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Abstract

Microglial homeostasis has emerged as a critical mediator of health and disease in the 

central nervous system. In their neuroprotective role as the predominant immune cells of the 

brain, microglia surveil the microenvironment for debris and pathogens, while also promoting 

neurogenesis and performing maintenance on synapses. Chronological aging, disease onset, or 

traumatic injury promotes irreparable damage or deregulated signaling to reinforce neurotoxic 

phenotypes in microglia. These insults may include cellular senescence, a stable growth arrest 

often accompanied by the production of a distinctive pro-inflammatory secretory phenotype, 

which may contribute to age- or disease-driven decline in neuronal health and cognition and is 

a potential novel therapeutic target. Despite this increased scrutiny, unanswered questions remain 

about what distinguishes senescent microglia and non-senescent microglia reacting to insults 

occurring in aging, disease, and injury, and how central the development of senescence is in 

their pivot from guardian to assailant. To intelligently design future studies to untangle senescent 

microglia from other primed and reactionary states, specific criteria must be developed that 

define this population and allow for comparisons between different model systems. Comparing 

microglial activity seen in homeostasis, aging, disease, and injury allows for a more coherent 

understanding of when and how senescent and other harmful microglial subpopulations should be 

targeted.
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Introduction

Globally, the number of people aged 65+ years will likely be greater than 1.5 billion by 

2050; comprising ~16% of the world’s population [1]. With this aging population comes 
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a predicted increase in various age-related diseases, including many neurodegenerative 

diseases (ND) like Alzheimer’s disease (AD) and Parkinson’s disease. Exploring the link 

between increased age and increased risk of ND has been an attractive area of research, 

especially given the high costs involved with the treatment and care of the afflicted. For 

example, the cost of AD and other dementias on the United States healthcare system alone 

is estimated to reach $355 billion in 2021, without even considering informal costs to 

caregivers [2]. Unfortunately, there is currently no cure for most age-related NDs, and 

treatment strategies usually center around simply managing the symptoms of a disease. This 

deficiency highlights the need for the development of new targets and therapeutic strategies 

to combat these ailments.

Another area of recent concern in neurological health has been the implication of traumatic 

brain injury in contact sport athletes and soldiers. Kinetic insults to the central nervous 

system (CNS) may not only be acutely disabling, but can promote persistent changes in the 

cellular populations and microenvironment of the CNS for years post-injury [3]. Compelling 

similarities exist between the post-injury phenotype seen in traumatic brain injury (TBI) 

and the disease phenotype observed in the brains of patients with AD and other dementias, 

including dysregulation of amyloid and tau proteins and a sustained alteration of glial 

phenotype [4–8]. Recent meta-analyses have even found potential connections between 

TBI occurring early in life and the risk of developing ND with age in humans [9,10], 

although issues with self-reporting and grading of TBI severity complicate the correlation 

[11,12]. Similar to geriatric NDs, no therapies exist to relieve the long-term effects of TBI 

beyond preventative measures, which is problematic as approximately 69 million individuals 

worldwide are estimated to sustain a TBI every year [13].

An attractive emerging therapeutic target in many maladies of aging is cellular senescence, 

which could provide a possible link between a dysfunctional CNS microenvironment and 

increased risk of ND. Senescence describes a cellular state where an irreversible cell-cycle 

arrest is induced by the expression of cyclin-dependent kinase inhibitors Cdkn1a (p21CIP1, 

hereafter p21) and/or Cdkn2a (p16INK4a, hereafter p16) [14–16]. Senescent cells produce a 

distinct inflammatory secretome and have been found to accumulate with age and in many 

diseases; potentially contributing to pathology [17–21]. A challenge in targeting senescence 

is the apparent heterogeneity of this cellular state, wherein a variety of insults may incite 

senescence, the inflammatory secretory phenotype is modified depending on cell type, 

and the senescent phenotype may even change based on the stage of senescence [22–24]. 

Even defining senescence is difficult, with different groups using different criteria to define 

a senescent cell. To address this, the International Cell Senescence Association recently 

put forth a recommendation for determining the presence of senescence, describing a 

combination of cell-cycle arrest, macromolecular damage, deregulated metabolism, and the 

production of a senescent-associated secretory phenotype (SASP) [25]. Another group has 

also proposed a two-step algorithm to assess senescence [24]. These features of senescence 

in the context of microglia will be explored later in this review.

If senescent cells are active drivers of neurodegeneration, then identifying the cellular 

population responsible becomes critical. Putative senescent states have been suggested in 

a variety of neural subpopulations with aging and in various disease contexts, including 

Ng et al. Page 2

FEBS J. Author manuscript; available in PMC 2023 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microglia [26–30], neurons [31–33], astrocytes [26,34,35], and oligodendrocyte progenitor 

cells [36]. Vascular and endothelial cells of the blood-brain barrier have also demonstrated 

senescence properties [37,38]. It is also likely that multiple cell types become senescent in 

complex diseases, which further complicates the cause-effect relationship between specific 

populations of senescent cells and disease processes.

Microglia, the resident mononuclear phagocytes of the CNS, play key roles in immune 

surveillance and defense [39], synaptic remodeling [40], and homeostasis [41]. They have 

also been identified as a putative senescent population in natural aging in both humans [42] 

and mice [27], mouse models of AD pathology [26], and in TBI [28,29]. However, in a 

reactionary or dystrophic state, microglia also contribute to the pathogenesis of various NDs 

and post-TBI syndromes [43–45]. The overlapping phenotypes of reactive and senescent 

microglia together with the heterogeneity of microglial phenotypes described in aging and 

disease [45,46] present a nuanced challenge to defining senescent microglia and parsing out 

their contribution to dysfunction.

In this review, we discuss the features of microglia phenotypes associated with aging, 

disease, and injury, and propose how senescent microglia may contribute to these conditions. 

With the known phenotypical overlaps between microglia across these contexts, we will also 

suggest ways to distinguish senescent microglia from other microglial populations.

Phenotypic complexity of microglia in aging, neurodegenerative disease, 

and injury

Microglial states are usually defined in relation to the conditions present at homeostasis 

(Figure 1). Although the term ‘homeostasis’ can be over-simplified – indeed the exact nature 

of these homeostatic microglia may differ based on many factors including brain region and 

temporal heterogeneity [47] – we will refer to the state of microglia in non-pathological 

contexts as ‘homeostatic’ for the purposes of this review. In this state, microglia are 

associated with immune protection, the support of neuron health, and synaptic remodeling 

[40,47].

Dysfunctional microglia are distinguished by a loss of homeostatic function, including 

impaired phagocytic capacity and the acquisition of a pro-inflammatory profile [48]. For 

the purposes of this review, these pro-inflammatory (yet non-senescent) microglia associated 

with pathological conditions will be referred to as ‘activated’ microglia (Figure 1). While 

we acknowledge that the use of the label ‘activated’ can be vague, it is outside the scope 

of this review to dissect the various states of microglia that have been described in aging, 

neurodegenerative disease and injury. Other reviews [47,49,50] have more closely examined 

the nuanced heterogeneity of microglia in those states.

Senescent and dysfunctional microglia, under various names, are often referenced 

interchangeably in studies of aging, ND, and TBI. We postulate that senescence is a distinct 

cellular state which can be distinguished from otherwise non-senescent inflammatory 

microglia (Figure 2). Given the putative differentiating features between microglial 
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phenotypes outlined below, unique roles played by senescent microglia may be delineated 

and not attributed to non-senescent dysfunctional microglia.

Aging

Several changes are associated with the microglial populations in the aged brain. An 

accumulation of microglia with a ‘dystrophic’ appearance or de-ramified microglia with 

cytoplasmic fragmentations have been noted in aged human brains [42,51]. Aged microglia 

also tend to accumulate lipofuscin [52–54], aggregations of highly oxidized proteins cross-

linked with sugars and lipids [55], which have been associated with dysfunction and 

inflammation [56,57]. Additionally, microglia in naturally aged mice appear to have lower 

phagocytic activity compared to young mice [48]. This, combined with an apparent decrease 

in motility [58,59], has been suggested to contribute to dysfunctional synaptic pruning and 

potentially to the cognitive deficits associated with age [60,61].

In both humans [62] and mice [52,63,64], aged microglia adopt a pro-inflammatory profile 

including higher expression of genes including TNFα, IL-6, and IL-1β, as well as markers 

of ‘priming’ such as CD11b and MHC-II (Figure 1). This state of ‘priming’ is thought 

to make aged microglia disproportionately reactive to immunological challenges, leading 

to prolonged neuroinflammation and the cognitive deficits associated with age [65,66]. 

The exact cause for the shifting of microglia to this pro-inflammatory state with age is 

unknown, although several theories such as the increased permeability of the blood-brain 

barrier introducing more ‘priming’ signals [67,68] and/or monocyte-derived cells [69], or 

age-related myelin fragment accumulation [70] have been proposed. It is also interesting to 

note that while the existing body of literature strongly indicates systemic organismal aging 

influences microglia function, the reverse is also true – that a change in microglial function 

could also result in age-related cognitive changes. For example, microglial repopulation in 

naturally aged mice led to a rescue in age-related cognitive, synaptic and neuronal deficits 

[71].

The concept of increased microglial senescence in aged brains has gained traction in recent 

years. An accumulation of senescent microglia with age has been shown in rodents both in 
vivo [72] and ex vivo [51,72], although the evidence of senescent microglia accumulation in 

aged human brains is limited [42]. Further developing the concept of microglial senescence 

remains challenging though, given the lack of consensus on the hallmarks needed to define 

its presence. In particular, better resolution of the expression patterns and composition of the 

SASP is needed, especially in comparison to a normal responsive state.

Neurodegenerative disease

The loss of homeostatic function and an ‘activated’ phenotype in microglia has also been 

associated with ND. Previously, disease-relevant microglia were often compared to M1 

pro-inflammatory ‘activated’ macrophages [73], but increasingly other labels like disease-

associated microglia (DAMs) [44], ‘dark’ microglia [74], ‘primed’ microglia [65,66], 

or more nuanced references to the exact cell markers expressed by specific microglial 

populations, have grown in popularity to better reflect the heterogeneous nature of 
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microglial biology [75]. Morphologically speaking, microglia with a dystrophic appearance 

are also increased in several NDs [42,76].

It remains to be seen if there is a common microglial phenotype that is associated with ND. 

The downregulation of genes associated with microglial homeostasis, Tmem119, P2ry12, 

and Cx3cr1, have been identified in many murine models representing AD [44,77–80], 

amyotrophic lateral sclerosis (ALS) [44,77,79], and multiple sclerosis [79]; suggesting 

similar signaling pathways are present. It has also been suggested that microglia could 

mechanistically contribute to ND through aberrant synaptic pruning via the complement 

system [81]. These losses of homeostatic function are also not unique to microglia in ND 

and are seen in the context of aging [44,60,61,77,82]. This concurrence could explain the 

strong link between increased age and ND [83].

There is of yet no consensus on the identifying markers or genes for the ‘activated’ 

inflammatory microglia associated with disease [47]. It’s likely that different populations 

of microglia can play variable roles depending on the disease, stage of the disease, or 

brain region affected, making the comparison between studies especially challenging. Some 

markers commonly identified as upregulated in microglia associated with ND are Cd11c 

[44,84–86], Iba1 [74,87,88], Trem2 variants [89,90], and MHC-II [91,92]. Pro-inflammatory 

molecules like IL-1β, IL-6, TNFα, and MCP-1 are also associated with ‘activated’ microglia 

in disease [93].

Senescent microglia have also been identified as contributing to the pathogenesis of NDs. 

Whole-body clearance of p16-expressing cells in a mouse model of tauopathy led to 

an amelioration of disease, with microglia identified as a senescent cell population in 

this disease model [26]. Another study in a mouse model of AD found that replicative 

senescence in microglia was associated with early pathology [30]. A mouse model of 

ALS also found gliosis and motor neuron loss was associated with increased senescence 

indicators [94]. However, it is likely microglia are but one neural subpopulation that 

becomes senescent in age and disease. Recent studies have produced evidence for 

senescence in neurons and oligodendrocyte progenitors in other mouse models of tauopathy 

and AD [33,36]. Regardless of the hypothesized identity of the senescent population, each 

of these studies demonstrated pathology mitigation following pharmacological removal of 

senescent cells [26,33,36].

The relationship between senescent and ‘activated’ microglia in the context of disease 

remains unclear – one state could promote the other, or they may be overlapping 

populations. This is especially challenging since the SASP, a key feature of senescent 

cells, commonly encompasses pro-inflammatory molecules also associated with ‘activated’ 

microglia like TNFα, IL-1β, and IL-6 [95]. It’s also unclear whether senescent microglia 

upregulate markers associated with ‘activated’ microglia or downregulate microglial 

homeostatic genes.

Injury

Traumatic brain injury (TBI) differs from aging and disease in that the inciting factor 

for its associated pathology is external and more acute. A variety of mechanical insults 
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including contusion, closed-head impact, and blast injury can produce mild, moderate, or 

severe TBI depending on individual circumstances [96–99]. TBI is a biphasic injury: after 

the mechanical primary injury, a secondary dystrophic state produces long-term dysfunction 

in the brain that includes elevated neuroinflammation as a result of blood-brain barrier 

disruption, increased oxidative stress, and persistent changes in the microglial population 

[100–106].

In the minutes following TBI, microglia are recruited via purinergic signaling to clear 

necrotic debris and adopt a phagocytic state [100,107,108]. The mode of activation 

following TBI is somewhat age-dependent and may be less neuroprotective and more toxic 

in older animals [109]. In the initial week following injury, the microglia population adopts 

a balanced distribution between pro- and anti-inflammatory states to promote neurogenesis 

and enhance the immune response to injury [89,110,111]. However, as time passes following 

the primary injury the neuroprotective functions are lost, and microglia become the prime 

motivators of neuroinflammatory gene expression in the post-TBI brain [112]. In vitro, 
conditioned media derived from microglia in an induced pro-inflammatory ‘M1-like’ state 

reduces survival of oligodendrocytes in vitro, whereas conditioned media from microglia in 

an induced anti-inflammatory ‘M2-like’ state promotes remyelination [111,113]. In human 

patients, increased microglial activation is even detectable by PET scan 17 years after the 

primary injury [114].

Microglia associated with the long-term inflammatory phenotype following TBI are 

commonly defined as MHC-II/CD86/Cd11b positive, with upregulated expression of 

NOX24, Tlr4, Trem2, CD68, Clec7a, and Stat1, and higher expression of interferon- and 

immune-associated signaling genes [100,112,115,116]. This resembles the ‘primed’ state 

microglia appear to enter with aging and is also determined both by cell-intrinsic changes 

and external influences from the altered microenvironment [105]. Of recent interest is how 

post-injury microglia promote increased oxidative damage leading to neurodegeneration 

through a NOX2-dependent mechanism [100,117,118]. The activity of NOX2 in glia may in 

fact track with the severity of TBI in patients [119]. While microglial NOX2 is chronically 

active in neurodegenerative contexts, its rapid increase in activity in microglia following 

TBI is relevant to their role in driving pathology and an important distinguishing feature 

[120,121]. Importantly, a recent study in mice demonstrated pharmacological clearance of 

microglia post-injury is neuroprotective and reduces cognitive impairment [112].

Inquiry into pro-inflammatory microglia as a therapeutic target in TBI secondary injury 

has coincided with increasing interest in microglial senescence. Elderly individuals are 

at greater risk to suffer significant cognitive impairment and early morbidity following 

TBI, potentially due to an already present dysfunction in the microglial compartment 

[109,122,123]. Due to the difficulty of distinguishing senescent microglia from other 

primed or dystrophic states, the evidence for these cells becoming senescent following TBI 

remains preliminary. There is evidence of reductions in telomere length and deficiencies in 

DNA repair following TBI which could predispose neural cells to senescence [124–126]. 

Two recent publications identified a possible senescence signature following TBI in adult 

mice [28,29]. Although their ultimate role in the secondary injury cascade is still under 
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investigation, this emerging evidence points to senescent microglia as contributors to the 

post-TBI phenotype.

Distinguishing microglia in aging, neurodegenerative disease, and injury

In the past decade, the study of microglial biology has evolved beyond the M1 vs. 

M2 paradigm, acknowledging the broad spectrum of intermediate states these cells exist 

in depending on context. There is a large overlap between microglial phenotypes in 

aging, neurodegenerative disease, and injury – mainly a loss of homeostasis and a 

pro-inflammatory phenotype. For now, there is no cellular marker or component of the 

secretome that is specific for microglia found in aging, disease, or injury.

Attempting to distinguish microglia found in the aging and neurodegenerative contexts 

implies that it’s possible to have an aged ‘healthy’ brain without ND. Some may argue 

that aging itself is a pathology – neuropathological features like neurofibrillary tangles 

and amyloid plaques have been identified post-mortem in individuals who otherwise did 

not demonstrate overt cognitive impairment [127–130]. It is unknown if these pathological 

features indicate that these individuals were in the pre-clinical stages of a disease or if they 

would continue to be nondemented despite their neuropathology [131].

Regardless, there are some studies that have offered putative ways to distinguish these 

closely related microglial populations. An interesting example is iron accumulation and 

metabolism. One study by Shahidehpour et al. suggests that there is increased ferritin 

accumulation in human microglia in ND but not old age, and proposed altered iron 

homeostasis as a distinguishing factor between aged ‘healthy’ microglia and those 

associated with neurodegeneration [132]. Indeed, elevated iron in the CNS is associated with 

ND (reviewed in [133] and [134]), possibly at levels higher than with normal aging [133]. 

Given that increased iron levels are also associated with advanced age [133–135] more 

studies are needed to ascertain if altered iron homeostasis is in fact specific to ND-associated 

microglia. Additionally, increased cellular iron accumulation has been posited as a feature of 

senescence, although it’s not critical to maintaining this fate [136,137]. Whether changes in 

iron homeostasis reflect senescent cell accumulation with CNS aging or is in fact relevant to 

the emergence of disease remains to be seen.

Some investigators have turned to the resolution provided by single-cell sequencing 

technology to clarify any differing roles played by microglia. Several single-cell studies in 

murine microglia have been carried out to delineate the distinct roles microglia could play in 

these closely related contexts. For example, a study by Hammond et al. compared microglia 

from developing, aged, and mice injured from a focal white matter injury and identified two 

populations highly concentrated in aged mice – one defined by Ccl4, and another enriched in 

several interferon-response genes [45]. In addition, a cluster predominantly in injured mice 

characterized by Ifi27l2a was also identified [45]. Other studies have delineated specific 

populations of microglia associated with disease [44,138–140], however, the specific 

characteristics of the microglia of interest in each study differed. This potentially highlights 

a general difficulty in comparing single-cell studies – that the high resolution provided is 

extremely sensitive to the exact model used and even the isolation and preparation method 

of the microglia. Another difficulty in interpreting the results from single-cell studies is 
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the lack of validating studies showing functional implications of the unique microglial 

populations identified. Regardless, single-cell profiling of microglia remains an important 

tool in parsing apart the differences between the different microglial states.

Several of the aforementioned studies incompletely investigate the role of senescent 

microglia in the various microglia phenotypes described. This could be because the common 

features seen in senescent cells and ‘activated’ inflammatory microglia make it difficult to 

distinguish how these populations contribute to pathology.

Distinguishing between senescent microglia and ‘activated’ microglia

The potential overlap between senescent microglia and ‘activated’ microglia remains 

an underexplored area in microglial research (Figure 2). Further investigation into this 

relationship could help explain neurodegeneration in age, disease, and injury and provide 

novel treatment options in the removal of senescent cells with pharmaceutical interventions 

known as senolytic drugs.

Perhaps one reason why studies on senescent microglia have been inconsistent is due to a 

lack of stringent criteria in labeling a cellular state as ‘senescent’. In immunological terms, 

senescence is often used loosely or interchangeably with immunosenescence, to describe 

a general decline in immune function with age [141]. However, cellular senescence as 

described here refers to a specific cellular state, often defined by a combination of cell-cycle 

arrest, macromolecular damage, deregulated metabolism, and a SASP [25]. Even with the 

latter definition in mind, many papers have not investigated all of these aspects of the 

cellular state when describing senescence [22,25], and the ‘senescent’ microglia previously 

reported may in fact be referring to different groups of ‘activated’ microglia.

Another roadblock in trying to define senescence in microglia is the overlap with ‘activated’ 

microglia. For example, the presence of a SASP is often used to show that a cellular 

population is senescent [25]. However, a SASP factor specific to senescent microglia has 

not been identified, and several components of the SASP can be attributed to the secreted 

inflammatory milieu of non-senescent ‘activated’ microglia [93]. To add extra confusion, the 

SASP can also differ based on cell type, cause of senescence, or even stage of senescence 

[37,95]. This makes defining microglial senescence by this one aspect difficult.

A common marker used to define senescent cells, senescence-associated β-galactosidase 
(SA-β-gal), may not be specific to senescence in microglia. SA-β-gal is a colorimetric 

assay to detect senescent cells through histochemical means and is thought to rely on 

the increased lysosomal mass [142,143]. However, it is becoming increasingly evident 

that SA-β-gal may not be a marker of senescence in all contexts [144]. In particular, non-

senescent macrophages may exhibit SA-β-gal positivity [145,146], and microglia can also 

stain positive in non-senescent contexts due to their phagocytic function and the possible 

associated change in lysosomal numbers [147]. Still, the SA-β-gal assay could potentially be 

used with the right controls and assessed in terms of an increase in SA-β-gal activity rather 

than a presence/absence assay [30,148]. To validate this method, the specificity of SA-β-gal 

in microglia needs to be formally assessed.
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Another possible alternative to the SA-β-gal assay particularly in the context of microglia 

is the use of Sudan Black B, a stain for lipofuscin [149]. Lipofuscin has been shown to 

accumulate in aged microglia [52–54], and is generally considered a hallmark of aging 

[150]. It has been suggested that Sudan Black B has a high overlap with SA-β-gal staining, 

which is especially relevant in contexts where the latter is not suitable such as in formalin-

fixed, paraffin-embedded tissues [151,152], or in microglia where SA-β-gal is likely to stain 

false positive. However, whether the Sudan Black B assay is specific to senescence, its rate 

of false positivity, and its overlap with SA-β-gal in microglia remains to be thoroughly 

investigated.

A possible differentiating factor between ‘activated’ and senescent microglia is cell cycle 
arrest. A senescent cell, by definition, is in a state of cell cycle arrest [25]. In contrast, 

increased proliferation has been associated with ‘activated’ pro-inflammatory microglia 

in animal models [84,153–155]. This makes the assessment of cell cycle arrest, whether 

it be through the upregulation of certain senescence-associated cell cycle inhibitors like 

p16 and p21 [25] and/or through directly assessing proliferation by incorporation of EdU 

or cell tracking, a possible avenue to differentiate senescent cells from ‘activated’ cells. 

However, using the expression of cell cycle inhibitors as a surrogate for cell cycle arrest 

comes with its own limitations. For example, p21 may have roles outside of cell cycle 

inhibition [156] and its upregulation is not specific to senescence [157]. p21 levels may 

also decrease in ‘late’ senescence or when senescence has been achieved [115,158], whereas 

high levels of p16 are thought to be maintained throughout senescence [158,159]. Although 

p16 is often considered a more reliable marker of senescence, it can also be upregulated 

in non-senescent contexts [18,48,72]. The uncertain specificity of p16 and p21 in microglia 

should be taken into consideration, re-enforcing the need for a combinatorial approach to 

senescence markers.

The increasing adoption of single-cell RNA sequencing has also led some to use the 

technology to define senescent populations. However, the considerable variability of SASP 

expression [22,37] and non-specificity to senescence in microglia [93] still applies. A gene 

specific to cellular senescence also has not been identified, and different papers will use 

different marker genes to describe their senescent cell population [37,160]. Regardless, 

single-cell RNA sequencing could be used to support the presence of a senescent cell 

population if multiple aspects of senescence are addressed – including that of cell cycle 

arrest (especially with an upregulation of the senescence-associated Cdkn2a and Cdkn1a), 

a pro-inflammatory secretome, and possible other context-specific senescent markers. 

Pathway analyses may also be useful, with cellular senescence available as a gene ontology 

term that has been used to define senescence in the brain [161]. This should be done with 

caution, as several genes in that pathway are not specific to senescence, and using pathway 

analyses should be a supportive tool and not used alone to define senescence.

Another possible way to support the presence of senescence in a microglia population is 

to probe their response to senolytics. Senolytics are pharmacological interventions that 

selectively clear senescent cells, and mostly work by exploiting senescent cell reliance on 

anti-apoptotic and pro-survival pathways [162], which have been termed the Senescent Cell 

Anti-Apoptotic Pathways (SCAPs) [163]. The targets of commonly used senolytic agents 
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can vary. Navitoclax inhibits the B-cell lymphoma 2 (BCL-2) family of anti-apoptotic 

factors [164,165], and while fisetin inhibits some of these and other SCAP network 

components it may also exert its senolytic effect through other activities like the inhibition 

of the PI3K/AKT/mTOR pathway [166–168]. The combination of dasatinib and quercetin 

also inhibits SCAP network components and multiple tyrosine kinases [169]. When SCAPs 

are targeted, there is theoretically preferential death of senescent cells by senolytics at doses 

that will not affect non-senescent cells [170]. Perhaps an increased reliance on pro-survival 

pathways and susceptibility to senolytics could help differentiate senescent microglia from 

non-senescent inflammatory microglia. The first-generation senolytics currently employed 

have the potential for off-target effects and are effective in different cell types, and the 

correct dose and class of senolytics necessary for the selective clearance of senescent 

microglia are still undetermined. Nevertheless, some senolytics have been effectively used 

in mouse models of neurological disease to alleviate pathology including dasatinib and 

quercetin [36] and navitoclax [26], which has led to senolytic therapies entering clinical 

trials for the modulation of AD [171]. Given the global effects of all current senolytics, a 

major consideration for future studies should be differentiating CNS-specific vs. systemic 

results of senescent cell clearance.

It is critical that studies aimed at rigorously defining microglial senescence in aging, disease, 

and injury must demonstrate a clear senescent signature. This is particularly important due 

to the absence of a single, unambiguous senescence biomarker, which complicates definitive 

claims. Techniques such as bulk or single-cell RNA sequencing on sorted microglia can 

be expensive and time-consuming, but such methods provide a solid foundation from 

which to form hypotheses about senescence involvement in an experimental system. Due 

to the highly situational nature of the senescence program, gene-expression profiling is 

essential to determine a particular microglia subpopulation to assay for further senescence 

markers (cell-cycle arrest, p16/p21 upregulation, macromolecular damage, etc.). Transgenic 

mouse lines where senescent cells can be cleared by a genetic construct and commercially 

available senolytic drugs should also be considered as sensitivity to senolytic methods 

is one of the strongest lines of evidence currently used in the literature [167,172–174]. 

Finally, although published evidence for microglial senescence is highly variable it can still 

be valuable as a reference point when designing a study and should be expanded upon 

to provide a comprehensive picture of how senescent microglia drive neurodegeneration. 

Distinguishing senescent microglia and defining how they drive neurodegeneration will have 

major implications in developing new treatment strategies, given the unique and exploitable 

features of senescent cells.
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Figure 1. Contrasting features of microglia in homeostatic and inflammatory ‘activated’ states.
The ‘activated’ inflammatory microglial state differs from its resting homeostatic state 

in many ways, such as the downregulation of homeostatic markers (Tmem119, P2ry12, 

Cx3cr1) and the upregulation of other markers like CD11b, Iba1, CD45, MHC-II, and 

Cd11c. ‘Activated’ microglia also have a pro-inflammatory secretome, which includes 

IL-6, IL-1β, and TNF-α. They also differ in morphology, with homeostatic microglia 

having highly ramified processes and ‘activated’ inflammatory microglia having shorter 

processes with a larger cell body. Some putative markers proposed for ‘activated’ 

inflammatory microglia in specific contexts include an increase in cellular iron with age 

and neurodegenerative disease (ND) and an upregulation of NOX2 in injury. Figure created 

in BioRender.
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Figure 2. Similarities and differences between ‘activated’ inflammatory and senescent microglia.
Senescent microglia can be difficult to differentiate from an ‘activated’ inflammatory 

state as they share many characteristics, such as an inflammatory secretome which may 

include TNF-α, IL-1β, and IL-6. Some features we propose that can differentiate senescent 

microglia include cell cycle arrest (especially with an upregulation in p16 and p21), an 

increase in SA-β-gal staining, an increase in lipofuscin staining, as well as sensitivity to 

senolytic clearance. Figure created in BioRender.
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