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Summary

Flexible decision making requires animals to forego immediate rewards (exploitation) and try 

novel choice options (exploration) to discover if they are preferable to familiar alternatives. Using 

the same task and a partially observable Markov decision process (POMDP) model to quantify the 

value of choices, we first determined that the computational basis for managing explore-exploit 

tradeoffs is conserved across monkeys and humans. We then used fMRI to identify where in 

the human brain the immediate value of exploitative choices and relative uncertainty about the 

value of exploratory choices were encoded. Consistent with prior neurophysiological evidence 

in monkeys, we observed divergent encoding of reward value and uncertainty in prefrontal and 
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parietal regions, including frontopolar cortex, and parallel encoding of these computations in 

motivational regions including the amygdala, ventral striatum, and orbitofrontal cortex. These 

results clarify the interplay between prefrontal and motivational circuits that supports adaptive 

explore-exploit decisions in humans and nonhuman primates.

eTOC Blurb:

How do humans and other animals make the decision to explore new options instead of exploiting 

familiar favorites? Hogeveen et al. find evidence for similar computations underlying explore-

exploit decisions across humans and monkeys. Additionally, their study reveals a brainwide 

network comprising frontopolar, frontoparietal, frontostriatal, and mesocorticolimbic regions 

underlying explore-exploit decisions.

Introduction

The motivation to explore and acquire novel information shapes learning across the lifespan 

in many species. But exploration comes at the cost of exploiting familiar options whose 

immediate consequences are known. Managing this tradeoff is referred to as the explore-

exploit dilemma. A barrier in identifying the neural bases of explore-exploit decision making 

is how to define a choice as exploratory. A common definition of an exploratory choice 

is the selection of an action that maximizes information rather than rewards. Defined in 

this way, it is clear that frontopolar and parietal regions play a role in the decision to 

explore new options and forego immediate rewards (Daw et al., 2006) and that lateral 

frontopolar cortex might drive exploration by tracking the relative uncertainty present in the 

choice environment (Badre et al., 2012; Cavanagh et al., 2012; Cockburn et al., 2021). An 

extension of this view is that explore-exploit decision making relies on prefrontal cortex 

to disrupt encoding of existing action and choice policies in motivational and sensorimotor 

circuits, while forming new decision policies (Choung et al., 2017; Daw et al., 2006; 

Domenech et al., 2020; Ebitz et al., 2018). But if a decision maker has sufficient knowledge 

of the environment and computational resources, exploration can be directed by value 

computations that, over the long-term, maximize gains or minimize losses (Averbeck, 2015; 

Wilson et al., 2021). In these cases, prefrontal cortex and motivational regions might work 

together to compute both the anticipated immediate and future value of choice options to 

determine when exploration of novel opportunities is advantageous (Costa and Averbeck, 

2020; Costa et al., 2019; Tang et al., 2022; Wilson et al., 2020)

Neither of these perspectives are disjoint from one another. Decisions to explore that 

deviate from policies that maximize immediate rewards, likely take into account how 

choices are affected by uncertainty and the value of future rewards. But in humans 

it remains unknown if subdivisions of prefrontal cortex, particularly frontopolar cortex, 

explicitly encode computations derived from optimal decision strategies that define when it 

is advantageous to explore or exploit (Averbeck, 2015). It also is not clear if value encoding 

in prefrontal cortex during explore-exploit decisions occurs in parallel or in opposition to 

value encoding in motivational circuits, particularly during novelty-seeking. In nonhuman 

primates, neurons in dorsolateral prefrontal cortex (dlPFC) were found to encode both the 

immediate and latent future value of choice options to support adaptive explore-exploit 
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decisions (Tang et al., 2022) prior to making a choice. The same information is also encoded 

in a network of motivational brain regions comprising amygdala, ventral striatum, and 

orbitofrontal cortex after a choice is made and its outcome observed (Costa and Averbeck, 

2020; Costa et al., 2019). This implies that prefrontal cortex and motivational brain regions 

cooperate with one another to manage explore-exploit tradeoffs. Consistent with this view, 

action encoding in prefrontal cortex is disrupted when monkeys decide to explore (Ebitz 

et al., 2018) and neurons in subthalamic and temporal lobe areas signal the availability of 

novel objects before they are viewed (Ogasawara et al., 2021). But at present, nonhuman 

primate studies are restricted to a priori targeted recording of one or a few brain regions at a 

time, which limits their anatomical scope. Moreover, frontopolar cortex can be challenging 

to access (Mitz et al., 2009), and has greatly expanded in humans relative to non-human 

primates (Mansouri et al., 2020).

No one has yet linked the insights simultaneously gained from human neuroimaging and 

neurophysiology experiments in macaques. In part, because it is unclear if humans and 

macaques use similar strategies to manage the explore-exploit dilemma. Here, we used the 

same multi-arm bandit reinforcement learning task to test humans and macaques (Costa 

and Averbeck, 2020; Costa et al., 2014, 2019; Wittmann et al., 2008) and used a partially 

observable Markov decision process model (POMDP;(Averbeck, 2015) to demonstrate that 

value computations underlying decisions to explore or exploit are conserved in primates. 

With this established, we then compared encoding of value computations associated with 

decisions to explore or exploit across the entire human brain and identified that prefrontal 

and motivational regions work together, rather than against one another in deciding when to 

explore. These results not only clarify the computational roles of prefrontal and motivational 

circuits in deciding when it is advantageous to explore, but also establish a translational 

bridge for future, complementary experiments in humans and nonhuman primates.

Results

Humans and Non-Human Primates Utilize Similar Computations to Manage Explore-Exploit 
Tradeoffs

Choice behavior.—We used a three-armed bandit task (Costa et al., 2019; Djamshidian et 

al., 2011; Wittmann et al., 2008) where the introduction of novel choice options was used 

to induce explore-exploit tradeoffs (Figure 1A–B). Novelty increases the value of exploring 

by increasing uncertainty about how choices affect future prospects for reward, but more 

importantly it makes the act of exploration explicit. Also, by referencing behavior to optimal 

decision strategies that let us derive the latent future value of making an exploratory or 

exploitative choice, can dissociate novelty-driven exploration from novelty seeking and or 

detection.

On each trial of the task, humans or monkeys viewed three choice options assigned different 

reward values. They had to learn the stimulus-outcome relationships by sampling each 

option (Figure 1A–B). However, the number of opportunities they had to learn about the 

value of each option was limited, as every so often one of the three options was randomly 

replaced with a novel option. Whenever a novel option was introduced uncertainty about 

its value was high, because humans or monkeys could not predict its assigned reward 
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probability. To reduce uncertainty and learn the value of the novel option, they had to 

explore it. But in doing so, they gave up the opportunity to exploit what they had learned 

about the two remaining options. We refer to the two remaining options as the best or worst 

alternative, based on how often their selection was rewarded in the past. See STAR Methods 

for a full description of the task and how choice behavior was analyzed.

Both humans and rhesus macaques preferred to explore the novel choice option instead 

of exploiting the value of the two remaining alternative options. Over the first few trials 

after a novel option was introduced, both humans and monkeys preferred to explore the 

novel option (Monkey: M=0.45, SEM=0.02; Human: M=0.46, SEM=0.02) rather than to 

exploit the best alternative option (Monkey: M=0.31, SEM=0.02, t=3.45, p=0.02, d=1.22; 

Human: M=0.35, SEM=0.02, tyuen=2.96, p=0.007, η=0.55; Figure 1C–D). Both species also 

exploited what they had already learned by selecting the best alternative option more often 

than the worst alternative option (Monkey: M=0.24, SEM=0.01, t=2.76, p=0.03, d=0.97; 

Human: M=0.19, SEMhuman=0.01, tyuen=3.93, p<0.001, η=0.79; Figure 1C–D). Looking at 

decision making over time, there was a significant interaction between option type (i.e., 

novel, best alternative, and worst alternative) and trials since a novel stimulus was last 

inserted, on choice behavior in both humans (F=35.99, p<0.001) and monkeys (F=19.52, 

p<0.001). Across each primate species, this interaction was driven by opposing patterns of 

exploration and exploitation as a function of the number of trials since a novel stimulus 

was inserted. Specifically, the probability of selecting the novel stimulus decreased as 

the number of trials since a novel option was introduced increased (Monkey: b=−0.007, 

95%CI=−0.009 to −0.004, p<0.001; Human: b=−0.024, 95%CI=−0.03 to −0.02, p<0.001; 

Figure 1E–F), whereas the probability of selecting the best alternative increased (Monkey: 

b=0.004, 95%CI=0.002 to 0.006, p<0.001; Human: b=0.015, 95%CI=0.01 to 0.02, p<0.001; 

Figure 1E–F). Collectively, behavioral performance indicated two common patterns across 

two different primate species: i) a preference to explore novel choice options to learn if they 

were more rewarding than previously chosen alternatives and ii) a sensitivity to the tradeoffs 

involved when choosing to explore or exploit to balance immediate and future opportunities 

to earn rewards.

Computational modeling of explore-exploit decisions.—Optimal strategies for 

managing explore-exploit trade-offs were estimated using a POMDP model, which accounts 

for uncertainty about future outcomes in estimating the value of taking particular actions. 

The utility of choosing an option is formally defined as the sum of two computations: 

immediate expected value (IEV; Figure 1G), which estimates the probability that choosing 

a particular option will immediately result in a gain, and future expected value (FEV), the 

discounted future gains that can be expected given what is learned after choosing a particular 

option. IEV is easy to compute by keeping track of how many times a particular option was 

chosen and how many times it resulted in a gain. Calculating the FEV is more demanding. It 

involves looking ahead a certain number of trials, simulating sequences of choices that could 

be made after choosing a particular action, and recursively estimating the number of future 

gains that would result from enacting each sequence to identify the best possible future 

outcome. Because subjects weren’t limited to choosing the same option in future trials, the 
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FEV of a particular option mostly reflects the richness of the environment (is higher if the 

best available option has a high versus low IEV).

However, there are small differences in the FEV of each option that are critical in 

determining the value of exploring. These differences occur because the FEV of each 

option is tied to how often it has been chosen, which reflects uncertainty about its IEV. 

On each trial, the difference in the FEV of individual options from the average FEV of all 

three options quantifies the increase or decrease in future gains associated with choosing a 

particular option. We refer to this quantity as the exploration BONUS. In our task, when a 

novel option is introduced uncertainty about its IEV is high because it hasn’t been sampled. 

Thus, the BONUS associated with choosing the novel option is highest when it is introduced 

and decreases over trials as the subject samples it and ascertains its value (Figure 1H, top). 

In parallel, the BONUS values associated with the best and worst alternative options are 

negative when a novel option is introduced (Figure 1H, bottom). This occurs because the 

subject has already sampled each option, lowering its FEV relative to the novel option. But, 

as the subject forgoes choosing alternative options to explore the novel option, the FEV and 

exploration bonuses for the alternatives increases. To summarize, choices with a positive 

BONUS value can be considered exploratory, whereas choices with a negative BONUS 

value can be considered exploitative.

We previously reported that the POMDP model outperforms several different choice 

heuristics in predicting when monkeys choose to explore or exploit (Costa et al., 2019), in 

particular a reinforcement learning model where novelty is assigned a fixed bonus in value 

(Costa et al., 2014; Kakade and Dayan, 2001; Wittmann et al., 2008). When we compared 

the ability of these two models to predict humans’ choices the POMDP consistently fit better 

(M exceedance probability=83.78%; M BIC POMDP= 402.87 vs. M BIC Novelty RL= 421.28, 

M ΔBIC = 18.41), just as we had previously observed in rhesus macaques (Costa et al., 

2019, 2020). To be clear, we do not think primates, humans or monkeys, mentally simulate 

all possible choice sequences to estimate exploration bonuses prior to each choice. But, the 

POMDP model does capture the fact that primates are utilizing uncertainty and the value of 

new information to inform their exploratory decisions. Also, the solutions used to generate 

value estimates in the POMDP model are based on basis function approximations that well 

characterize many of the processes carried out effortlessly by neural tissue (Poggio, 1990) 

and which may have developed on evolutionary timescales to allow for learning in dynamic 

environments (Kidd and Hayden, 2015).

To determine whether value estimates derived from the POMDP predicted choice in each 

primate species, we computed trial-by-trial estimates of the IEV and exploration BONUS 

for all three of the choice options on each trial. These normative estimates were independent 

from choice behavior. To determine the relative weighting of the IEV and exploration 

BONUS on each choice, we passed the POMDP model derived estimates for all choices 

through a softmax function, specifying two free parameters that scaled the IEV and 

exploration BONUS estimates. This procedure yielded trial-by-trial choice probabilities 

for each species’ choices. If the POMDP well predicts choices, then the averaged choice 

probabilities for each option type should be correlated with the fraction of times a human 

or monkey chose that option. The correlations between POMDP model predictions and 
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observed choice data were positive and suggested a medium effect size across both humans 

(M=0.59, 95%CI=0.47 to 0.70, t=10.5, p<0.001) and macaques (M=0.45, 95%CI=0.30 to 

0.61, t=7.43, p<0.001). Comparing the magnitude of these correlations across species, the 

POMDP did not differ in its ability to predict humans’ or monkeys’ choices (Mdiff=0.13, 

95%CI=−0.03 to 0.30, t=1.64, p=0.09; Figure 1I). When we examined each of the free 

parameters in the softmax function, it was clear that IEV was a strong determinant of 

whether or not an option was chosen across species (Human: M=0.44, 95%CI=0.26 to 

0.63, t=4.96, p<0.001; Monkey: M=0.12, 95%CI=0.01 to 0.22, t=2.82, p=0.037). However, 

exploration BONUS was not as strong as a predictor in humans as in monkeys (Human: 

M=0.02, 95%CI=−0.12 to 0.16, t=0.26, p=0.80; Monkey: M=0.08, 95%CI=−0.002 to 0.16, 

t=2.52, p=0.05). Inclusion of the BONUS parameter, however, did improve our overall 

ability to predict human participants’ choices compared to when the parameter was excluded 

from the model (χ2
37=116.68, p<0.001; M BIC+BONUS=421.28 vs. M BIC−BONUS=595.46, 

M ΔBIC=174.17). Perhaps novelty was more salient to the monkeys because more trials 

had elapsed between the introduction of novel options relative to the human paradigm (i.e. 

longer time horizon; Wilson et al., 2021), or because individual differences in novelty-driven 

exploration are more apparent when secondary versus primary reinforcement is used (e.g. 

we only observed one monkey that was not prone to exploring novel options). But it is 

important to point out that the free parameters for the IEV and exploration BONUS were 

fit together and more relevant than whether individual parameters differed from zero, is 

whether there was a consistent relationship between the two parameters across humans and 

non-human primates. This would confirm that despite individual differences in subjects’ 

tendencies to explore or exploit, relative weighting of the uncertainty surrounding these 

decisions informed how each species chose to manage explore-exploit tradeoffs. In both 

humans and monkeys, we observed comparable negative correlations between IEV and 

exploration BONUS parameters across species (Human: rho=−0.48, 95% High Density 
Interval (HDI)=−0.73 to −0.19; Monkey: rho=−0.67, 95%HDI=−0.97 to −0.04; Figure 1J; 

Supplementary Figure 2).

Neurocomputational Bases of Novelty-Driven Exploration in Humans

Encoding of the bonus in future value that predicts exploratory choices.—We 

determined whether—as in nonhuman primates (Costa and Averbeck, 2020; Costa et al., 

2019)—the human brain encodes the potential increase in future value that can be acquired 

through exploration. To test this, we modeled trial-to-trial variance in choice-evoked brain 

activity as a function of exploration BONUS value estimates derived from the POMDP 

model (STAR Methods). For each subject, first-level model coefficients, that related trial-

by-trial changes in BOLD activity to the exploration BONUS for chosen options, were 

extracted from 370 ROIs spanning the entire cortex, medial temporal lobes, and dorsal 

and ventral striatum. These parameter estimates were passed to a group-level Bayesian 

Multi-Level Model (BMLM; (Chen et al., 2019) to determine which ROIs encoded the 

exploration BONUS estimates from the POMDP model. BMLM approaches are gaining in 

popularity for both functional activation and connectivity-based fMRI studies (Cosme et 

al., 2021; Lima Portugal et al., 2020; Limbachia et al., 2021; Yin et al., 2019) because 

they circumvent multiple comparison problems commonly encountered with univariate 

approaches and produce highly overlapping results compared to conventional voxel-level 
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modeling with improved modeling efficiency (cf., (Limbachia et al., 2021); Supplementary 

Figure 1).

When participants chose an option there was widespread encoding of its associated 

exploration BONUS value. In most brain regions that encoded the exploration BONUS, 

neural activity was aligned with the sign of the POMDP derived model estimate. 

Positive encoding was observed in dorsolateral prefrontal cortex (e.g. posterior area 9/46), 

ventrolateral prefrontal cortex (e.g. inferior frontal sulcus), ventromedial prefrontal (e.g. 

area 10v), orbitofrontal cortex, rostral anterior cingulate cortex (e.g. area 32), posterior 

parietal regions (e.g. lateral intraparietal area), inferior temporal lobe regions (e.g. area 

TE), and visual areas (e.g. fusiform face complex; Supplementary Table 1; Figure 2). We 

only found two brain regions in which neural activity was inversely aligned with the sign 

of the exploration BONUS. Negative encoding was found in lateral frontopolar cortex 

(e.g. area p10p, anterior 9/46), and posterior cingulate cortex (e.g. area 31; Supplementary 

Table 1; Figure 2). It is often argued that differences in neuronal sources can determine 

whether BOLD responses are positive or negative: Whereas an association between positive 

BOLD and excitatory neuronal activity is well-established (Logothetis et al., 2001), neuronal 

inhibition in deep cortical layers may lead to vasoconstriction and a local increase in 

deoxyhemoglobin, leading to negative BOLD signal (Shmuel et al., 2006). Therefore, 

regardless of whether a region exhibited positive or negative deflections in activity as a 

function of exploration BONUS—the more important point is that all of the identified 

regions likely play a computational role in directed exploration in some manner.

Overlapped and distinct encoding of perceptual novelty and exploration 
value.—There is an important distinction between exploration driven by perceptual 

novelty–either due to surprise or habituation–and exploration motivated by an explicit desire 

to gain information, reduce uncertainty, and maximize future rewards (Averbeck, 2015). 

Recognizing this distinction, we included regressors in the first-level fMRI model that 

separately accounted for i) variance explained by the exploration BONUS associated with 

choices, and ii) the number of trials that had elapsed since a novel option was introduced. 

Because participants did not always choose the novel option and the sign of the exploration 

bonus associated with each option switched from positive to negative based on how often 

they were sampled, these two regressors were only weakly correlated. This allowed us to 

control for variance in neural activity driven by perceptual novelty when assessing encoding 

of POMDP derived valuations, since whether or not the novel option was chosen it was 

always present on the screen at the time a choice was executed. But it also allowed us to 

detect brain regions which encoded perceptual novelty by passing first-level coefficients for 

the perceptual novelty regressor to a group-level BMLM.

Assessing the potential conjunction of these effects (i.e., perceptual novelty and exploration 

value) is of interest because although prior neurophysiology and neuroimaging studies have 

identified a large set of brain regions involved in novelty processing, encoding of perceptual 

novelty is weak relative to encoding of POMDP derived value signals in the few brain 

regions that have been examined in macaques (Costa and Averbeck, 2020; Costa et al., 

2019; Tang et al., 2022). A conjunction map of perceptual novelty and exploration BONUS 

encoding revealed a diffuse set of frontoparietal network and subcortical regions which 
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encoded both factors (Supplementary Table 2; pink in Figure 4). But we also found through 

this analysis that there were multiple regions which exclusively encoded either perceptual 

novelty or the value of exploring. Distinct encoding of the number of trials that had elapsed 

since the introduction of a novel choice option was found in temporopolar regions, inferior 

temporal cortex, and components of the brain’s ‘salience network’ (anterior insula and 

dorsal anterior cingulate cortex; Supplementary Table 2; orange in Figure 4). Whereas 

distinct encoding of the relative gain or loss in future value associated with exploring or 

exploiting was found in frontopolar cortex, ventromedial prefrontal cortex, rostral anterior 

cingulate cortex, and nucleus accumbens (Supplementary Table 2; Figure 4, blue in Figure 

4).

Encoding of immediate reward value that predicts exploitative choices.—We 

modeled trial-to-trial variance in choice-evoked brain activity as participants learned the 

IEV associated with choosing a particular option. Neural activity at the time of choice was 

positively related to the IEV of the chosen option in bilateral ventromedial prefrontal cortex 

(e.g. area 10v), posterior cingulate regions (e.g. area 31), bilateral somatomotor regions 

(e.g. area 4), anterior temporal regions (e.g. area TE), and visual cortex. Conversely, neural 

activity within nodes of frontoparietal and cingulo-opercular brain networks were negatively 

correlated with the IEV of the chosen option, including dorsolateral prefrontal cortex (e.g. 

posterior area 9/46), dorsomedial prefrontal and anterior cingulate regions (e.g. medial area 

8; area 32), the lateral intraparietal area, and anterior insula (Supplementary Table 3; Figure 

2B).

Dissociable encoding of explore-exploit value computations in dorsal versus 
ventral circuitry.—We examined whether brain regions we identified as encoding both 

BONUS and IEV showed similar or opposite patterns of encoding across these two models. 

First, we found that lateral frontopolar cortex more strongly encoded the potential gain or 

loss in future value associated with choosing to explore or exploit, whereas dorsal ACC 

and a cluster of somatomotor regions more strongly encoded the immediate likelihood 

that a choice would be rewarded. All of the other brain regions we identified through 

our BMLM analyses encoded both decision variables and clustered together based on 

whether they encoded the IEV and exploration BONUS in a similar or opposing manner. 

Brain regions wherein activity at the time of choice encoded the IEV and exploration 

BONUS of chosen option in an opposing manner included dlPFC, the dorsal subdivision 

of the lateral intraparietal area, and dorsal anterior cingulate cortex (Figure 2C). Whereas 

activity similarly encoded the IEV and exploration BONUS in ventromedial prefrontal 

cortex, orbitofrontal cortex, rostral anterior cingulate (Figure 2C), nucleus accumbens, and 

amygdala (Figure 3B). These distinct encoding patterns between dorsal frontostriatal and 

ventral mesocorticolimbic circuitry suggests these dorsal and ventral circuits could play 

distinct roles in deciding when to explore or exploit (Averbeck & Murray, 2019; Tang et al., 

2022).

Discussion

Humans and rhesus macaques both attempt to resolve uncertainty about how their current 

choices will affect future outcomes when confronted with explore-exploit tradeoffs. By 
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modeling humans’ and monkeys’ choices in a unifying computational framework we 

were able to broaden insights into the neural correlates of explore-exploit decisions 

gleaned from neurophysiology experiments in monkeys, and identify broad networks of 

prefrontal and motivational brain regions in humans that contribute to this complex form 

of model-based reinforcement learning. Similar to recent monkey neurophysiological data 

(Costa and Averbeck, 2020; Costa et al., 2019; Tang et al., 2022), we found distributed, 

but distinctly patterned encoding of POMDP derived value computations necessary for 

successfully managing explore-explore tradeoffs. Distinct encoding patterns were observed 

in key subdivisions of human prefrontal cortex, including frontopolar cortex, as well as 

in motivational brain regions such as the amygdala, ventral striatum, and orbitofrontal 

cortex. This suggests that homologous neural circuits aid humans and nonhuman primates 

in solving the explore-exploit dilemma. Moreover, by taking advantage of our ability to 

map these value computations across the entire human brain our data suggest that there is 

a much more dynamic interplay between frontopolar cortex, frontoparietal, frontostriatal, 

and mesocorticolimbic circuitry during explore-exploit decision making than is currently 

hypothesized (Daw et al., 2006; Mansouri et al., 2020; Wilson et al., 2021).

The observation that neural activity in frontopolar cortex encoded the small differences in 

the relative future value that signaled when exploration is advantageous helps to resolve 

the computational role of this subdivision of prefrontal cortex unique to primates (Wise, 

2008), which has been routinely implicated in explore-exploit decision making (e.g. Daw et 

al., 2006; Mansouri et al., 2017; Zajkowski et al., 2017). Enhanced deactivation of multiple 

subdivisions of frontopolar cortex (area p10p and anterior area 9/46) was observed when 

participants selected options with a high exploration BONUS value (i.e. novel options), 

and this result was orthogonal to encoding perceptual novelty and its habituation. Notably, 

in line with human lesion-symptom mapping studies showing aberrations in value-based 

choice in patients with damage to ventromedial prefrontal and rostral anterior cingulate 

cortex (Hogeveen et al., 2017; Kovach et al., 2012; Reber et al., 2017), ventromedial 

frontopolar cortex (area 10v) encoded the anticipated decision value of the chosen option—

evidenced by parallel encoding of both exploration BONUS and IEV of choices. In contrast, 

posterolateral frontopolar regions encoded exploration BONUS, but did not demonstrate 

strong encoding of IEV or perceptual novelty. Disruptive brain stimulation applied to 

posterolateral frontopolar regions selectively impairs directed, but not random exploration 

(Zajkowski et al., 2017). These data suggest that whereas ventromedial frontopolar cortex 

encodes the decision value of a choice (relevant to both exploration or exploitation), 

posterolateral frontopolar cortex is more strongly involved in the decision to explore new 

options and maximize future opportunities to earn reward.

Our finding that posterolateral frontopolar cortex (area p10p) encodes the bonus in value 

associated with exploring versus exploiting helps to resolve competing hypotheses about 

its computational role. Posterolateral frontopolar cortex has consistently been implicated 

in exploration in humans (Badre et al., 2012; Boorman et al., 2009; Daw et al., 2006), 

but interpretations about its computational role are less consistent. One view suggests 

this frontal subdivision encodes the value of information that resolves uncertainty when 

participants choose to explore (Badre et al., 2012). A different perspective is that this 

same region is involved in top-down inhibition of action selection circuitry to enable 
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switching from exploitative to exploratory actions (Daw et al., 2006). These hypotheses 

are not mutually exclusive, and our data provide some support for both notions. First, in 

our approach the POMDP model assumes that an agent is using uncertainty about the 

future to guide exploration. Therefore, our results showing that posterolateral frontopolar 

cortex is increasingly deactivated as the bonus associated with exploring uncertain options 

increases, are well aligned with existing studies showing that activity in area p10p scales 

with decision uncertainty (Badre et al., 2012). Additionally, because the exploration BONUS 

associated with a choice was negatively encoded in area p10p and positively encoded in 

frontoparietal networks, local white matter tracts between area p10p and more posterior 

prefrontal regions (Baker et al., 2018) may enable predictions about uncertainty and future 

value to bias downstream recruitment of frontoparietal action selection circuits. Causal 

circuit manipulation studies contrasting the computational roles of different regions in the 

current task across primate species are warranted to test these ideas.

Several regions of inferior temporal cortex, temporopolar regions, anterior insula, and 

dorsal anterior cingulate cortex demonstrated unique encoding of perceptual novelty and 

its habituation, related to when a novel stimulus was introduced as a choice option and 

repeatedly viewed across trials despite it being chosen or not. These same regions did 

not encode the exploration BONUS associated with choosing novel or alternative options. 

Primates respond preferentially to novel events, and one of the mechanisms for this is 

thought to be adaptations in the firing rate of inferior temporal cortex neurons to the relative 

familiarity of visually-presented objects (Desimone, 1992; Jaegle et al., 2019; Rodman, 

1994). Since BONUS estimates for novel options decreased non-linearly with repeated 

sampling over trials, it is also possible that some of the shared variance between BONUS 

and novelty in visual cortices was associated with a non-linear decay of perceptual novelty 

responses in these regions (Sutton and Barto, 1990). Beyond this novelty-orienting response, 

recent recordings from nonhuman primates suggest that anterior inferior temporal neurons 

play a critical role in the control of subsequent novelty-seeking behaviors (Ogasawara et 

al., 2021). Finally, insula and dorsal anterior cingulate have been argued to represent nodes 

within the brain’s ‘salience network’, which among other functions, is thought to play a 

role in exogenous attentional capture by highly salient sensory events (Corbetta et al., 2008; 

Uddin et al., 2017). Therefore, isolating variance in BOLD activation that was associated 

with the degree of novelty of options within the choice set revealed brain maps that are in 

direct agreement with prior systems neuroscience research on the neuronal mechanisms of 

novelty-driven attentional orienting and novelty-seeking behaviors.

Lastly, we observed dissociations between explore-exploit computations in corticostriatal 

brain networks. Specifically, in the frontoparietal network and dorsal striatum BOLD 

activity was increased as a function of exploration BONUS, suggesting increased 

recruitment of these regions when individuals decided to explore novel options and 

resolve uncertainty about their future value. This would complement the known role of 

frontoparietal regions in matching behavior (Sugrue et al., 2004), foraging (Genovesio, 

Wise, and Passingham, 2014), and information sampling (Furl and Averbeck, 2011; Costa 

and Averbeck, 2015). Several frontoparietal regions were also negatively associated with 

IEV, indicating deactivation during the exploitation of familiar rewards. One possibility is 

that participants rapidly form an internal model of the general structure of the task, which 
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includes an expectation about how frequently familiar options would be replaced with novel 

options. This acquired model of the task would enable the subject to infer that novel stimuli 

provide a potential increase in future value relative to familiar options (in accordance with 

the exploration BONUS parameter from the POMDP). Conversely, after participants have 

had the opportunity to repeatedly sample novel choice options and learn whether they 

are better or worse than familiar alternatives (i.e., when all options are familiar, and their 

IEV is differentiated), participants may shift from use of circuits enabling model-based 

control to parallel systems implicated in model-free stimulus-outcome learning. In this view, 

when exploration BONUS is high during explore-exploit decision making, brain regions 

involved in model-based control (e.g. dorsolateral prefrontal cortex, lateral intraparietal 

cortex, and dorsomedial striatum; (Averbeck and O’Doherty, 2022; Gläscher et al., 2010; 

Liljeholm and O’Doherty, 2012; Smittenaar et al., 2013)) demonstrate greater activation due 

to the increased engagement of model-based predictions about the potential future value 

of exploration. In contrast, when IEV is high, the anticipated value of the chosen option 

is well-learned and model-free control can operate, associated with less intensive neural 

computations in model-based control circuits (cf., (Otto et al., 2013; Smittenaar et al., 

2013)). These notions would also accord with the view that dorsal frontostriatal circuits 

play a role in Bayesian state inference and goal-directed behavioral control more broadly 

(Averbeck and Murray, 2020; Bartolo and Averbeck, 2020). Additionally, our finding of 

enhanced lateral intraparietal activity when exploration BONUS is high, and decreased 

intraparietal activity when IEV is high, is compatible with existing studies dissociating 

novelty and reward anticipation in this region in nonhuman primates (Foley et al., 2014).

But there still remains an outstanding question as to how deactivation in frontopolar 

cortex corresponds to activation in model-based control regions when uncertainty motivates 

decisions to explore. One possibility is that model-based deactivation in posterolateral 

frontopolar (p10p) is related to changes in the activity of inhibitory interneurons in this 

area, given that in macaques frontopolar cortex neurons are task engaged throughout 

each trial but only encode goals at the time of feedback (Tsujimoto et al., 2011). 

This also fits with the observation that exploration BONUS encoding is delayed in 

anterior vs. posterior dorsolateral prefrontal cortex (Tang et al., 2022) indicative of 

feedforward processing. Future cell-type specific neurophysiology and neuromodulatory 

studies examining frontopolar, frontoparietal, and frontostriatal networks in nonhuman 

primates are needed to better understand the consistent engagement of this region during 

exploratory decision making.

Overall, we report evidence that humans and monkeys perform similar neural computations 

when exploring novel stimuli in lieu of exploiting familiar rewards. Across primate 

species we observed a novelty-driven exploration decision bias in the immediate wake of 

encountering new choice opportunities, alongside an increased tendency to exploit the best 

available option relative to the worst available alternative. These decision tendencies were 

well-predicted by value computations derived from a POMDP model of explore-exploit 

decision making. Therefore, the motivation to explore novel options and maximize future 

value when confronted with the explore-exploit dilemma represents an exciting avenue for 

cross-species primate research, providing a new bench-to-bedside pipeline for interventions 

for pathological reward processing or novelty sensitivity in clinical populations.
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STAR Methods

Resource Availability

Lead contact.—Requests for further information should be directed to and will be fulfilled 

by the lead contact, Jeremy Hogeveen (jhogeveen@unm.edu).

Materials availability.—This study did not generate new unique reagents.

Data and code availability.—All original code from this paper has been shared via 

GitHub, and a DOI release created via Zenodo. The code is publicly available as of the date 

of publication, and the DOI is listed in the Key Resources Table.

Human Participants

47 adult participants from the Albuquerque, New Mexico community were enrolled in 

the current study, which was approved through the University of New Mexico Office 

of the Institutional Review Board. Unfortunately, N=5 of 47 enrolled participants were 

unable to complete their scheduled study visit due to mandated COVID19 pandemic 

lockdown restrictions in Spring, 2020. Additionally, N=1 participant was removed from 

study analyses due to extreme non-normative behavior relative to the computational model 

(3.34 residual standard deviations from the group line of best fit between the BONUS 

and IEV coefficients), N=1 participant was removed due to excessive head motion during 

fMRI (>3 standard deviations above mean framewise displacement across all task fMRI 

runs), N=2 participants were removed due to insufficient responding during the task (N=144 

responses during the task, −4.11 standard deviations below mean across the sample), and 

N=1 participant was removed due to an incorrect key configuration on the task fMRI button 

box. Therefore, the final sample in the current study comprised N=37 participants.

This final sample included 24 female and 13 male participants (Mage=26.6 years; SD=7.24 

years). 12 participants were of Hispanic or Latino ethnicity, 20 were Not Hispanic or Latino, 

and five did not choose to report their ethnicity. The final sample included two mixed 

race participants (one Black or African American and American Indian/Alaska Native, one 

American Indian/Alaska Native and White), three Asian participants, one Black or African 

American participant, 26 White participants, and five did not choose to report their race.

Monkey Subjects

Eight adult male rhesus macaques (Macaca mulatta) served as subjects. Their ages and 

weights at the start of training ranged between 6–8 years and 7.2–9.3 kg. Animals were pair 

housed when possible, had access to food 24 hours a day, were kept on a 12-h light-dark 

cycle, and tested during the light portion of the day. On testing days, the monkeys earned 

their fluid through performance on the task, whereas on non-testing days the animals were 

given free access to water. All procedures were reviewed and approved by the NIMH 

Animal Care and Use Committee. Behavioral data from a subset of the same monkeys also 

appears in x(Costa et al., 2019).

Hogeveen et al. Page 12

Neuron. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Novelty-Bandit Task

Human version.—Participants made speeded (≤2 seconds) manual responses between 

three neutral images taken from the International Affective Pictures System (IAPS(Bradley 

and Lang, 2020)). Stimuli were presented using EPrime Version 3 (Psychology Software 

Tools, Sharpsburg, PA), with responses recorded using a MIND Input Device (https://

www.mrn.org/collaborate/mind-input-device). Images were randomly assigned an a priori 
low (p=0.2), medium (p=0.5), or high (p=0.8) reward probability. Every 5–12 trials (M≈6) 

a ‘novel insertion’ took place, wherein one familiar image in the current set was replaced 

by one novel image to create a new set that would be presented for the proceeding 5–12 

trials. Novel images were randomly assigned a low, medium, or high reward probability, 

with the caveat that all 3 images could not have the same assigned reward probability 

in the new set. Participants completed 224 trials containing 32 novel stimulus insertions, 

divided evenly into 4*≈7-minute fMRI runs. Participants made confidence judgments (low, 

medium, or high confidence) after each decision, but these data are not relevant to the 

current manuscript. Image location was randomized on each trial, and participants received 

either reward (green ‘+1’) or nonreward (red ‘0’) feedback after each decision. Notably, 

the fixation cross jittered durations were optimized to maximize efficiency for deconvolving 

the hemodynamic response at the time of choice, choice option were presented centrally to 

minimize saccade-related BOLD activity, manual responses indicated choice, and feedback 

was a symbolic cue (+1 versus 0; Figure 1A).

Monkey version.—Subjects performed a saccade-based version of the same task 

performed by humans. Stimulus presentation and behavioral assessment were controlled 

via Monkeylogic (Hwang et al., 2019), and eye movements were sampled at 400 frames per 

second, 1000 Hz using an Arrington Viewpoint eye tracker (Arrington Research, Scottsdale, 

AZ). Each session began with three naturalistic scenes randomly assigned an a priori low, 

medium, or high probability of being paired with an apple juice reward via a precise 

liquid-delivery device (Mitz, 2005). Every 8–30 trials (M≈19 trials) a novel insertion took 

place, and the novel image was assigned a low, medium, or high reward probability, with 

the caveat that all three images in the new set could not have the same reward likelihood. 

Monkeys completed 650 trials per session, with each trial beginning with a central fixation 

(250–750ms), followed by the presentation of three images in the periphery, and a saccade to 

and fixation on one of the targets for 500ms). Subjects performed a saccade-based version of 

the same task performed by humans. In the monkey experiment, the trial initiated when the 

animal maintained fixation for 0.5–0.75s, options were presented peripherally to minimize 

the influence of stimulus position on choice, saccades indicated choice, and feedback was a 

juice reward (Figure 1A). Stimulus presentation and behavioral assessment were controlled 

via Monkeylogic (Hwang et al., 2019), and eye movements were sampled at 400 frames per 

second, 1000 Hz using an Arrington Viewpoint eye tracker (Arrington Research, Scottsdale, 

AZ).

Computing choice probabilities.—To assay discrete explore-exploit decisions in 

humans and rhesus macaques, we computed the likelihood that each subject would select the 

novel option, the best alternative option (i.e., the familiar option that had most often resulted 

in prior reward), and the worst alternative option (i.e., the familiar option that had least often 
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resulted in prior reward) during the early trials after a novel stimulus was inserted. These 

“early trials” were defined as the first N=2 trials post-insertion for humans. Relative to the 

modal interval between insertion trials (M≈6 for humans, M≈19 for monkeys), this was 

translated to N=6 post-novel trials for the monkeys.

Additionally, to model decision making over time, we computed the probability of selecting 

the novel, best, or worst alternatives as a function of trials post-novel stimulus insertion. 

To be clear, we computed the probability that each participant would select each option 

on 0 trials post-novel, 1 trial post-novel, 2 trials post-novel, etcetera. Notably, there were 

low trial numbers in the human dataset for >6 trials post-novel, and >19 trials post-novel 

for macaques. Therefore, the choice frequencies on these late run trials were summed 

together (e.g., for human data the probability of choosing the best available option on trial 

post-novel=6 in our model actually reflects the probability of choosing the best alternative 

option on trials post-novel≥6).

Assumptions of the General Linear Model.—We evaluated whether or not choice 

probability data met the assumptions of normality and homoscedasticity. We observed 

significant evidence for violations to the assumption of normality within human (probability 

of choosing the novel stimulus: W=0.97, p<0.001; probability of choosing the best 

alternative: W=0.98, p=0.007) but not monkey (probability of choosing the novel stimulus: 

W=0.99, p>0.2; probability of choosing the best alternative: W=0.99, p>0.1) subjects. We 

also observed significant evidence for a violation of the assumption of homoscedasticity for 

the model fit contrast between human and monkey subjects (F=4.55, p=0.044). Therefore, 

robust inferential tests were used for human behavioral analyses, and cross-species 

comparisons, but conventional tests were used within the monkey subjects. Regarding the 

robust inferential tests used for human choice data, for comparisons between two conditional 

means we used Yuen’s modified t-test for trimmed means [tyuen; (Yuen, 1974)]. For our 

analysis of decision probabilities over trials, we computed robust linear mixed effects 

models that down-weight observations with large residuals and reduce their impact on model 

estimates (Koller, 2016). Importantly, none of the conclusions derived from these robust 

inferential tests would be reversed by, instead, using conventional t-tests or linear mixed 

model estimators.

Partially Observable Markov Decision Process Model

The task was modeled using a partially observable Markov decision process (POMDP) 

model. In the POMDP model, utilities are defined by the information state, which is a 

hidden variable that can be inferred based on observed choices and outcomes, across all 

three options. The set of possible next information states that can be reached is determined 

by whether or not the current choice is rewarded and whether one of the three options is 

replaced with a novel option. Thus, each choice leads to 21 unique subsequent states and 

each choice after that to another 21 unique states. Looking out over a particular time horizon 

the future information states that can be reached after the current choice can be represented 

by a binary tree. The information state reflects a product space across the three binary trees 

formed for each option. Transitions through the information state space occur after each 

choice and its associated outcome, and they correspond to belief updates for the POMDP. 
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Because the state space quickly becomes intractable over relevant time horizons, we used 

approximation methods to fit an infinite horizon, discrete state, discounted POMDP using 

B-spline basis functions to estimate the value of information states (Averbeck, 2015). The 

utility, u, of a state, s, at time t is:

ut st = maxa ∈ Ast r(s, a) + γ∑j ∈ s p j ∣ st, a ut + 1(j) (1)

Where Ast is the set of available actions in state s at time t, r(st, a) is the reward that 

will be obtained in state, s, at time, t, if action, a, is taken. ∑j∈s represents the summation 

of all possible subsequent states at, t + 1, or the expected future utility taken across the 

transition probability distribution, p(j|st, a). Transition probability refers to the probability to 

transitioning into each future state, j, from the current state, st, if the subject takes action, a. 

Gamma represents a discounting term set at 0.9. The terms inside the curly braces represent 

the utility for each available option, Q(st, a) = r(s, a) + γ∑j∈sp(j|st, a)ut+1(j). The immediate 

expected value (IEV) refers to the first term in the utility function, IEV = r(s, a), while the 

future expected value (FEV) is the second term, FEV = γ∑j∈sp(j|st, a)ut+1(j). The exploration 

BONUS is the FEV of a given action, a, relative to the average FEV of all available options, 

BONUS(a) = FEV(a) − (∑j=1:3FEV(j))/3.

We used a value iteration algorithm to fit utilities (Puterman, 1994), in which the vector 

of utilities across states, v0, was initialized to random values at iteration, n = 0, and then 

updated by computing:

vn + 1 = maxa ∈ Ast r(s, a) + γ∑j ∈ s p j ∣ st, a vn(j) (2)

Following each iteration the change in value was calculated as, Δv = vn+1 − vn, and 

examined either ||Δv|| <∈ or span(Δv) <∈. The span is defined as span(v) = maxs∈S(s) − 

mins∈S(s).

The state space was intractable over relevant time horizons, therefore approximation 

methods involving b-spline basis functions and utility approximation were used (Friedman et 

al., 2001), with:

v(s) = ∑m
i = 1aiΦi(s) (3)

We used fixed basis functions so we could calculate the basis coefficients, ai, using least 

squares techniques. We assembled a matrix, ϕi,j = ϕi(sj), which contained the values of the 

basis functions for specific states, sj. We then calculated a projection matrix:

H = ϕ ϕ′ϕ −1ϕ′ (4)

And calculated the approximation:

v = Hv (5)
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Where bold indicates a vector over states, or the sampled states at which we computed 

the approximation. When using the approximation in the value iteration algorithm, we first 

compute the approximation, v. This approximation was then substituted for the v in equation 

2 (i.e., maxa ∈ Ast r(s, a) + γ∑j ∈ s p j ∣ st, a vn(j). Approximations to new values are then 

calculated as, vn + 1 = Hvn + 1, until convergence.

State space definition.—The novelty task is a three-armed bandit task. The options are 

rewarded with different probabilities, but the amount of reward is always 1. The reward 

probabilities for each bandit are stationary while that option is available. On each trial there 

is a 5% chance that one of the bandit options will be replaced with a new option. The 

underlying model is a discrete MDP. The state space is the number of times each option has 

been chosen, and the number of times it has been rewarded, st = R1, R1, R2,C2,R3,C3.

This state space was approximated using a continuous approximation sampled discretely. 

The immediate reward estimate is given by the maximum a-posteriori estimate, 

r st, a = i =
ri + 1
ci + 2 . The set of possible next states, st + 1, is given by the chosen target, 

whether or not it is rewarded, and whether one of the options is replaced with a novel option 

(Averbeck et al., 2013). Thus, each state leads to 21 unique subsequent states. We define 

qi = rt(st, a = i), and pswitch = 0.05, as the probability of a novel stimulus substitution. The 

transition to a subsequent state without a novel choice substitution and no reward is given 

by:

pt …, Ci + 1, Ri, … ∣ st = …, Ci, Ri, … , a = cℎoose i = 1 − qi 1 − pswitcℎ (6)

And for reward by:

pt …, Ci + 1, Ri + 1, … ∣ st = …, Ci, Ri, … , a = cℎoose i = qi 1 − pswitcℎ (7)

When a novel option was introduced, it could replace the chosen stimulus, or one of the 

other two stimuli. In this case if the chosen target, i, was not rewarded and a different target, 

j, was replaced, we have

pt …, Ci + 1, Ri, Cj = 0, Rj = 0 ∣ st = …, Ci, Ri, … , a = cℎoose i) = 1 − qi
pswitcℎ/3 (8)

And if the chosen target was not rewarded and was replaced

pt …, Ci = 0, Ri = 0, … ∣ st = …, Ci, Ri, … , a = cℎoose i = (1 − qi pswitcℎ/3 (9)

And correspondingly, following a reward and replacement of a different target

pt …, Ci + 1, Ri + 1, Cj = 0, Rj = 0 ∣ st = …, Ci, Ri, … , a = cℎoose i)
= qipswitcℎ/3 (10)

And
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pt …, Ci = 0, Ri = 0, … ∣ st = …, Ci, Ri, … , a = cℎoose i = qipswitcℎ/3 (11)

Note that when a novel option is substituted for the chosen stimulus, the same subsequent 

state is reached with or without a reward.

Magnetic Resonance Imaging (MRI) Acquisition, Processing, and Analysis.

Image acquisition.—All MRI scans were acquired on a 3T Siemens Tim Trio system 

with a 32-channel phased-array head coil. T1-weighted (T1w) structural MRI was 

acquired via a multi-echo MPRAGE sequence (5-echo; voxel size=1mm iso). T2*-weighted 

functional MRI data were acquired with a gradient EPI pulse sequence using simultaneous 

multi-slice technology (TR=1s; TE=30ms; Flip=44°; MB factor=4; voxel size=3mm iso). 

Acquired data were converted from DICOM to Brain Imaging Data Structure (BIDS) format 

using Heudiconv v.0.5.4 (https://heudiconv.readthedocs.io/en/latest/).

Image preprocessing.—Results included in this manuscript come from preprocessing 

performed using fMRIPrep 20.2.0rc0 (Esteban et al., 2019) (RRID:SCR_016216), which is 

based on Nipype 1.5.1 (Gorgolewski et al., 2011) (RRID:SCR_002502).

fMRI analysis.

First-level model.: Participant-level fMRI data were modeled as a function of parameters 

from the Partially Observable Markov Decision Process (POMDP) model. Specifically, in 

a first pass model (Model 1) we fit the fMRI timeseries as a function of seven regressors: 

1) a choice constant, 2) exploration bonus (BONUS), 3) immediate expected value (IEV), 

4) future expected value (FEV), 5) number of trials since a novel stimulus was inserted, 6) 

whether or not the previous trial was rewarded, and 7) reward prediction error (feedback 

1 or 0, minus IEV). Additionally, to isolate BONUS variance components sensitive to the 

novelty of stimuli in the choice set, we ran an additional model where we did not covary 

for regressor #5 (i.e., “number of trials since novel”; Model 2; Figure 4). We then ran a 

group-level comparison computing the posterior distribution difference between the BONUS 

parameter estimates between the original model and the revised model, reasoning that brain 

regions sensitive to novelty will vary their activations based on whether or not this “number 

of trials since novel” regressor was included as a covariate at the first-level.

The choice constant was fit across the full 2s duration of the stimulus presentation event. 

Parametric modulation of the BOLD signal by regressors 2–6 at the time of choice was 

modeled with duration 0, and we accounted for variation in the BOLD responses using 

the default FMRIB Linear Optimal Basis Sets (FLOBS) in FSL (Smith et al., 2004). 

The default FLOBS set comprises three waveforms: a canonical hemodynamic response 

function (HRF), and its temporal and dispersion derivatives. For each event regressor, 

the canonical HRF was orthogonalized to the derivative waveforms, and only the HRF 

parameter estimates were used in second-level models. Regressor 7 was fit the same 

way, but was time-locked to the feedback event. Notably, multicollinearity was not a 

concern in either model (all VIFs≤1.54). Cue onset timing was jittered and optimized via 

AFNI’s make_random_timings.py. 24 standard head motion parameters and their derivatives 
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were included as confound regressors(Satterthwaite et al., 2013), and 5mm full-width half-

maximum smoothing and 100s high-pass temporal filtering were applied to the first-level 

data.

Second-level model.: Second-level data were modeled using a Bayesian Multilevel 

Modelling approach using brms v2.15.0 (https://cran.r-project.org/web/packages/brms/

index.html) in R v4.0.4 (https://www.r-project.org). Relative to conventional mass univariate 

analyses, Bayesian Multilevel Modelling improves model efficiency and sensitivity for 

detecting effects at smaller brain regions (Chen et al., 2019). First, mean percent signal 

change was extracted for each participant from 370 anatomically-defined regions-of-interest 

(ROIs) spanning cortex and subcortex. Specifically, cortex was parcellated using 360 areas 

(180 from each hemisphere) from the Glasser Multimodal Parcellation (Glasser et al., 2016), 

and 10 subcortical ROIs comprising amygdala and basal ganglia were segmented using 

the Harvard-Oxford Probabilistic Atlas via the FMRIB Software Library (FSL; (Smith et 

al., 2001, 2004)). Next, second-level models were fit in brms for each first-level model 

parameter of interest in the form:

Y ∣ se 1 + (1 ∣ subject) + (1 ∣ ROI) (12)

In these models, Y corresponds to the percent signal change to a given regressor from the 

first-level models and se corresponds to the standard error of this response variable across 

voxels within each ROI. The subject term represents the random effect associated with 

each subject, and the ROI term represents the random effect associated with each cortical 

and subcortical ROI in the model. Models used 4 Markov Chain Monte Carlo chains with 

10,000 iterations per chain, and the convergence criterion was R < 1.1 (all R values were 

→ 1). The only model that demonstrated issues with convergence was IEV, and this was 

resolved by repeating the IEV model with 20,000 iterations per chain (Supplementary Figure 

3). All models used weakly informative priors that are defaults in brms—i.e., a Student’s 

t-distribution with scale 3 and 10 degrees of freedom (Bürkner, 2017).

Lastly, we extracted the marginal posteriors associated with each ROI. Importantly, the 

main output of each brms model is one overall posterior distribution that is a joint 

distribution across participants and ROIs in a high-dimensional parameter space, and 

therefore correction for multiple comparisons is not appropriate (Gelman et al., 2012; 

Limbachia et al., 2021). Statistical inferences regarding the credibility of each ROI encoding 

a given regressor were made based on the proportion of each distribution that was above 

0 (henceforth, P+). P+ values less than 0.15 were used to indicate credible evidence 

for negative encoding of a given regressor, whereas P+ values above 0.85 indicated 

credible evidence for positive encoding. Though “strong,” “moderate,” and “weak” labels 

are sometimes assigned to arbitrary P+ levels within a Bayesian multilevel modelling 

framework, our goal in the current study was to map the brainwide computational 

architecture of explore-exploit decision making for the first time in humans. Therefore, 

even ROIs demonstrating “weak” positive or negative encoding of a given regressor could 

be theoretically important, and therefore worthy of discussion in the main text (Limbachia et 

al., 2021).
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Highlights:

• Value and uncertainty direct explore-exploit decisions in humans and 

monkeys.

• A prefrontal subdivision unique to primates encodes when exploration is 

valuable.

• Frontoparietal brain regions show dissociable encoding of value and 

uncertainty.

• Motivational brain regions complement prefrontal contributions to 

exploration.
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Figure 1. Task Design, Behavioral & Model Performance.
(A) Trial events from the three-arm bandit task, as performed by humans and monkeys 

(STAR Methods). (B) Both humans and macaques chose between neutral images assigned 

the same nominal reward probabilities, and experienced the same number of overall novel 

stimulus insertion trials. Insertion rate was faster in humans. (C-D) Across both species, 

the novel stimulus was explored more often than the familiar alternatives were exploited, 

during the first few trials after a novel stimulus was introduced. When not exploring the 

novel option, both species exploited the best alternative more often than choosing the worst 

available option. (E-F) Both humans and monkeys selected the novel option less often 

as the number of trials elapsed since it was introduced and conversely, increased their 

selection of the best available option. (G-H) Mean trial-by-trial changes in the POMDP 

valuations of human participants’ choices broken out by the nominal reward probabilities 

assigned to each option. The mean IEV and exploration BONUS are shown for when 

participants explored a novel option (top) versus exploited the best available alternative 

(bottom). (I) The correlation between choice performance and the POMDP was greater than 

zero within humans and monkeys, and correlation strength did not differ, suggesting similar 

computations shape explore-exploit behavior between species. (J) The parameter estimates 

used to weight IEV and exploration BONUS were negatively associated across both humans 

and monkeys.
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Figure 2. Cortical Encoding of Explore and Exploit Computations.
(A) Cortical regions showing positive (red; ≥85% samples above 0) and negative (blue; 

≤15% samples above 0) encoding of a novelty-driven exploration computation (i.e., 

BONUS) and (B) an exploit-related computation (i.e., IEV) in the Bayesian multilevel 

model. (C) Posterior distributions from a subset of a priori regions-of-interest indicated 

that lFPC negatively encoded the BONUS associated with choices, suggesting reduced 

activation during novelty-driven exploration. Additionally, vmFPC, OFC, and rACC 

positively encoded both BONUS and IEV parameters suggesting enhanced activation during 

exploration and exploitation. Finally, several frontoparietal network regions demonstrated 

intraregional dissociations in encoding of PODMP derived value estimates: positive 

encoding of BONUS and negative encoding of IEV. Darker and lighter colors in posterior 

distributions indicate left and right hemispheres. Bolded text indicates either ≥85% or ≤15% 
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of posterior samples above 0. X-axis corresponds to BOLD percent signal change; Y-axis 

corresponds to the posterior densities from the Bayesian multilevel model. Time courses 

from representative ROIs in the Bayesian model showing mean activation when trials are 

based on splitting the BONUS (D) and IEV (E) around breakpoints (i.e., 0 for BONUS 

and 0.5 for IEV). Although, the primary Bayesian multilevel models included parameter 

estimates that reflected signal modulation as a continuous function of BONUS and IEV. 

Exploration-related deactivation was observed in lFPC, alongside weak encoding of the IEV 

of choices (upper left panels in D and E), while increases in the value of exploring or 

exploiting increased activation of vmFPC (lower left panels in D and E). Abbreviations: 

lateral frontopolar cortex, lFPC; ventromedial frontopolar cortex, vmFPC; orbitofrontal 

cortex, OFC; rostral anterior cingulate cortex, rACC; dorsal anterior cingulate cortex, dACC; 

dorsolateral prefrontal cortex, dlPFC; ventrolateral prefrontal cortex, vlPFC; and dorsal 

lateral intraparietal area, LIPd.
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Figure 3. Amygdala & Striatum Encode Explore-Exploit Related Computations.
(A) Amygdala and striatal ROIs included in the Bayesian multilevel model. (B) Dorsal 

striatal nuclei (caudate and putamen) demonstrated evidence for positive encoding 

of BONUS but not IEV, while ventral nuclei—namely, accumbens and amygdala—

demonstrated positive encoding of both BONUS and IEV. Darker and lighter colors 

in posterior distributions indicate left- and righth-emispheres, respectively. Bolded text 

indicates either ≥85% or ≤15% of posterior samples above 0. (C-D) Timecourses pulled 

from representative clusters within amygdala (C) and accumbens (D) that demonstrated 

strong evidence for BONUS and IEV encoding, respectively.
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Figure 4. Overlapping and Distinct Networks Represent Novelty and Exploration.
Surface map displaying areas that uniquely encoded the number of trials since a novel 

stimulus was presented (orange), the relative future value of the selected option (BONUS; 

blue), and regions that encoded both regressors (CONJUNCTION; pink). Novelty-related 

encoding was observed in areas of the temporal pole (right TGd), inferior temporal 

cortex (IT), and regions of the salience network comprising anteroventral insula (AVI) and 

dorsal anterior cingulate cortex (dACC). BONUS-related encoding was observed in rostral 

frontopolar cortex (FPC), dorsolateral and ventromedial frontopolar regions (dlFPC and 

vmFPC), rostral anterior cingulate cortex (rACC), precuneus, and lateral intraparietal area 

(LIP). Lastly, the conjunction revealed a diffuse network of brain regions that were sensitive 

to both BONUS value and stimulus novelty, comprising several lateral prefrontal and 

frontopolar regions, orbitofrontal cortex, mid-insula, and several inferior temporal cortex 

regions.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus macaques (Macaca mulatta) NIMH/NIH

Original Code

All original code This paper 10.5281/zenodo.6342173

Software and algorithms

AFNI (Cox, 1996) https://afni.nimh.nih.gov/

Connectome Workbench Human Connectome Project https://www.humanconnectome.org/software/get-connectome-
workbench

E-Prime Psychology Software Tools https://pstnet.com/products/e-prime/

FMRIB Software Library (FSL) (Smith et al., 2004) https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

MATLAB Mathworks https://www.mathworks.com/products/matlab.html

Monkeylogic (Asaad and Eskandar, 2008) https://www.brown.edu/Research/monkeylogic/

Python Python Software Foundation https://www.python.org/download/releases/3.0/

R The R Foundation https://www.r-proiect.org/

Neuron. Author manuscript; available in PMC 2023 June 01.

https://afni.nimh.nih.gov/
https://www.humanconnectome.org/software/get-connectome-workbench
https://www.humanconnectome.org/software/get-connectome-workbench
https://pstnet.com/products/e-prime/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.mathworks.com/products/matlab.html
https://www.brown.edu/Research/monkeylogic/
https://www.python.org/download/releases/3.0/
https://www.r-proiect.org/

	Summary
	eTOC Blurb:
	Introduction
	Results
	Humans and Non-Human Primates Utilize Similar Computations to Manage Explore-Exploit Tradeoffs
	Choice behavior.
	Computational modeling of explore-exploit decisions.

	Neurocomputational Bases of Novelty-Driven Exploration in Humans
	Encoding of the bonus in future value that predicts exploratory choices.
	Overlapped and distinct encoding of perceptual novelty and exploration value.
	Encoding of immediate reward value that predicts exploitative choices.
	Dissociable encoding of explore-exploit value computations in dorsal versus ventral circuitry.


	Discussion
	STAR Methods
	Resource Availability
	Lead contact.
	Materials availability.
	Data and code availability.

	Human Participants
	Monkey Subjects
	Novelty-Bandit Task
	Human version.
	Monkey version.
	Computing choice probabilities.
	Assumptions of the General Linear Model.

	Partially Observable Markov Decision Process Model
	State space definition.

	Magnetic Resonance Imaging (MRI) Acquisition, Processing, and Analysis.
	Image acquisition.
	Image preprocessing.
	fMRI analysis.
	First-level model.
	Second-level model.



	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table T1

