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Abstract

Neurons possess a complex morphology spanning long distances and a large number of subcellular 

specializations such as presynaptic terminals and dendritic spines. This structural complexity is 

essential for maintenance of synaptic junctions and associated electrical as well as biochemical 

signaling events. Given the structural and functional complexity of neurons, neuronal endoplasmic 

reticulum is emerging as a key regulator of neuronal function, in particular synaptic signaling. 

Neuronal endoplasmic reticulum mediates calcium signaling, calcium and lipid homeostasis, 

vesicular trafficking and proteostasis events that underlie autonomous functions of numerous 

subcellular compartments. However, based on its geometric complexity spanning the whole 

neuron, endoplasmic reticulum also integrates the activity of these autonomous compartments 

across the neuron and coordinates their interactions with the soma. In this article, we review recent 

work regarding neuronal endoplasmic reticulum function and its relationship to neurotransmission 

and plasticity.

Introduction

Neurons are polarized cells of the nervous system that specialize in the transfer, processing 

and storage of information. They are the only nervous system cells with excitable 

membranes. Via synchronized opening of voltage gated ion channels, neurons can generate 

electrical signals, action potentials, that travel along the cell and its processes. When the 

action potential reaches the presynaptic boutons in the axon, it triggers calcium influx and 

subsequent release of small molecules called neurotransmitters, through regulated fusion 

of synaptic vesicles with the plasma membrane (Figure 1). Neurotransmitters then bind 

to specific receptors in the juxtaposed postsynaptic membrane at dendrites, and initiate 

electrical and/or biochemical signaling in the next neuron. Axon and dendrites can reach 
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lengths that are several orders of magnitude longer than the size of the neuronal cell body 

or soma, and they can also present complex branching patterns, all of this makes neuronal 

plasma membrane (PM) 3–4 orders of magnitude larger than the membrane of most cells 

in peripheral organs. Neurons spend a considerable proportion of their ATP production in 

maintaining the molecular properties of this massive amount of membrane. Moreover, the 

endoplasmic reticulum (ER) in neurons is continuous and it spans the whole cell volume, 

from the soma to the most distal dendrites and the complete length of the axon [1–7] (Figure 

1); although reversible fragmentation of the ER has been proposed to occur in response to 

neuronal activity [8, 9]. Thus, the neuronal ER constitutes one of the largest organelles in 

biology. Here, we review our current understanding of the roles the ER plays in regulating 

neurotransmission in mature neurons via two central mechanisms: synthesis and trafficking 

of membrane components and regulation of calcium signaling.

The neuronal ER and membrane trafficking for synaptic specifications

Proteins and lipids may travel distances that range from millimeters to centimeters or 

even up to a meter (e.g. in motor neurons) in order to reach the synapse from the cell 

body. Moreover, the molecular composition of the soma, the presynaptic axon terminals 

and postsynaptic dendrites is different [10]. Thus, the enormous distances together with 

the complex molecular, structural and functional compartmentalization of neurons poses 

a challenge for the secretory pathway. Neurons overcome this challenge using localized 

autonomous trafficking pathways at dendrites and axons, which are able to produce, sort, 

maintain and recycle proteins and lipids independently of the soma (see [11–13]) (Figure 1).

The dendritic secretory pathway and its role in neurotransmission and plasticity

The levels of electrical activity in neurons can shape not only the morphology and 

composition of the dendritic PM but also the dynamics of internal organelles. In mammalian 

central synapses, only a fraction of dendritic spines contain ER at any given time point (15–

50%; [3, 14]) this dendritic ER however is highly dynamic and over time it will transiently 

enter and explore most of the spines [15]. The mobility of the ER is positively regulated 

by neuronal activity and vice versa, manipulating the mobility of the ER can strengthen 

synapses influencing their capacity to undergo long-term potentiation (LTP) and depression 

(LTD) in the rodent hippocampus [15]. The ER-mediated modulation of LTP involves a 

mechanism dependent on the small GTPase Ras and the phosphatidylinositol 3-kinase (PI3K 

[16]; also see calcium-dependent mechanisms in the next section). Lysosomes, in turn, may 

modulate LTD at spines via a different pathway [16]. Moreover, spine volume and synapse 

size become highly correlated after LTP specially at spines that contain ER [17], indicating 

that the presence of ER can determine the plastic properties of dendritic spines in response 

to neuronal activity.

The dendritic ER is an important local source of molecules for structural plasticity. The 

dendritic ER volume decreases after LTP in the rat hippocampus as a consequence of 

membrane trafficking to the surface to support the generation of new spines [18]. Synapses 

are enlarged preferentially at spines that contain ER and poli-ribosomes after LTP, which 

also correlates with the appearance of the spine apparatus [19]. The spine apparatus is an 
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enlargement of the ER that takes the form of stacked sacs separated by dense plates and 

is enriched in large dendritic spines in mature neurons [6, 20] (Figure 1). Formation and 

stabilization of the spine apparatus is dependent on the protein synaptopodin, and thus 

synaptopodin influences spine stability, neuron excitability and memory-related processes 

[21–23]. The mechanism of spine apparatus remodeling via synaptopodin involves actin 

cytoskeleton and calcium [24]. However, the molecular mechanisms of spine apparatus 

remodeling and its role in synaptic plasticity and memory formation remain largely unclear.

Proteins diffuse rapidly along the dendritic ER and accumulate at ER exit sites present at 

branching points and near spines (Figure 1), due to the increased morphological complexity 

of the ER at those locations [25]. These local export sites positively regulate dendrite 

branching and local protein delivery, including surface levels of glutamate ionotropic 

receptors (specifically α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, 

AMPAR) [25] thus influencing dendritic morphology and synaptic strength. The ER also 

supports local translation of synaptic proteins (reviewed in [26–28]) allowing the dynamic 

modulation of the dendritic proteome in response to different forms of neuronal activity 

and pathological processes. After synthesis, synaptic proteins in dendrites may follow an 

atypical, Golgi-independent trafficking pathway. Proteins including AMPAR subunits and 

the cell-adhesion molecule neuroligin 1, accumulate at recycling endosomes after exiting 

the dendritic ER and these recycling endosomes mediate their delivery to the surface [12, 

29]. Different subunits of the AMPAR, namely GluA1–4, are thought to follow different exit 

routes from the dendritic ER and also their removal from the PM via endocytosis may be 

independently modulated (reviewed in [20, 21]). AMPAR receptor assembly occurs in the 

ER [30, 31], however how receptors of different subunit composition traffic to the dendritic 

PM or whether assembly or reassembly can also happen at the dendritic PM remains elusive. 

The atypical secretory pathway at work in dendrites causes the surface N-glycosylation 

pattern of neuronal proteins to be different, more “immature” compared to other cells 

(e.g. lacking sialic acid) [10]. However, the Golgi apparatus can fragment and disperse 

into dendrites in response to neuronal excitation, generating small Golgi satellites that can 

locally modify glycoproteins and deliver them to the PM [32] and suggesting that the 

functional properties of surface neuronal glycoproteins can be modulated by changing their 

glycosylation pattern in response to neuronal activity [12] thus influencing plasticity-related 

processes.

Less is known about the role of dendritic ER in local lipid metabolism. In highly branched 

neurons from Drosophila, both the development and maintenance of dendritic morphology 

and complexity depend on lipid synthesis [33, 34]. Whether local lipid synthesis occurs at 

dendrites and if it has any impact on neurotransmission remains unknown.

The axonal ER and local synthesis and trafficking of membranes

Similar to dendrites, the lipidic and protein composition of axons differs from the cell 

body. In neurons from the dorsal root ganglia, axons show a higher protein to lipid ratio 

and an enrichment in cholesterol relative to other lipids [10]. Axons only contain tubular 

smooth-looking, anastomosed ER [3] (Figure 1). In peripheral neurons, phospholipids 

can be synthesized in the axonal ER but not cholesterol, which is mainly produced by 
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glial cells [35, 36] and then incorporated from the extracellular space via lipoproteins 

[37]. Bioactive lipids such as the endocannabinoid anandamide have also been found 

to be synthesized and degraded at the ER membrane in hippocampal neurons [38, 39]. 

Little is known about the occurrence and role of local phospholipid synthesis in axons 

during neurotransmission, although several lines of work have shown this process to be 

key for axonal growth and regeneration [40, 41]. A recent study found that blockade of 

phospholipid biosynthesis, specifically phosphatidylethanolamine and phosphatidylcholine, 

leads to activity-dependent axonal degeneration and loss of synaptic vesicles in Drosophila 
photoreceptors [42], emphasizing the importance of lipid synthesis for maintenance of 

axonal integrity. Biosynthesis of cholesterol has been proposed to be more efficient in 

developing neurons and restricted to the somatic ER, while mature neurons may need 

supplementation from surrounding astrocytes [35, 36, 43, 44]. In central and peripheral 

axons, cholesterol is necessary for proper action potential propagation along the axonal 

membrane and for the consequent release of neurotransmitters at the synapse [45–48]. 

Cholesterol-dependent domains at the plasma membrane mediate the clustering of ion 

channels and receptors, and can modulate their opening probability and conductance [49, 

50] (reviewed in [51]). Cholesterol levels modulate SNARE (Soluble N-Ethylmaleimide-

Sensitive Factor Attachment Protein Receptor) mediated fusion [52] and the endocytosis 

of synaptic vesicle proteins [53]. Furthermore, while cholesterol depletion reduces action 

potential driven neurotransmitter release, it increases spontaneous neurotransmission in 

mammalian neurons [48, 54] as well as in other organisms [45, 47], indicating that axonal 

lipids play a central role in balancing different forms of neurotransmission.

Local protein synthesis at axons has been historically more controversial, mainly due to lack 

of rough ER at axons. However, a variety of mRNAs are present in axons in the peripheral 

and central nervous system [55–57]. Ribosomes and the ER molecular machinery for protein 

translocation, folding and modification have also been found in axons [55, 56], and the 

pattern of translation at axons can be dynamically modified by neuronal activity [55, 57] 

indicating that it may serve important roles in information transfer and storage in the brain. 

Moreover, retrograde axon to soma signaling of proteins locally synthesized at axons may 

contribute to neurodegeneration [58]. Not only the machinery for translation is present at 

axons, recent work has shown that newly synthesized proteins, specifically ion channels, 

can be assembled and trafficked to the plasma membrane in peripheral nerves [59, 60], 

suggesting that the secretory pathway is present and functional at axons. More research is 

still necessary to uncover the specific location and molecular mechanism underlying protein 

synthesis and delivery at axons, and its relevance for the maintenance of neurotransmission. 

Another open question is whether posttranslational modifications and processing of proteins 

can occur at axons, including glycosylation.

The neuronal ER and calcium signaling

Neurons have the largest and most complex ER, which can connect the whole cell and 

at the same time mediate highly localized signals that are segregated from the rest of the 

neuron [61]. The ER behaves as a calcium sink and a calcium source (see below), clearing 

or releasing calcium in different circumstances and maintaining homeostatic calcium levels. 

The ER has the capacity to modulate calcium signals that are involved in different aspects of 
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presynaptic neurotransmitter release and postsynaptic function and thus, it is a key player in 

neuronal physiology.

Intracellular calcium stores and dendritic functional and morphological plasticity

At mammalian hippocampal glutamatergic synapses, activation of N-methyl-D-aspartate 

receptors (NMDARs) by glutamate leads to calcium influx into the dendritic spine which 

in turn triggers calcium-induced calcium release (CICR) from the ER [62, 63]. At rest, 

activation of this pathway by spontaneous glutamate release blocks the synthesis of 

AMPARs and thus maintains homeostatic levels of neurotransmission [62]. Spontaneous 

inhibitory neurotransmission can also modulate calcium signaling at rest at excitatory 

synapses, leading to changes in gene expression and tuning excitatory synaptic strength 

[64], indicating that calcium signals can propagate and convey information independently 

of action potentials. Opening of NMDARs and the consequent CICR during evoked, action 

potential-driven neurotransmission leads to a reduction in calcium levels in the ER [63]. 

Depletion of ER calcium activates the ER resident Stromal Interaction Molecule (STIM) 

which then aggregates at ER-PM junctions and triggers the clustering and opening of Orai 

calcium channels (also known as CRAC – calcium release-activated channel –) [65]. This 

mechanism is mediated by the store operated calcium entry (SOCE) pathway. NMDAR 

and STIM1-dependent SOCE activation at glutamatergic spines as a consequence of CICR 

leads to inhibition of postsynaptic voltage-gated calcium channels (VGCCs) and gene 

transcription, regulating the ER content of spines in a frequency-dependent manner [63]. 

STIM proteins actively modulate neurotransmission by directly activating AMPARs and 

inhibiting VGCCs and NMDARs [66], they also regulate AMPAR trafficking [67] and can 

increase the number and stability of mushroom spines via a calcium/calmodulin-dependent 

protein kinase II (CaMKII) and end-binding protein 3 (EB3)/microtubules dependent 

pathway [68]. These effects may be primarily driven by STIM2 and Orai1, influencing 

LTP, LTD and other memory-related processes in the hippocampus [67, 69–73], while 

STIM1 responds to calcium fluctuations during neuron development and regulates dendritic 

maturation [74]. Voltage-gated potassium channels and Ryanodine Receptors (RyRs) also 

colocalize at somatic ER-PM junctions of hippocampal neurons [75], suggesting that 

multiple calcium and neuronal signaling pathways might interact and crosstalk at these 

locations.

While RyRs have been implicated in fast calcium sparks in dendrites, CICR via the 

coincidence detectors IP3Rs can lead to longer lasting calcium signals that can propagate 

in waves [76]. These dendritic calcium waves can reach very high concentrations (higher 

than AP-driven calcium) and travel long distances, although they rarely reach the nucleus 

[76]. Interestingly, calcium waves have mainly been observed in cortical and hippocampal 

pyramidal neurons, and it remains unknown what role they play in neuronal physiology (for 

a review see [77]). For example, a recent report showed that propagating calcium signals 

from dendrites to the cell body are necessary for gene expression in cultured neurons, but 

calcium waves and CICR were not involved [78].

The dendritic ER is both a source of calcium and a calcium sink that can remove 

cytoplasmic calcium resulting from neuronal activity via the sarcoendoplasmic reticulum 
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calcium transport ATPase (SERCA) [79].Recent mathematical modeling has suggested that 

the spine apparatus acts as an important calcium sink at spines [80]. Calcium release from 

the dendritic ER via inositol 1,4,5-trisphosphate receptors (IP3Rs) enhances postsynaptic 

responses and it can unsilence synapses via a protein kinase C (PKC) and CaMKII mediated 

mechanism in hippocampal neurons [81]. In Purkinje cells, CICR via IP3Rs leads to 

LTD [82]. Interestingly, RyRs and STIM1 also participate in this process [83, 84]. A 

recent model predicts that SERCA-dependent calcium sequestration determines the type 

of plasticity that glutamatergic spines will undergo [85], suggesting that the combination 

of stimulation frequency and duration, probability of neurotransmitter release, opening 

of inositol 1,4,5-trisphosphate receptors (IP3Rs) and RyRs, together with the level of 

saturation of SERCA determine if a particular synapse will undergo postsynaptic LTP 

or LTD (also see [86]). All these findings point to the existence of a dynamic network 

connecting postsynaptic glutamate receptors, CICR, SOCE and calcium buffers allowing 

multiple outcomes depending on the type, intensity and duration of neurotransmission.

Little information is available about the role of the dendritic ER in calcium signaling 

at other, in particular non-glutamatergic, types of synapses. Activation of neurons in the 

paraventricular nucleus of the hypothalamus by norepinephrine and adrenergic receptors 

requires CICR [87]. Calcium release from internal stores and SOCE do not seem to 

modulate spontaneous inhibitory neurotransmission [88–90], although it can potentiate 

action potential-driven presynaptic GABA and dopamine release in different neuron types 

and organisms (see next section).

The axonal ER and calcium modulation of neurotransmitter release

Early work proposed that calcium released from internal stores, including the ER and 

lysosomes, can potentiate neurotransmitter release at hippocampal synapses [91, 92]. Since 

then, numerous studies have shown that CICR and SOCE amplify calcium signals at 

axons augmenting spontaneous, synchronous and asynchronous evoked release of glutamate, 

GABA, dopamine and other neurotransmitters in different regions of the nervous system and 

model organisms [90, 93–100] (Figure 2). Specific forms of neurotransmission appear to be 

coupled to different calcium sources and use different calcium sensors (also see [101] and 

[102]). For example, the glycoprotein reelin activates presynaptic ApoER2 receptors leading 

to calcium efflux from the ER via IP3Rs and selectively mobilizing a VAMP7-containing 

pool of synaptic vesicles [103]. This pathway only augments spontaneous neurotransmission 

but not evoked release. At the zebrafish neuromuscular junction, while synchronous evoked 

neurotransmission depends on opening of VGCC, asynchronous release is maintained by 

a “propagating intracellular calcium source” along the axon [100], which appears similar 

to the IP3R-dependent calcium waves observed in multiple cellular systems (see [77]). 

Activation of nicotinic acetylcholine receptors in hippocampal neurons triggers CICR via 

RyRs and leads to synchronized glutamate release and firing of the postsynaptic neuron 

even in the absence of action potentials [104]. CICR also modulates synaptic vesicle 

trafficking to maintain tonic activity of auditory hair cells [105]. STIM2-dependent SOCE 

augments spontaneous release of glutamate but not GABA via the selective activation of 

the calcium sensor synaptotagmin-7 [90], while STIM1B-mediated SOCE mobilizes the 

reserve pool of synaptic vesicles to maintain evoked neurotransmission during sustained 
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activity [99]. Spontaneous release of GABA from Purkinje cells is enhanced by calcium 

release through RyRs [106], while both RyRs and IP3Rs trigger dopamine release from 

nigrostriatal neurons, independently of influx of extracellular calcium [94] (also see 

[93] for IP3R-mediated dopamine release in Drosophila). Similarly, calcium release from 

internal stores also increases the size of the readily releasable pool of synaptic vesicles 

at glycinergic interneurons of the retina [95]. Accordingly, by regulating the content of 

tubular ER at axons, autophagy can modulate calcium signaling and glutamate release from 

neurons [107]. The ER in turn is crucial to provide the components for autophagosome 

formation (see [108]) suggesting that autophagosomes and ER work together to set axonal 

properties. Additionally, endogenous mobile calcium buffers differ among glutamatergic 

and GABAergic presynaptic boutons and may account for differences in the probability 

of release and levels of asynchronous fusion of synaptic vesicles [109]. Besides the direct 

boost in calcium caused by opening of ER ionic channels, there are other contributing 

factors to the potentiation of neurotransmission. SOCE activation, for example, can enhance 

the membrane depolarization increasing neuron excitability [110, 111] and modulating the 

synchrony of neuron networks and interictal spikes during seizures [112]. In conclusion, 

accumulating evidence points to the coupling of different axonal ER-related calcium sources 

(Figure 2) to segregated forms of neurotransmitter release, and this may vary among 

different types of synapses. More research is needed to understand the molecular basis and 

the relevance of these pathways in information processing at the circuit level.

Conclusion

Physiological studies to date have been largely focused on neuronal functional events 

associated with cellular excitability and synaptic transmission. However, as the emerging 

and increasingly rich phenomenology of neuronal ER indicates, neurons also harbor an 

extensive network of intracellular membranous organelles that maintains and integrates 

signaling events across their complex morphology. Nevertheless, mechanistic details of these 

ER-associated intracellular neuronal signaling events remain poorly understood. Recent 

advances in development of super-resolution imaging approaches, novel molecular probes 

and identification of molecular components that maintain neuronal ER will bring the study 

of neuronal ER-mediated signaling on par with classical neurophysiology and uncover its 

essential role in nervous system health and disease.
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Figure 1. Endoplasmic reticulum and trafficking organelles at a model excitatory synapse.
Presynaptic terminals in the axon (in blue) contain tubular ER and are filled with synaptic 

vesicles, small trafficking organelles that are filled with neurotransmitters. Dendrites (in 

orange) contain ER, ER exit sites that mediate the delivery of proteins and lipids to the 

plasma membrane, spine apparatus, endosomes and Golgi satellites and outposts.
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Figure 2. Calcium stores in an excitatory presynaptic terminal.
Action potentials gate the opening of VGCC with the consequent influx of extracellular 

calcium and the synchronized exocytosis of synaptic vesicles. The ER is the main 

intracellular source of calcium in axons. Calcium can be released via IP3Rs and RyRs 

during CICR, amplifying action potential-driven signals and neurotransmitter release. The 

SERCA sequesters calcium into the ER modulating calcium levels in the bouton. When 

calcium is depleted in the lumen of the ER, SOCE is triggered via STIM-CRAC interaction 

resulting in calcium influx into the terminal, which augments neurotransmitter release. 

Mitochondria can also work as a calcium source and a calcium sink (not discussed in this 

article).
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