubman et al. (2019), which reported
differences in the proportion of astrocyte clusters between AD and NS patients. However,
we believe these detected differences may stem from lack of sample integration.

Cross-comparing astrocyte subpopulation profiles between datasets is a useful exercise
to evaluate what potential similarities and differences exist. In doing so, we defined 9
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astrocyte subpopulations (referred to as astrocyte clusters Int0-Int8) (Figure 7C) and found
that these astrocyte subpopulations had markedly similar proportions in each dataset (Figure
7C-D, Table S5). This is exciting as it highlights the feasibility of improving subpopulation
identification post-hoc via data integration, thereby overcoming limitations in total number
of astrocytes captured and depth of sequencing levels in individual datasets (Figure S8A).
To determine if all datasets equally contributed to cluster-defining transcript expression,

we evaluated the top five integrated astrocyte cluster-enriched transcripts by cluster and
dataset (Figure 7E). Remarkably, 7 out of 9 integrated clusters were well-defined across

all datasets (clusters Int0-Int6), and their corresponding transcriptomic profiles were similar
to SO-S6 astrocytes. In contrast, cluster Int7 defining features were primarily present in

the Zhou dataset and our dataset, and its profile most resembles astrocyte cluster Int0.
However, this cluster had lower total genes and UMIs identified per nucleus, which is
likely why it was identified as unique. Additionally, cluster Int8 was primarily identified

in Mathys, Grubman, and Zhou datasets, and its profile is defined by higher expression of
oligodendrocyte-associated and mitochondrial transcripts.

This integration method enabled identification of unique astrocyte subpopulations not
previously resolvable in published astrocyte datasets. Next we explored whether AD-
associated astrocyte transcriptional changes originally reported in each study were
resolvable when integrating these datasets with our own (Figure S13A-D). Only the DEGs
highlights in the Zhou et al. dataset were detectable in the integrated dataset (upregulated

— Z5/Int2; downregulated — Z2/Int5; Figure S13D), likely due to increased numbers of
sequenced astrocytes. Other reported disease-associated astrocyte DEGs were not specific to
individual integrated clusters. Conversely, reverse-probing for previously described disease-
associated oligodendrocyte cluster-specific DEGs was more successful (Figure S13E-H).

This highlights we can leverage large astrocyte datasets to better resolve astrocyte
subpopulations in smaller datasets. For example, we were originally unable to detect a

C3" astrocyte subpopulation in both Mathys and Grubman datasets (Figure S11H). In
comparison, we identified C3* astrocytes in both our dataset (astrocyte clusters S3 and

S5) and the Zhou dataset (astrocyte cluster Z2; however, this identification was driven by

a single donor) (Tables S1 and S3). Once all datasets were evaluated together, this C3*
astrocyte subpopulation was uniquely ascribed to astrocyte clusters Int4 and Int5 (Figure
S11G, Table S5), with all datasets contributing to C3 expression in astrocyte cluster Int4 and
our dataset primarily contributing to C3 expression in astrocyte cluster Int5. This difference
may be due to differences in pathological loads of the same samples being sequenced —

as we previously reported C3* astrocytes are only present in high pathology brain regions
(Liddelow et al., 2017). Given the cluster-specific transcriptomic changes we identified
between AD and NS patients, we believe this underscores the importance of resolving these
unique astrocyte subpopulations in the context of health and disease.

DISCUSSION

Here we present a SnRNA-seq dataset and paired pathology assessment resource for both
astrocytes and oligodendrocytes from a well-defined human AD and age-matched NS
patient cohort. This approach enabled us to identify putative biologically important astrocyte
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subpopulations. To localize these transcriptomically distinct populations of astrocytes we
profiled 10X Visium spatial transcriptomics datasets and localized astrocyte subgroups in
both the human and mouse brain. In addition, by leveraging our astrocyte SnRNA-seq
dataset with published astrocyte SnRNA-seq datasets, we identified unique and previously
undefinable astrocyte subpopulations in all datasets.

Integral for the success of this resource, we limited donor genetic variance and characterized
the pathology of donor tissue from the same sample as sequenced material. Given the

spatial heterogeneity that can occur due to differences in disease pathology and progression
in adjacent brain regions (Komarova and Thalhauser, 2011; Murray et al., 2011), we are
enormous proponents of being self-critical about what is driving results throughout analyses
— being particularly wary of outlier donors and/or donor features. For example, after the
first round of analyzing our astrocyte snRNA-seq data, we identified one cluster that was
entirely representative of a single donor (D5). When evaluating this cluster, we found that

it was highly enriched for transcripts associated with neuroinflammation and interferon
gamma signaling (e.g., /FIT-1/2/316, IFI-44/44L/HI; see Figure S3A-E). Classified as a NS
control, we double-checked our pathology characterization, which corroborated this donor
as seemingly NS due to very low pathology load. However, upon further investigation of
clinical evaluations associated with this donor, we discovered D5 had vascular dementia.
This unique astrocyte subpopulation shares remarkable similarity to an interferon responsive
subpopulation of neuroinflammatory reactive astrocytes following acute inflammation in
mice and several neurodegenerative disease models, including AD, that we published
recently (Hasel et al., 2021).

While our dataset and integration with published datasets highlight novel and putative
functional populations of glia in AD, future functional studies are required to evaluate
these subpopulations and their potential for modulation by therapies. How heterogeneity
of astrocyte and oligodendrocyte responses might differ with disease progression or

other patient cohort characteristics, like AD-associated mutations, secondary disease
contraindications, or ethnic backgrounds, is an open question. Future human stem cell
organoid and novel AD mouse models and isolated rodent cells used in in vitro functional
testing will be able to address these questions. We also hope that continued integration of
our data with future snRNA-seq and spatial datasets will add greater insight to these and
many new questions.

STAR METHODS
RESOURCE AVAILABILITY

Lead contact—*For further information and resource/reagent requests, please direct all
inquiries to the Lead Contact, Shane Liddelow (shane.liddelow@nvulangone.org).

Materials availability—This study did not generate any unique reagents.

Data and code availability

. Raw snRNA-seq data generated in this study (including both FASTQ and Cell
Ranger-generated matrix files) are available at GEO (GSE167494). Microscopy
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data reported in this paper are available through the Cell Image Library
(www.cellimagelibrary.org, CIL group#: 54423).

. All code for analysis of original and previously published snRNA-seq, SCRNA-
seq, and spatial transcriptomic datasets are available on the Liddelow Lab
GitHub page: https://github.com/liddelowlab/Sadick_et_al._2022.

. Analyzed snRNA-seq and pseudobulk snRNA-seq data is available on an
open-access, interactive website: www.qliaseq.com. Any additional information
required to reanalyze the data reported in this paper is available from the lead
contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Postmortem human cohorts

Pilot cohort.: Five de-identified human donor prefrontal cortex samples (non-symptomatic
patients (NS), V= 3; AD patients, /= 2) were provided by Rhode Island Hospital’s

Brain Tissue Resource Center (Title 45 CRF Part 46.102(f)) and New York University’s AD
Research Center (ADRC). All tissues were donated with pre-mortem informed consent as
regulated by Institute Review Boards at each respective Institution. In total, this donor cohort
was comprised of one female and four male donors with ages ranging between 60-90 years
of age and APOE genotypes of £2/3, 3/3, and £3/4. Post-mortem intervals ranged between
12-24 hours for all tissues.

Final cohort.: Sixteen de-identified human donor prefrontal cortex samples (NS patients,
N=6; AD patients, /= 10; with an additional V=6 NS and AD patient samples for
immunostaining validation studies) were provided by NYU Grossman School of Medicine’s
Alzheimer’s Disease Research Center and University of California San Diego Shiley-Marcos
ADRC. All tissues were donated with pre-mortem informed consent as regulated by Institute
Review Boards at each respective Institution. In total, this donor cohort was comprised of

7 female and 9 male donors with ages ranging between 56-100 years of age. All donors

had APOE genotypes of £2/3. Postmortem intervals ranged between 5-100 hours across

all tissues. All samples had RNA Integrity Number (RIN) scores greater than 8. Based

on sequencing analysis, two donors (Donors 5 and 9) were removed from final analyses,
resulting in a total of 5 NS and 9 AD patients. Additional donor information is listed in
Table S2 (any patient-specific information that is not included in these de-identified tables
can be obtained from the original brain bank — donor 1Ds provided for coordination).

METHOD DETAILS

Tissue RNA quality verification—In order to ensure high quality outputs from snRNA-
seq experiments, all donor tissue samples were first evaluated for bulk RNA quality, as
quantified by RIN scores. Bulk RNA was extracted from each donor (~15-30 mg of
postmortem frozen human prefrontal cortex tissue) using QlAshredder (QIAGEN, 79656)
and RNeasy Plus Mini kits (QIAGEN, 74136), following manufacturer’s instructions. In
brief, after each tissue was homogenized in lysis buffer using a Wheaton Dounce tissue
grinder (DWK Life Sciences, 357538), samples were transferred to QlAshredder columns,
flowthroughs were processed using RNeasy spin columns, and RNA from each sample was
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eluted in 30 uL DNase- and RNase-free water (Invitrogen, 10977015). RIN scores were then
generated using an Agilent 2100 Bioanalyzer (Table S2).

APOE genotype verification—To confirm APOE genotype identification provided by
NYU and UCSD ADRC:s, all final human cohort samples were validated in-house by PCR
using single nucleotide polymorphism-specific primers for each allele (i.e., €2, €3, 4) and
loading positive control B-actin, as designed by Zhong and colleagues (Zhong et al., 2016).
The HotSHOT method was followed to isolate genomic DNA (gDNA). In brief, 10-30

mg of postmortem frozen human prefrontal cortex tissue per sample was digested in 75

pL of alkaline lysis reagent (25 mM NaOH, 0.2 mM EDTA in DNase- and RNase-free
water) at 98°C in a thermomixer for 1 hour. To stop the reaction, 75 uL of neutralizing
reagent (40 mM Tris-HCI, pH 5.5 in DNase- and RNase-free water) was added to each
sample, and the solution was centrifuged at 4,000 rpm for 3 minutes. The supernatant,

now containing gDNA, was then used in all following PCR reactions. Twenty-five uL PCR
reactions were prepared for each sample and primer combination using GoTaq Green Master
Mix (Promega, M7123) and respective primers (working dilution of 0.25 pM), following
manufacturer’s instructions. PCR products were then run on 1.5% agarose gels (Thermo
Fisher Scientific, 16-500-100) with ethidium bromide (VWR, 470024-556) for 40 minutes
and were imaged using a Bio-Rad Gel Doc system (Figure S1D).

Immunohistochemistry and imaging of postmortem frozen human prefrontal
cortex tissue—To evaluate pathological load in the final donor cohort, ~100 mg of
postmortem frozen human prefrontal cortex tissue per donor was sent to the Neuropathology
Brain Bank and Research CoRE at the Icahn School of Medicine at Mount Sinai for

tissue fixation/embedding, sectioning, and staining. In brief, flash frozen tissues were fixed
in 10% neutral buffered formalin and were then embedded in paraffin. Five um sections
were cut of each sample block for subsequent immunohistochemistry (IHC) assessments
(V= 2-5 sections per stain). Primary antibodies used for IHC stains included: Anti-
amyloid-p (4G8) (BioLegends, 800701, 1:8000), anti-phosphorylated tau (AT8) (Thermo
Fisher Scientific, MN1020, Ser202/Thr205 monoclonal, 1:1000), and anti-glial fibrillary
acidic protein (GFAP) (Ventana, 760-4345, 1:10). Primary antibodies were detected using
DISCOVERY universal secondary biotinylated antibody cocktail (Roche, 760-4205). Roche
ultraView reagents were used in the preparation of all IHCs, and IHC stains were performed
on a Ventana Benchmark XT following manufacturer’s instructions. All IHC slides were
counterstained with Hematoxylin prior to visualization. In addition to IHC stains, donor
samples were prepared with a modified Bielschowksy’s silver stain in order to visualize
diffuse plaques, neuritic plaques, and neurofibrillary tangles. Slides were scanned using

a Leica SCN400 F whole-slide scanner through NYU Langone’s Experimental Pathology
Core. All slides were blinded for imaging and subsequent evaluation/quantification using
QuPath (v0.2.3) software (Bankhead et al., 2017). Raw images are available through the Cell
Image Library (CIL group#: 54423).

Quantification of4G8 andAT8 IHC.: For 4G8 and AT8 quantification, hematoxylin and
DAB stains were separated using the default H-DAB color deconvolution settings for
downstream quantifications. To quantify the area of each tissue section, the region of the

Neuron. Author manuscript; available in PMC 2023 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Sadick et al.

Page 16

section was defined using a custom pixel classifier, classifying pixels at a resolution of 2 um,
with a hematoxylin channel threshold of 0.01 after applying a gaussian filter (sigma = 2). To
quantify amyloid-p plaques, 4G8 staining within each section’s region of interest (ROI) was
quantified using a second custom pixel classifier, which classified pixels at a resolution of
0.25 um, with a DAB stain value greater than 0.2 as 4G8-positive and excluded any positive
signal that was < 5 pm? in area. To quantify neurofibrillary tangles, AT8 staining within
each section’s ROI was quantified using a second custom pixel classifier, which classified
pixels at a resolution of 0.25 um, with a DAB stain value greater than 0.5 as AT8-positive.
Additionally, to count AT8" cell bodies, the same custom pixel classifier was applied with
an additional parameter to remove any AT8* signal that was smaller than 60 pm? or larger
than 1200 um? (completed post-hoc in R). For both 4G8 and AT8 staining, normalized pixel
density (4G8 or AT8 staining/total tissue area) was calculated in R (v4.0.3), and total counts
and areas of each feature (i.e., 4G8* plaques and AT8* cell bodies) were also tallied. All raw
quantifications for 4G8 and AT8 are provided in Table S2.

Quantification of GFAP IHC.: For GFAP quantification, hematoxylin and DAB stains
were first separated using the default H-DAB color deconvolution settings to separate stains
for downstream quantification. To quantify the area of each tissue section, the region of

the section was defined using a custom pixel classifier, classifying pixels at a resolution of
2 um, with a value greater than or equal to 215 after applying a gaussian filter (sigma =
1.5). Continuous regions of pixels exceeding the threshold were classified as belonging to
the tissue section, after excluding small regions less than 10,000 um? in area which were
detached from the majority of the section. Densely stained regions of artifact on the edges
of the sections, if present, were manually selected using the brush tool and excluded from
the final ROI defining the section. Next, the total area of GFAP staining within each section
was quantified. The area of GFAP staining within each section’s ROI was then quantified
using a second custom pixel classifier, which classified pixels at a resolution of 0.25 um,
with a DAB stain value greater than 0.25 as GFAP-positive. To normalize across sections of
different areas, GFAP staining was reported as the proportion of the pixels in the section’s
ROI that were GFAP*. The average proportion of pixels that were GFAP* for the sections
from each donor was then calculated using R.

In addition to normalized pixel density, the average area of the astrocytes in each section was
quantified using QuPath, Fiji (Schindelin et al., 2012), and R. First, quantifiable astrocytes
in each section were identified manually as GFAP* cells with an identifiable cell body

and several processes that could be distinguished from the processes of adjacent astrocytes.
All quantifiable astrocytes from a given section were numbered, and a maximum of 8
astrocytes from each section were randomly selected for quantification using R. In sections
from two (out of 16) donors (specifically D2 and D6), no quantifiable astrocytes could

be identified, and thus these donors were excluded from further analysis. Each randomly
chosen astrocyte was then analyzed using Fiji. ROls were manually drawn around each
astrocyte using the freehand tool such that the GFAP staining contained within each ROI
appeared to correspond to only the chosen astrocyte. The region outside the ROI was then
excluded, and the included astrocyte was then segmented via manual thresholding using the
default method. Then, the area of the segmented astrocyte was measured. The average area
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of the astrocytes from each donor was then calculated using R. All raw quantifications for
GFAP are provided in Table S2.

Semi-quantification of Bielschowsky’s silver stain.: At 15X magnification, 5 ROIs were
drawn randomly in each tissue section for manual assessment. Diffuse plaques, neuritic
plaques, and neurofibrillary tangles were manually counted in each ROI. Based on total
pathology feature counts, samples were given broad descriptors indicating none, low,
moderate, or severe pathology. Raw pathological feature counts and overall descriptors are
listed in Table S2.

Validation of transcriptomic DEGs using antibody staining.: Formalin-Fixed Paraffin-
Embedded (FFPE) human brain tissue was sectioned to 5 pm and mounted on microscope
slides. The sections were dewaxed at 60 °C for 30 min and then transferred into HistoChoice
(Sigma) for 2 washes for 5 min each. Sections were then moved into 100%, 95% and

70% ethanol for rehydration followed by three washes in PBS. For C3 staining, sections
underwent antigen retrieval in M6 buffer (2.1% citric acid monohydrate, 2.94% tri-sodium
citrate in dH,0, pH 6) at 95 °C for 10 min.

Sections were then blocked in blocking buffer containing 10% normal goat serum (NGS),
0.4% Triton X-100 (Sigma) in PBS for 1h at room temperature. The following primary
antibodies were used: C3d (Dako A0063, rabbit 1:600), GFAP (Dako 20034, rabbit,
1:500), GFAP (Sigma G3893, mouse, 1:400) and SPARC (R&D MAB941, mouse, 25
ug/mL). Sections were incubated in the primary antibodies over night at 4 °C in blocking
buffer followed by three washes in PBS. Sections were then incubated in the following
secondary antibodies: goat anti-rabbit Alexa 594 (Invitrogen) and goat anti-mouse Alexa
488 (Abeam) at room temperature for 1h. Sections were then washed in PBS, incubated in
TrueBlack (biotium) for 1 min, counter-stained with DAPI and mounted using Fluoromount-
G (SouthernBiotech). All images were acquired on a Keyence BZ-X710 using a 20x
objective and processed in Fiji.

Isolation of nuclei from postmortem frozen human prefrontal cortex tissue—
The protocol followed to isolate nuclei from postmortem frozen human brain tissue was
based off of a previously published study (Hodge et al., 2019). Processing of tissue was
completed on ice or at 4°C for the entirety of the protocol. In brief, ~100 mg of postmortem
frozen human prefrontal cortex per donor was homogenized in 2 mL homogenization buffer
(10 mM Tris pH 8 (Invitrogen, Am9010), 250 mM sucrose (Invitrogen, Am9010), 25 mM
KCI (Invitrogen, Am9010), 5 mM MgClI, (Invitrogen, Am9010), 0.1% Triton X100 (Sigma,
T8787), 1%RNasin Plus (Promega, N2615), 1X Protease inhibitor (Promega, G6521), and
0.1 mM DTT (Sigma, D9779) in DNase- and RNase-free water) using a Wheaton Dounce
tissue grinder (10 strokes with loose pestle, followed by 10 strokes with the tight pestle).
Then, the homogenized tissue was filtered through 30 um pre-separation filters (Miltenyi,
130-041-407) to remove major debris. Samples were then centrifuged at 900 g for 10
minutes at 4°C, and resulting nuclei pellet was resuspended in blocking buffer in preparation
for immunolabel-based sorting.
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Fluorescence-activated cell sorting for astrocytic nuclei enrichment—All
procedures were completed on ice or at 4°C, and centrifugations were completed at 400

g for 5 minutes at 4°C unless otherwise specified. Post-isolation, nuclei suspensions were
incubated in blocking buffer (0.8% reagent-grade bovine serum albumin (BSA,; Proliant
Biologicals, 68700), 0.5% RNasin Plus, and 10% goat serum (MP Biomedicals, 191356)

in 1X phosphate buffer saline (PBS; VWR, 16750-102)) for 20 minutes. Each sample was
split into aliquots in order to prepare all respective controls for sorting, including unstained,
secondary antibody-only, and single antibody-labeled controls. All antibody dilutions were
prepared in fluorescence-activated cell sorting (FACS) buffer (0.8% reagent-grade BSA and
0.5% RNasin Plus in 1X PBS). Samples were then pelleted, resuspended in either FACS
buffer or diluted primary antibodies, and incubated on ice for 20 minutes in the dark.
Post-incubation, samples were pelleted and washed with FACS buffer prior to resuspension
in FACS buffer or diluted secondary antibodies. Finally, samples were pelleted and washed
with FACS buffer prior to resuspension in FACS buffer for sorting. Immediately prior

to sorting, samples were spiked with 4”,6 Diamidino 2 Phenylindole, Dihydrochloride
(DAPI; Thermo Fisher Scientific, D1306, 1:10,000) in order to better visualize nuclei. All
samples were sorted using a MoFlo XDP sorter with a 100 pm nozzle at 4°C. Unstained,
isotype control, and single antibody-labeled controls were used to established gating scheme
for each donor (see Figure S2 for representative gating schemes). All sorting data was
visualized and quantified using FlowJo (v10.7.1).

S0X9 sorts.: Primary antibodies used for SOX9-based sorts included: Anti-SOX9 (Abeam,
ab185966, 1:100) and rabbit 1gG isotype control (Abeam, ab172730, 1:200). Primary
antibodies were detected with goat anti-rabbit 1gG (H&L) secondary antibody conjugated
to Alexa Fluor 594 (Thermo Fisher Scientific, R37117, 2 drops/mL). Gates were set to
collect DAPI* and SOX9* singlet events, and on average, ~75,000 DAPP/SOX9* nuclei
were captured per pilot donor (see Table S3 for all SOX9 sorting outputs).

LHX2*/NeuN~ sorts.: Primary antibodies used for LHX2*/NeuN~-based sorts included:
Anti-LIM Homeobox 2 LHX2 (EMD Millipore, AB5756, 1:500), anti-NeuN (Millipore
Sigma, MAB377, 1:2500), rabbit IgG isotype control (Abcam, ab172730, 1:1000), mouse
IgG1 isotype control (Millipore Sigma, MABCO002, 1:1250). Primary antibodies were
detected with goat anti-rabbit 1gG (H&L) secondary antibody conjugated to Alexa Fluor
488 (Invitrogen, A11034, 1:4,000) or goat anti-mouse 1gG (H&L) secondary antibody
conjugated to Alexa Fluor 647 (Invitrogen, A21235, 1:7,000), respectively. Gates were set to
collect DAPI*, LHX2*, and NeuN~ singlet events, and on average, ~88,000 DAPI*/LHX2*/
NeuN~ nuclei were captured per donor (see Table S3 for all LHX2+/NeuN~sorting outputs).

Single-nuclei RNA sequencing pipeline—After sorting, collected nuclei were pelleted
at 900 g for 10 minutes at 4°C, were resuspended in ~50 pL of 0.04% BSA in PBS, and
counted using a hemocytometer. Based on nuclei counts, samples were then resuspended in
additional 0.04% BSA in PBS buffer in order that nuclei concentrations were ideal for 10x
Chromium loading (between 100-1,700 nuclei/uL). Nuclei were processed using the Single
Cell 3’ Gene Expression kit v3 (10x Chromium, 1000076) according to manufacturer’s
instructions. In brief, 4,800-16,000 nuclei per sample were loaded onto Single Cell Chips B
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in order to recover as many nuclei as possible (targeting 3,000-10,000 nuclei per sample),
while limiting potential for doublets. Using a Chromium Controller, Gel Bead-In Emulsions
were generated, and samples were subsequently processed to isolate and amplify cDNA

and ultimately construct libraries. Quality and concentration of cDNA was evaluated on an
Agilent 2100 Bioanalyzer. Quality and concentration of libraries were evaluated by gPCR
and on an Agilent 2200 TapeStation, and libraries were sequenced an Illumina NovaSeq
6000 through NYU Langone’s Genomic Technology Core. Basecalling was completed using
Illumina NovaSeq 6000 RTA v3.4.4 software, and BCL base call files were converted to
FASTQ files using bcl2fastq Conversion software (v2.20). Using Cell Ranger software suite
(v4.0.0) (1 OX Genomics), FASTQ files were aligned to a premRNA-modified GRCh38
human reference genome (modification steps provided by 10x Genomics), and gene-barcode
count matrices were generated for all demultiplexed samples.

Single-nuclei RNA sequencing data analysis—The majority of code used to evaluate
snRNA-seq data is based off of analysis completed in the original muscatR package
vignette (Crowell et al., 2019). This process was repeated separately for the SOX9-sorted
pilot donor cohort as well as for iterations of LHX2*/NeuN~-sorted donor cohort. Exact
code used to analyze each dataset analysis is provided on the Liddelow Lab GitHub page:
hhttps://github.com/liddelowlab/Sadick_et_al.2022.

Quiality control.: All sample raw gene-barcode count matrices were converted into a
SingleCellExperiment (SCE) object in R (v3.6.1 - 4.0.3) for initial quality control filtering
(Amezquita et al., 2020). Undetected genes were removed based on the total summed counts
per gene. Doublets were removed using scds, in which a threshold was applied assuming
that 1% of every 1,000 nuclei captured was a doublet. Sample-specific outliers were
identified using scater.:isOutlier, and nuclei were removed if total counts, total features,
and/or percentage of mitochondrial genes was greater than 2.5 median absolute deviations
away from the sample median. Finally, genes were only kept if they had a count of at least
one in more than 20 nuclei. After filtering SOX9-sorted donor pilot data, a total of 18,991
nuclei remained across 2 NS and 3 AD patients, with a median of 8,885 counts and 3,406
features per nucleus. After filtering LHX2*/NeuN~-sorted donor data (final donor cohort),
a total of 80,247 nuclei remained across 5 NS and 9 AD patients, with a median of 6,714
counts and 2,929 features per nucleus.

Normalization, integration, and dimension reduction.: Functions in the Seurat (v3.2.2)
package were used for the following analyses (Stuart et al., 2019). Data were log
normalized, and the top 2,000 variable features were identified on a per sample basis.
Samples were then anchored and integrated using Canonical Correlation Analysis (dims =
30). After scaling the data, linear and non-linear dimension reduction was performed by
Principle Component Analysis of variable features and t-Distributed Stochastic Neighbor
Embedding (tSNE) analysis, respectively, using the top 30 principle components. For each
dataset, the number of dimensions used for dimensional reduction analyses was determined
based on the inflection point on an Elbow plot.
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Clustering, annotation, and marker identification.: Clustering was calculated using

the functions FindNeighbors and FindClusters, with a range in resolution between 0.1-1.
Ultimately, for each dataset, a resolution of 0.1 was used for initial clustering. To identify
major cell types present, the FindAllMarkers function (log, fold change > 0.25, using
Wilcoxon Rank Sum test, adjusted p-value < 0.05 using the Bonferroni correction) was
used to determine unique and/or highly enriched differentially expressed genes (DEGS) in
one cluster compared to all other clusters. These cluster-specific features were then queried
against a set of canonical cell type-specific markers from the literature. Data were visualized
using Seurat package functions, including DimPlot, FeaturePlot, DotPlot, VInPlot, and
DoHeatmap. For SOX9-positive sorted data, only 6.6% of nuclei were astrocytes, while
the vast majority of nuclei (72.2%) were neurons. For LHX2*/NeuN~-based sorted data,
astrocytes made up the largest captured nuclei population (51.5%), with the second largest
captured nuclei population as oligodendrocytes (29.7%). Please refer to Table S3 for cell
type captures and DEGs identified for each sorting strategy.

Cell type-specific sub-clustering.: Using the function Seurat.:subset, astrocyte and
oligodendrocyte nuclei were reanalyzed in isolation. For SOX9-based sorts, 1,832 astrocytes
were analyzed. For LHX2*/NeuN~-based sorts (final cohort), 41,340 astrocytes and 23,840
oligodendrocytes were analyzed, respectively. Astrocyte- and oligodendrocyte-specific
analyses were completed as described above (from identifying a new set of top 2,000
variable features through clustering and marker identification). Please note that two rounds
of subsetting and analysis were required for LHX2*/NeuN~-sorted astrocytes in order to
remove contaminating, non-astrocytic nuclei. Please see to Table S3 for the number of
principle components and resolutions used in each analysis as well as astrocyte- and
oligodendrocyte-specific DEGs. Data were visualized using Seurat package functions (as
listed above). Additionally, DEGs for LHX2*/NeuN~-sorted astrocytes and oligodendrocytes
were evaluated by pathway analysis. In brief, cluster-specific astrocyte or oligodendrocyte
DEG gene IDs were converted to ENSEMBL 1Ds (using AnnotationDbi package
org.Hs.eg.db::maplDs) and then to Entrez IDs (using biomaRt..getBM). For each individual
cluster in each cell type, Entrez IDs were analyzed using clusterProfiler.:enrichGO, and
gene ontology (GO) terms were identified (adjusted p-values < 0.05 using the Benjamini-
Hochberg method, false discovery rate < 0.1) (Table S3).

Cluster-specific differential gene expression and pathway analysis—Differential
gene expression and pathway analysis was completed for LHX2*/NeuN~-sorted astrocyte
and oligodendrocyte clusters in parallel. For each cluster in each cell type, these analyses
were completed based on disease state (i.e., comparing all NS donors with AD donors).
Data was read in using the Seurat.:subset function. The subsetted Sewrat object was then
converted into a SCE object for additional threshold filtering. Lowly expressed genes were
removed, as identified by having fewer than 5 transcripts counted in less than 5 cells. Then,
the top 2000 variable genes were identified using scater.:modelGeneVar and getTopHVG
functions, and the zinbwave function was run using observational weights generated for
each gene (K =0, epsilon = 1e12) (Risso et al., 2018). The remaining DEG analysis was
completed using the edgeR package (Robinson et al., 2010) by calculating normalized
factors, estimating dispersion, model fitting using glmFit, comparing disease state (i.e., NS
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versus AD), and passing zinbwave-generated observational weights to the gimWeightedF
function. Genes were identified as DEGs if they had an adjusted p-value < 0.05 using the
Benjamini-Hochberg method and had a log, fold change > +0.25. For pathway analysis,

all DEGs were converted to their ENSEMBL IDs and subsequently their Entrez IDs (as
described above) prior to being separated into upregulated and downregulated lists with
their accompanying log, fold changes. Each list was then analyzed separately to determine
upregulated and downregulated GO terms (as described above). DEGs were visualized using
ComplexHeatmap::Heatmap function. Upregulated and downregulated DEGs as well as GO
terms were compared across clusters and were visualized using UpSetR package. Lists of
DEGs and pathways are provided in Tables S4 and S5.

Reanalysis of previously published snRNA-seq and scRNA-seq datasets—We
obtained FASTQ files from previously published sSnRNA-seq (Grubman et al., 2019; Mathys
etal., 2019; Zhou et al., 2020) datasets in order that all datasets were analyzed under
identical protocols to our own generated data, as described above beginning at alignment
using the Cell Ranger software suite (v4.0.0). All sSnRNA-seq datasets were aligned to

the premRNA-modified GRCh38 human reference genome. As described above, each
dataset was processed for quality control, normalization, anchoring, integration, dimension
reduction, clustering, annotation, and marker identification (Figure S6). For each dataset,
astrocyte and oligodendrocyte nuclei were subsetted as unique Seurat objects for reanalysis
in isolation (Figures 3 and 7). For Mathys astrocyte and oligodendrocyte subsetted analyses,
multiple donors were removed because their nuclei yields were lower than the number of
principle components used to evaluate the data (donors removed are listed in Table S1).
Please note that reference-based integration was used for all objects in Mathys and Zhou
datasets due to memory constraints (parameters listed in Table S1). Additionally, please note
that two rounds of subsetting and analysis were required for Zhou astrocytes in order to
remove contaminating, non-astrocytic nuclei/cells. Principle components/resolution used for
analyses, cell type captures, and DEGs identified per cluster per dataset are listed in Table
S1.

Cell type-specific multi-dataset analyses—Once only astrocyte and oligodendrocyte
Seurat objects were created for each dataset, we merged either all astrocyte-or
oligodendrocyte-specific objects to create two multi-dataset objects: (1) astrocyte nuclei
from Mathys, Grubman, Zhou, and our LHX2*/NeuN~-sorted snRNA-seq datasets (Figure
7) and (2) oligodendrocyte nuclei from Mathys, Grubman, Zhou, and our LHX2*/NeuN~-
sorted SnRNA-seq datasets (Figure 3). Once individual dataset cell type-specific Seurat
objects were merged using the function Seurat.:merge, multi-dataset objects were processed
as described above (from identifying a new set of top 2,000 variable features through
clustering and marker identification). Reference-based integration was used for astrocyte and
oligodendrocyte nuclei sSnRNAseq merged objects due to memory constraints (parameters
listed in Table S5). Please refer to Table S5 for multi-dataset cell type-specific cluster yields
and DEGs identified.

Analysis of previously published spatial transcriptomic data—Code used to
analyze the spatial localization of astrocyte gene signatures is available on the Liddelow
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Lab GitHub page: https://github.com/liddelowlab/Sadick_et_al.2022. All statistics, plots,
and analysis for this portion of the manuscript were created with R (v4.1.1).

Datasets.: Previously published 10X Visium spatial transcriptomics data from twelve
pathology-free human dorsolateral prefrontal cortex (DLPFC)88 samples (3 donors)

was obtained from the Globus repository (available at http://research.libd.org/globus/
jhpce_HumanPilot10x/index.html) in the form of filtered feature-barcode matrices,
corresponding TIFF images, and spot coordinate TSV files. We also utilized our lab’s
recently published 10X Visium data from whole hemisphere saline or LPS-injected mice (n
= 3 per condition), referred to in this manuscript as “healthy”/“control” and “inflamed” (data
available at the Gene Expression Omnibus repository: Series GSE165098).25 These mice
were injected intraperitoneally with saline or 5 mg/kg lipopolysaccharide (LPS), and tissue
was collected 24 hours post-injection.2

Creating astrocyte cluster gene modules.: We defined gene signatures for each astrocyte
cluster using positive marker genes (log2-fold change > 0.3, adjusted p-value < 0.05) from
our earlier differential expression testing (see Cluster-specific differential gene expression
and pathway analysis and Table S3). To explore expression of these gene signatures in the
mouse data as well, we created mouse gene modules comprised of one-to-one orthologs

of the human module genes, which we identified using the biomaRtR package (v2.48.3)
(Durinck et al., 2009). These mouse gene modules were then filtered to remove genes

not expressed in the spatial transcriptomics data. The resultant modules of genes for each
astrocyte cluster are available in Table S7. We also created mouse modules using these same
methods for genes upregulated in each astrocyte cluster in AD (log2-fold change > 0.5,
adjusted p-value < 0.05) using our differential expression testing results (see Cluster-specific
differential gene expression and pathway analysis and Table S6). The genes comprising
these AD gene modules are also available in Table S7.

Regional annotation.: Human: The spots in the human spatial transcriptomics dataset were
previously manually annotated with their cortical layer locations by Maynard et al.88, and
these annotations were retrieved using the spatialL/1BD R package (v1.4.0) (Pardo et al.,
2021). Layers 2 and 3 were combined and labeled layer 2/3 to aide in comparison to the
mouse dataset. Mouse: To first identify spots as white matter or gray matter, we assigned
white matter scores to individual spots on the basis of expression of white matter/myelin
genes (Mbp, Mobp, Plp1, Mag, Mog, and Mal) using the AddModuleScore function in
Seurat (v4.0.5) (Hao et al., 2021) (Figure S12C, see Differential Enrichment Testing for
detailed explanation of module score calculations). Initial classification of spots as white
matter or gray matter was then determined by thresholding the white matter module score;
spots with a module score greater than the 78.75th percentile were classified as white
matter, and spots below this threshold were classified as gray matter. This threshold was
chosen based on agreement with anatomy apparent from the H&E staining. Individual
spot classification was then manually adjusted to correct mistaken assignments (e.g. a spot
clearly in the corpus callosum but assigned as gray matter). Gray matter spots were then
labeled with their cortical layer location based on gene expression. To this end, spot-level
gene expression data was log-normalized. Then top 3,000 highly variable genes most
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common across the six samples were identified using the FindintegrationFeatures function.
Technical variables (the number of genes detected per spot, the number of UMIs per spot,
and the percentage of UMIs mapping to the mitochondrial genome per spot) were regressed
against each gene in the normalized feature-barcode matrix, and the residuals were scaled
and centered. PCA was then performed on the scaled data, using the previously identified
highly variable genes. The resulting PCA embeddings were then iteratively corrected to
remove the effects of sample identity and condition (LPS or saline) using the Harmony

R package (v0.1.0) (Korsunsky et al., 2019). UMAP dimensionality reduction was then
performed using the first 15 principal components from the integrated, corrected PCA
embeddings. A shared nearest-neighbor graph was constructed using the FindNeighbors
function, and unbiased Louvain clustering was performed using the FindClusters function
with a resolution parameter of 0.6. Several resolution parameters were examined, and 0.6
was selected because the resultant clusters appeared to map most closely to the layers of
the cortex. Four clusters appearing largely in the retrosplenial and somatomotor areas were
subsetted, re-integrated, and sub-clustered using identical methods to capture the cortical
layers in those regions (with 2,000 variable features, 20 principal components for UMAP
dimensionality reduction and clustering, and a clustering resolution parameter of 0.5). In
aggregate, clustering and sub-clustering the cortical mouse Visium spots resulted in 11
clusters, which were each largely contained within one cortical layer. Each cluster was then
assigned to a cortical layer — L1, L2/3, L4, L5, or L6 — based on its position in the Visium
sections and its average expression of canonical markers. Finally, the individual layer labels
were adjusted for individual outlier spots to match their true anatomical locations. Final
cortical layer groups were generally well separated on the basis of gene expression (Figure
S12D), validating their annotations. To verify that our mouse cortical layers were well
labeled and comparable to the previously annotated human Visium data, we next sought

to compare the cross-species similarity of each cortical layer. To this end, we z-scored the
average expression of all one-to-one orthologous genes that were highly variable (top 3,000
genes) in both the human and mouse Visium datasets across the cortical layers in each
dataset (in total, 707 genes). We then calculated the Spearman correlation coefficients for all
layer combinations between the datasets. This revealed each cortical layer in a given species
was most highly correlated with the same cortical layer in the corresponding species (Figure
S12E), supporting the validity of our mouse cortical layer annotations and cross-species
comparison of the spatial transcriptomics datasets.

Differential Enrichment Testing.: To quantify enrichment of astrocyte subtype and reactive
sub-state gene signatures across cortical regions, we first calculated expression scores

for each gene module within each spatial transcriptomics spot using Seuratand the
AddModuleScore function8%25, In summary, module scores reflect the average expression
of the gene set subtracted by expression of a control gene set 100 times larger than the

gene module, where each gene in the module is matched with 100 genes in the control

gene set with similar expression levels 8. Subtraction of the control gene set allows

for standardization of module scores across spots and Visium sections despite technical
variation. Most astrocyte cluster gene modules contained dozens or even hundreds of genes,
making these module scores robust to gene drop out and technical variation. To test whether
each cluster gene module differed in enrichment across cortical regions, we pooled all
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sections of a given species together and compared gene module scores between spots of each
cortical region (L1-L6 and WM) using a Kruskal-Wallis test with a Bonferroni correction for
multiple comparisons. All cluster gene modules exhibited statistically significant differences
(adjusted p-value < 0.05; see Table S7 for test statistics and p-values). To compare how
strongly different cluster modules varied in score across the cortex in Figure S12F, Kruskal-
Wallis H test statistics were z-scored within each species and a heatmap was created using
the ComplexHeatmap R package (v2.8.0) (Gu et al., 2016). To test whether each gene
module was enriched (more highly expressed) or de-enriched (less highly expressed) in a
given cortical region compared to the rest of the cortex, we next performed Wilcoxon rank
sum tests with Bonferroni multiple comparisons corrections comparing the spots from a
given region to all other spots (pooling all other cortical regions; see Table S7 for p-values
and test statistics). For Figure 6A-B & Figure S12G, + or — symbol indicates the gene
module is significantly enriched or de-enriched, respectively, in a given cortical region
compared to the rest of the cortex (adjusted p-value < 0.05). The sign of the symbol
corresponds to the sign (positive or negative) of the median of the estimated difference
between a spot from the cortex region in question compared to spots from the rest of the
cortex (i.e. the median location shift). We next tested whether cluster gene modules were
upregulated between spots from the inflamed (LPS-injected) mouse brain compared to the
control (saline-injected) brain using Wilcoxon rank sum tests with Bonferonni corrections
(Table S7). Lastly, we examined whether AD gene modules for each astrocyte subtype were
upregulated in spots from the inflamed mouse brain compared to controls using Wilcoxon
rank sum tests with Bonferonni corrections (Table S7). For Figure 6E-F and Figure S12H, +
or — symbols indicate the gene module is significantly enriched or de-enriched, respectively,
in spatial transcriptomics spots from the LPS-injected samples compared to spots from the
saline-injected samples within the indicated cortical region (adjusted p-value < 0.05). For
all box and density plots in Figure 6 and Figure S12: transecting line denotes the median;
notches denote the 95% confidence interval surrounding the median; and whiskers denote
1.5x the interquartile range. All box and density plots were created with the ggp/ot2 (v3.3.5)
and ggadist (v3.0.1) (Kay, 2021) packages in R.

Visualization.: Visualization of astrocyte cluster gene signatures across representative
Visium sections is challenging given sparse expression, the prevalence of gene drop out

in spatial transcriptomics data, and the size of Visium spots (which often capture several
cells within each spot). To overcome these difficulties, we utilized a recent Bayesian
method of spatial gene expression resolution enhancement 23, Individual samples were
first normalized with Seurat (Hafemeister and Satija, 2019),, then preprocessing, PCA,
and spatial clustering were performed using the BayesSpace R package (v1.2.1)%3. For the
human samples, seven clusters (chosen based on the elbow in a log-likelihood plot) and
15 principal components (chosen based on the elbow in a plot of the standard deviation of
each principal component from the PCA results) were used for spatial clustering. For the
mouse samples, 20 principal components and 17-18 clusters were used. Spatial clustering
was then enhanced to sub-spot resolution using the spatialEnhance function with default
parameters. Spatial gene expression for all genes was then enhanced to sub-spot resolution
using the enhancefeatures function, which fits a linear model for each gene with the top
principal components from each spot and predicts sub-spot expression using this model .93
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We then calculated enrichment scores for each sub-spot using the above module score
method (see Differential Enrichment Testing) with the same gene modules (see Creating
astrocyte cluster gene modules) using the resolution-enhanced expression data. Enrichment
scores were then plotted with a minimum-maximum scale on representative sections. We
found calculating enrichment scores using these resolution enhancement methods aided

in recognition of spatial patterns and were generally representative of spot-level module
score patterns within each cortical region (Figure S12B). All differential enrichment testing
and statistical tests were performed using original, spot-level gene expression and module
scores; Bayesian resolution-enhanced gene expression and enrichment scores were only used
for visualization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics—Throughout this manuscript, quantified cell/nuclei outputs are displayed as the
arithmetic mean (z s.d., if applicable), and plots were generated using the ggp/ot2 and
ggpubrpackages in R and/or using GraphPad Prism (v9.0.0) unless otherwise noted. Please
note that all quantified raw values for sorting yields, IHC measurements, SnRNA-seq and
spatial transcriptomics analyses are also available in Tables S1-7.

Wilcox test.: For Figure 1A, statistical tests used were two-tailed Wilcoxon signed-rank
tests (a = 0.05). All quantification and analysis were performed blinded to the condition of
the donors.

Randomization.: No randomization was used in the analysis of SnRNA-seq or IHC imaging
data.

Sample size estimation.: No methods were used to predetermine the sample size used in
this study. However, our donor cohort is similar in size to published works (Grubman et al.,
2019; Leng et al., 2021).

ADDITIONAL RESOURCES

The following datasets were produced during this study and are available for download and
further analysis.

Cell Image Library: http://cellimagelibrarv.org/groups/54423
All pathology imaging data are available through the Cell Image Library repository.

Raw sequencing data: https://www.ncbi.nlm.nih.gov/geo/guery/acc.cgi?
acc=GSE167494

Raw single nuclei RNA sequencing (SnRNA-seq) data generated in this study (including
both FASTQ and Cell Ranger-generated matrix files) are available at GEO (Gene Expression
Omnibus) under accession number GSE167494.

Analyzed snRNA-seq data (pseudobulk): www.gliaseg.com
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We created an open-access, interactive website as a resource to share and easily navigate our
analyzed snRNA-seq data for astrocytes and oligodendrocytes.

GitHub: https://github.com/liddelowlab/Sadick_et_al. 2022

All code for analysis of original and previously published snRNA-seq and spatial
transcriptomic datasets are available on the Liddelow Lab GitHub page.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Astrocytes and oligodendrocytes have altered and heterogeneous
transcriptomes in AD

Dataset integration improves glia clustering and suggests putative altered
function

‘reactive’ sub-states of glia are likely spatially restricted

Astrocyte inflammation responses mimic some AD-associated gene
expression changes
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Figure 1. Defining a well-controlled patient cohort is key for defining AD-associated gene
expression profiles.
(A) Representative micrographs and corresponding quantification in non-symptomatic (NS)

and AD donors of immunohistochemistry for amyloid-p plaques (4G8), phosphorylated
tau (AT8), and GFAP. Scale bars are 50 um. Raw quantification values are displayed as
well as mean + s.d. (B) Workflow for donor quality control and astrocyte enrichment
strategy. (C) tSNE plot of total nuclei (N = 80,247) and (D) corresponding average scaled
expression heatmap of cell type-specific transcripts by cluster. (E) Cell type proportions
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of total nuclei captured, (F) total numbers of astrocytes and oligodendrocytes captured

split by disease state, and (G) average number of astrocytes and oligodendrocytes captured
per donor split by disease state: NS (blue), AD (red). Abbreviations: AD, Alzheimer’s
disease; Astro., astrocyte; Endo., endothelial cell; FACS, fluorescence-activated cell sorting;
GFAP, glial fibrillary acidic protein; IHC, immunohistochemistry; Micro., microglia; NS,
non-symptomatic; Oligo., oligodendrocyte; OPC, oligodendrocyte precursor cell; RIN, RNA
Integrity Number. See also Figures S1-S3.
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Figure 2. Oligodendrocytes are minimally heterogeneous but have cluster-specific transcriptomic

changes in Alzheimer’s disease.

(A) tSNE plot of oligodendrocyte nuclei (N = 23,840) and (B) corresponding average

scaled expression heatmap of top 5 enriched/unique transcripts per cluster. (C) Proportion

of oligodendrocyte clusters identified in each donor. Additional donor metavariables
highlighted include disease state (blue, NS; red, AD) and sex (green, female; yellow,

male). Average scaled expression of the top 10 (D) upregulated and (E) downregulated
disease-specific differentially expressed genes (DEGs) split by cluster. (F-1) UpSetR plots
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highlighting upregulated and downregulated DEGs or GO terms that are unique to or shared
between clusters. Bars show number of DEGs per cluster (colored at left). Lines between
cluster highlight shared DEGs. Abbreviations: AD, Alzheimer’s disease; D#, donor number;
DEG, differentially expressed gene; Dis., disease; F, female; GO, gene ontology; M, male;
NS, non-symptomatic. See also Figures S4, S5.
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Integration of oligodendrocytes from multiple datasets reveals consistent identification of
oligodendrocyte subtypes.

(A) tSNE plots of reanalyzed oligodendrocytes from published snRNA-seq datasets
(Mathys, N = 18,229; Grubman, N = 7,604; Zhou, N = 34,949) and (B) their corresponding
average scaled expression heatmap of the top 5 cluster-enriched/unique transcripts per
cluster for each dataset. (C) tSNE plots of integrated oligodendrocytes (N = 84,622)
visualized by cluster (/ef?) and by dataset (rig/hf). (D) Proportion of integrated clusters

split by dataset. (E) Average scaled expression heatmap of top 5 integrated oligodendrocyte
cluster-enriched/unique transcripts by cluster and by dataset. See also Figures S6-S8, S13.
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Figure 4. Astrocytes are heterogeneous and have both common and cluster-specific
transcriptomic changes in Alzheimer’s disease.

(A) tSNE plot of astrocyte nuclei (N = 41,071) and (B) corresponding average scaled
expression heatmap of top 5 enriched/unique transcripts per cluster. (C) Proportion of
astrocyte clusters identified in each donor. Additional donor metavariables highlighted
include disease state (blue, NS donors; red, AD donors) and sex (green, female; yellow,
male). Average scaled expression of the top 10 (D) upregulated and (E) downregulated
disease-specific differentially expressed genes (DEGS) split by cluster. (F-1) UpSetR plots
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highlighting upregulated and downregulated DEGs or GO terms that are unique to or

shared between clusters. Abbreviations: AD, Alzheimer’s disease; D#, donor number; DEG,
differentially expressed gene; Dis., disease; F, female; GO, gene ontology; M, male; NS,
non-symptomatic. See also Figure S11.
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Figure 5. Astrocyte transcriptomic profiles suggest cluster-specific gain and loss of functional
changes in Alzheimer’s disease.

tSNE plots highlighting several clusters of interest, unique/shared GO terms, and
differentially expressed genes (DEGs) associated with GO terms. GO-associated DEGs are
presented as average scaled expression heatmaps by cluster of interest and split by disease
state (blue, NS donors; red, AD donors). DEGs are highlighted on violin plots to resolve
the range of expression (log normalized UMI counts) across all astrocytes in single or
multiple clusters. (A) Upregulated cell death and oxidative stress features unique to cluster
1. (B) Upregulated lipid storage and fatty acid oxidation features unique to cluster 5. (C)
Downregulation of angiogenesis regulation and blood brain barrier maintenance features
unique to cluster 3. Abbreviations: AD, Alzheimer’s disease; BBB, blood-brain barrier;
DEG, differentially expressed genes; Dep., dependent; Dis., disease; GO, gene ontology;
H,0,, hydrogen peroxide; Neg., negative; NS, non-symptomatic; Reg., regulation; ROS,
reactive oxygen species; UMI, unique molecular identifier. See also Figures S9-S11.
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Figure 6. Astrocyte subtypes are regionally heterogeneous.
Visualization and differential enrichment results for Cluster 6 marker genes enriched in

Layer 1 and white matter (A), and Cluster 8 genes enriched in the upper layers of the

cortex (B). For both: Upper. human spatial transcriptomics data from Maynard et al. (2021).
Lower. mouse spatial transcriptomics data from Hasel et al. (2021). (/eftmos?) H&E staining
and regional annotation of spots from the representative Visium section. Relative enrichment
of cluster gene module section, and box and density plots of gene module scores across all
spots and all sections grouped by cortical region for Clusters 6 and 8. Cluster gene modules
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were significantly enriched (+) or de-enriched (=) in spots from the indicated region
compared to the rest of the cortex (Wilcoxon rank sum test with Bonferroni correction).
(C) Summary dot plot of astrocyte cluster gene modules across human (/ef?) and mouse
(right) cortical regions. Dots colored by z-scored average gene module score. Dot sizes
correspond to the percentage of spots with a gene module score greater than zero, indicating
elevated expression of the geneset compared to control genesets (see Methods). (D) Scatter
plot comparing z-scored average gene module scores across region and clusters between
human and mouse showing cluster module enrichment is similar. A linear regression

line is shown (rrefers to Pearson’s r correlation coefficient). (E) Relative enrichment of
Cluster 3 module overlaid on saline (¢ypper) and LPS (/ower) sections. Box & density

plot comparing expression of Cluster 3 module across spots in LPS-versus saline-injected
mice (righf). (F) Relative enrichment of genes upregulated in Cluster 8 in AD overlaid

on saline (fop) and LPS (bottom) sections. Box & density plot comparing expression of
Cluster 8 AD module across cortical regions in LPS-versus saline-injected mice (righi).
For (E-F): +/- symbol represents whether the Cluster 3 module is significantly upregulated
or downregulated in spots from the indicated region in LPS versus saline-injected mice
(Wilcoxon rank sum test with Bonferroni correction). See Table S7 for test statistics and
p-values. Abbreviations: AD, Alzheimer’s disease; NS, non-significant; H&E, hematoxylin
& eosin; LPS, lipopolysaccharide. See also Figure S12.
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Figure 7. Integrating astrocyte snRNA-seq datasets allows for improved resolution of unique

astrocyte subpopulations.

(A) tSNE plots of reanalyzed astrocytes from published snRNA-seq AD datasets (Mathys,
N = 3,079; Grubman, N = 2,330; Zhou, N = 10,538) and (B) their corresponding average
scaled expression heatmap of the top 5 cluster-enriched/unique transcripts. (C) tSNE plots
of integrated astrocytes (N = 57,018) as visualized by cluster (/ef?) and by dataset (righi).
Mathys data are in yellow, Grubman data are in dark red, Zhou data are in violet, and

the current study’s data are in steel blue. (D) Proportion of integrated astrocyte clusters
identified in the integrated dataset. (E) Average scaled expression heatmap of top 5
integrated astrocyte cluster-enriched/unique transcripts by cluster and by dataset. See also

Figures S1, S3, S6-S8, S13.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
Mouse anti-amyloid-beta 17-24 BioLegends Cat#800701; RRID:AB_2564633

Mouse anti-phospho-tau, Ser202/Thr205 monoclonal

Thermo Fisher Scientific

Cat#MN1020; RRID:AB_223647

Rabbit anti-glial fibrillary acidic protein (EP672Y) Ventana Cat#760-4345

DISCOVERY universal secondary biotinylated antibody cocktail Roche Cat#760-4205; RRID:AB_10805231
Rabbit anti-SOX9 (EPR14335-78) Abcam Cat#abh185966; RRID:AB_2728660
Rabbit 1gG isotype control (EPR25A) Abcam Cat#ab172730; RRID:AB_2687931
Mouse anti-Human SPARC (Clone: 122511) R&D Systems Cat# MAB941, RRID:AB_2195073
Mouse anti-GFAP Sigma-Aldrich Cat# G3893, RRID:AB_477010
Rabbit anti-GFAP DAKO Cat# 20034

Rabbit anti-Human C3d DAKO Cat# A0063

Goat anti-Rabbit 1gG (H+L) Cross-Adsorbed ReadyProbes
Secondary Antibody, Alexa Fluor 594

Thermo Fisher Scientific

Cat#R37117; RRID:AB_2556545

Antibody, Alexa Fluor 647

Rabbit anti-LIM Homeobox 2 LHX2 EMD Millipore Cat#AB5756; RRID:AB_92012
Mouse anti-NeuN (Clone A60) Millipore Sigma Cat#MAB377; RRID:AB_2298772
Mouse IgG1 isotype control (Clone Ci4) Millipore Sigma Cat#MABCO002; RRID:AB_97846
Goat anti-Rabbit 1gG (H+L) Highly Cross-Adsorbed Secondary Invitrogen Cat#A11034; RRID:AB_2576217
Antibody, Alexa Fluor 488

Goat anti-Rabbit 1gG (H+L) Highly Cross-Adsorbed Secondary Invitrogen Cat# A11012, RRID:AB_2534079
Antibody, Alexa Fluor 594

Goat anti-Mouse 1gG (H+L) Cross-Adsorbed Secondary Invitrogen Cat#A21235; RRID:AB_2535804

Bacterial and Virus Strains

Biological Samples

De-identified human, post-mortem prefrontal cortex samples from
Alzheimer’s disease and age-matched non-symptomatic patients

Rhode Island Hospital’s
Brain Tissue Resource
Center Table S2

https://www.brown.edu/research/facilities/
brain-tissue-resource-center/

De-identified human, post-mortem prefrontal cortex samples from
Alzheimer’s disease and age-matched non-symptomatic patients

Alzheimer’s disease
Research Center at NYU
Langone Table S2

https://med.nyu.edu/departments-institutes/
neurology/divisions-centers/center-
cognitive-neurology/alzheimers-disease-
center

De-identified human, post-mortem prefrontal cortex samples from
Alzheimer’s disease and age-matched non-symptomatic patients

Shiley-Marcos
Alzheimer’s disease
Research Center at
UCSD Table S2

https://medschool.ucsd.edu/som/
neurosciences/centers/adrc/Pages/
default.aspx

Chemicals, Peptides, and Recombinant Proteins

RNase-free buffer kit Invitrogen Cat#Am9010
Triton X100 Sigma Cat#T8787
RNasin Plus Promega Cat#N2615
Protease inhibitor cocktail Promega Cat#G6521
DL-Dithiothreitol Sigma Cat#D9779
DNase- and RNase-free water Invitrogen Cat#10977015
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REAGENT or RESOURCE SOURCE IDENTIFIER
Reagent-grade bovine serum albumin Proliant Biologicals Cat#68700
Goat serum MP Biomedicals Cat#191356
4’ 6 Diamidino 2 Phenylindole, Dihydrochloride Thermo Fisher Scientific Cat#D1306

Phosphate buffer saline VWR Cat#16750-102
Critical Commercial Assays

QIlAshredder QIAGEN Cat#79656
RNeasy Plus Mini kits QIAGEN Cat#74136
GoTaq Green Master Mix Promega Cat#M7123
Single Cell 3° Gene Expression kit v3 10x Chromium Cat#1000076

Deposited Data

generated matrix files)

Pathology imaging data This paper Cell Image Library: http://
cellimagelibrary.org/groups/54423
Single nuclei RNA sequencing data (FASTQ and Cell Ranger- This paper GEO: GSE167494; https://

www.nchi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE167494

Single nuclei RNA sequencing data (FASTQ files)

Mathys et al., 2019

Synapse: syn18485175; https://
Www.synapse.org/#!Synapse:syn18485175

Single nuclei RNA sequencing data (FASTQ files)

Grubman et al., 2019

GEO: GSE138852; https://
www.nchi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE138852

Single nuclei RNA sequencing data (FASTQ files)

Zhou et al., 2020

Synapse: syn21670836; https://
WwWw.synapse.org/#!Synapse:syn21670836

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

Oligonucleotides

’

APOE_e2_FWD: 5'-GCGGACATGGAGGACGTGT-3 Zhong et al., 2016 N/A
APOE_e2_REV: 5'-CCTGGTACACTGCCAGGCA-3’ Zhong et al., 2016 N/A
APOE_e3_FWD: 5'-CGGACATGGAGGACGTGT-3’ Zhong et al., 2016 N/A
APOE_e3_REV: 5'-CTGGTACACTGCCAGGCG-3 Zhong et al., 2016 N/A
APOE_e4_FWD: 5'-CGGACATGGAGGACGTGC-3’ Zhong et al., 2016 N/A
APOE_e4_REV: 5-CTGGTACACTGCCAGGCG-3 Zhong et al., 2016 N/A
B-actin_FWD: 5'-GACGTGGACATCCGCAAAGAC-3’ Zhong et al., 2016 N/A
B-actin_REV: 5'-CAGGTCAGCTCAGGCAGGAA-3 Zhong et al., 2016 N/A

Recombinant DNA

Software and Algorithms

QuPath (version 0.2.3)

Bankhead et al., 2017

https://qupath.github.io/;
RRID:SCR_018257

Fiji-ImageJ (version 2.1.0)

Schindelin et al., 2012

https://imagej.net/Fiji; RRID:SCR_003070

Prism (version 9.0.0) GraphPad https://www.graphpad.com/scientific-
software/prism/; RRID:SCR_002798
Flowjo (version 10.7.1) BD https://www.flowjo.com/;

RRID:SCR_008520
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REAGENT or RESOURCE SOURCE IDENTIFIER
NovaSeq 6000 RTA (version 3.4.4) Ilumina https://www.illumina.com/systems/
sequencing-platforms/novaseq.html;
RRID:SCR_014332
bcl2fastq conversion software (version 2.20) Ilumina https://support.illumina.com/downloads/

bcl2fastg-conversion-software-v2-20.html;
RRID:SCR_015058

Cell Ranger software suite (version 4.0.0)

10x Genomics

https://support.10xgenomics.com/single-
cell-gene-expression/software/pipelines/
latest/installation; RRID:SCR_017344

R (versions 3.6.2 - 4.0.3)

The R Foundation

https://www.r-project.org/foundation/;
RRID:SCR_001905

SingleCellExperiment (version 1.12.0)

Amezquita et al., 2020

https://bioconductor.org/packages/release/
bioc/html/SingleCellExperiment.html

Seurat (version 3.2.2)

Stuart et al., 2019

https://satijalab.org/seurat/index.html;
RRID:SCR_016341

zinbwave (version 1.12.0)

Risso et al., 2018

https://bioconductor.org/packages/release/
bioc/html/zinbwave.html

edgeR (version 3.32.0)

Robinson et al., 2010

https://bioconductor.org/packages/release/
bioc/html/edgeR.html; RRID:SCR_012802

nuclei RNA sequencing data

All Rscripts used to analyze single nuclei RNA sequencing data This paper https://github.com/liddelowlab/
Sadick_et_al.

Other

Open-access, interactive website highlighting all analyzed single This paper www.gliaseq.com
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