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ABSTRACT

Objectives: The use of a job-exposure matrix (JEM) to assess exposure to potential health hazards 
in occupational epidemiological studies requires coding each participant’s job history to a standard 
occupation and/or industry classification system recognized by the JEM. The objectives of this study 
were to assess the impact of inter-coder variability in job coding on reliability in exposure estimates 
derived from linking the job codes to the Canadian job-exposure matrix (CANJEM) and to identify 
influent parameters.
Method: Two trained coders independently coded 1000 jobs sampled from a population-based case–
control study to the ISCO-1968 occupation classification at the five-digit resolution level, of which 
859 could be linked to CANJEM using both assigned codes. Each of the two sets of codes was separ-
ately linked to CANJEM and thereby generated, for each of the 258 occupational agents available in 
CANJEM, two exposure estimates: exposure status (yes/no) and intensity of exposure (low, medium, 
and high) for exposed jobs only. Then, inter-rater reliability (IRR) was computed (i) after stratifying 
agents in 4 classes depending, for each, on the proportion of occupation codes in CANJEM de-
fined as ‘exposed’ and (ii) for two additional scenarios restricted to jobs coded differently: the first 
one using experts’ codes, the other one using codes randomly selected. IRR was computed using 
Cohen’s kappa, PABAK and Gwet’s AC1 index for exposure status, and weighted kappa and Gwet’s 
AC2 for exposure intensity.
Results: Across all agents and based on all jobs, median (Q1, Q3; Nagents) values were 0.68 (0.59, 
0.75; 220) for kappa, 0.99 (0.95, 1.00; 258) for PABAK, and 0.99 (0.97, 1.00; 258) for AC1. For the add-
itional scenarios, median kappa was 0.28 (0.00, 0.45; 209) and −0.01 (−0.02, 00; 233) restricted to 
jobs coded differently using experts’ and random codes, respectively. A similar decreasing pattern 
was observed for PABAK and AC1 albeit with higher absolute values. Median kappa remained stable 
across exposure prevalence classes but was more variable for low prevalent agents. PABAK and AC1 
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decreased with increasing prevalence. Considering exposure intensity and all exposed jobs, median 
values were 0.79 (0.68, 0.91; 96) for weighted kappa, and 0.95 (0.89, 0.99; 102) for AC2. For the add-
itional scenarios, median kappa was, respectively, 0.28 (−0.04, 0.42) and −0.05 (−0.18, 0.09) restricted 
to jobs coded differently using experts’ and random codes, with a similar though attenuated pattern 
for AC2.
Conclusion: Despite reassuring overall reliability results, our study clearly demonstrated the loss of 
information associated with jobs coded differently. Especially, in cases of low exposure prevalence, 
efforts should be made to reliably code potentially exposed jobs.

Keywords:   agreement, ever exposed, occupational exposure

Introduction

Interest in using job-exposure matrices (JEMs) has 
greatly increased since the 1980s. The use of JEMs 
has become a common method to assign exposure es-
timates in population-based studies (Teschke et al., 
2002; Koeman et al., 2013). As an alternative to meas-
ured exposure data—that are very seldom available—
and to the expert assessment method, JEMs provide an 
easy and low-cost way to assess exposure based on de-
scriptions of jobs and tasks (Mannetje and Kromhout, 
2003; Friesen et al., 2015). Minimally a JEM has 
one axis for the occupation (or industry) codes and 
a second for the occupational agents. Each combin-
ation of a specific occupation and a specific agent con-
stitutes a cell which may contain different metrics of 
exposure. Population-based JEMs can be agent spe-
cific (Koh et al., 2014; van Oyen et al., 2015) or spe-
cific to a particular family of agents (Brouwers et al., 
2009; Martin-Bustamante et al., 2017), while others 
like FINJEM (Kauppinen et al., 1998), MATGÉNÉ 
(Fevotte et al., 2011), or more recently the Canadian 
job-exposure matrix (CANJEM) (Sauve et al., 2018; 
Siemiatycki and Lavoue, 2018) cover a greater diver-
sity of agents. The latter three include, within the cells 
of the matrix, indicators of the presence, intensity, 
and/or probability of exposure to a specific agent in 
a specific job.

To use a JEM for individual exposure assess-
ment, the job histories of each subject must be coded 

(manually or using automated methods) to a standard 
occupation and/or industry classification system recog-
nized by the JEM. Assigning such codes usually comes 
with a certain amount of error. Published studies re-
port agreement in coding ranging from 29.7 to 98% 
(Bushnell, 1997; Mannetje and Kromhout, 2003; 
Pilorget et al., 2003; Remen et al., 2018). Variability in 
coding means that exposure estimates will be extracted 
from different cells of the matrix, resulting in poten-
tial discrepancies in exposure assignment. Little infor-
mation is available on the impact of variability in job 
coding on exposure estimates extracted from JEMs. 
Few studies have evaluated inter-rater reliability (IRR) 
in exposure estimates extracted from JEMs (Ge et al., 
2018). In studies having used human coders, Pilorget 
et al. (2003) reported kappa for exposure status to 
asbestos ranging from 0.58 to 0.65 depending on the 
pair of coders considered, and Koeman et al. (2013) 
reported weighted kappa for IRR in exposure intensity 
(background, low or high exposure) ranging from 0.66 
to 0.84 depending on the agents considered. Burstyn 
et al. (2014), in a study on development and valid-
ation of coding computer algorithms, reported kappa 
ranging from 0 to 0.8 for exposure status to different 
asthmagens.

The aim of this article is to assess the impact of vari-
ability in job coding between coders on exposure esti-
mates for 258 occupational agents obtained after linking 
a population-based sample of jobs to CANJEM.

What’s Important About This Paper?

Little is known about the impact of variability in job coding on the exposure estimates obtained through a 
JEM. This explored its impact through two different exposure metrics (i.e. exposure status and intensity of 
exposure) often used for risk assessment purposes. Over the whole study population, inter-rater reliability 
was in the upper range of those observed in studies comparing exposure assessment methods. It was mark-
edly lower for exposure metrics among jobs that had been coded differently, but all exposure information as 
lost when coding was discordant.
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Methods

This project is built on two pre-existing resources: 
CANJEM and the Montreal case–control study of lung 
cancer. We briefly describe these.

CANJEM is a general population JEM (Sauve et al., 
2018; Siemiatycki and Lavoue, 2018) that was created in 
Montreal based on data generated in the context of four 
case–control studies (Gerin et al., 1985; Labreche et al., 
2003; Ramanakumar et al., 2006; Group, 2010). In each 
study, specially trained interviewers administered a semi-
structured questionnaire to obtain details of each job in 
each subject’s occupational history. For each job ever held, 
the subject was asked about the company, its products, the 
nature of the work site, the subject’s main and subsidiary 
tasks. Experts in industrial hygiene assessed occupational 
exposures of over 8000 study subjects, using a checklist 
of nearly 300 occupational agents to consider. CANJEM 
was built on this database and includes 258 agents that 
were frequent enough to warrant inclusion. The agents in 
CANJEM include specific chemicals (e.g. benzene), chem-
ical groups or functions (e.g. aromatic amines), mixtures 
of relatively fixed composition (e.g. gasoline) or variable 
composition (e.g. paints), complex materials (e.g. cement), 
as well as general categories (e.g. solvents). CANJEM is 
available in four occupation and three industry classifica-
tions and exposure metrics are provided for up to four 
different time periods. More information is available at 
www.canjem.ca.

One of the four studies conducted by our team and 
used in creating CANJEM was a population-based case–
control study of lung cancer conducted in Montreal 
from 1996 to 2001 (Ramanakumar et al., 2006). We will 
simply refer to this as the Montreal Study. There was a 
total of 2740 subjects in the Montreal study, giving rise to 
a total of 13 992 different job descriptions elicited from 
all subjects’ job histories (hereafter referred to as ‘jobs’).

The current study was based on a random sample 
of 1000 jobs extracted from the Montreal study for 
the purpose of evaluating the CAPS-Canada coding as-
sistant (Remen et al., 2018). This study involved three 
stages. First, two expert coders coded each job inde-
pendently into several classification systems. Second, 
each set of codes was linked to CANJEM to obtain the 
corresponding exposure metrics for each agent. Third, 
we compared the two sets of exposure estimates. These 
three stages are summarized in a flow-chart available 
in Supplementary Material (see Supplementary Fig. S1, 
available at Annals of Occupational Hygiene online).

Job coding
Two coders (industrial hygienists with a year of experi-
ence in coding jobs for the creation of CANJEM at the 

time of this project) assigned codes for the 1000 ran-
domly selected jobs using each of seven distinct classifi-
cations that are available as options in CANJEM. More 
details about the job coding stage are available else-
where (Remen et al., 2018).

Linkage to CANJEM: derivation of 
exposure metrics
For the main analyses, we used CANJEM based on 
ISCO-1968 (five-digit resolution) and a single time 
period (1930–2005). We used the version of CANJEM 
that is restricted to occupation codes linked to at least 10 
jobs in the CANJEM database, irrespective of how many 
subjects this entailed. This policy was recommended by 
CANJEM designers (Sauve et al., 2018; Siemiatycki and 
Lavoue, 2018).

The following two metrics, available for each cell of 
CANJEM, were used: (i) the probability of exposure, 
corresponding to the proportion of jobs in a cell (i.e. 
ISCO occupation code) exposed to a given agent and (ii) 
the distribution of intensity of exposure (low, medium, 
or high) among exposed jobs (Sauve et al., 2018). A job 
was considered exposed to a given agent if the agent was 
present in the workplace at levels above those in the gen-
eral (non-occupational) environment. Low represented 
a concentration above the background environmental 
level, and high was generally used for occupations and 
processes associated with the highest levels encountered 
in the work environment.

In some JEMs, such as CANJEM and FINJEM, there 
is no explicit binary exposed/unexposed metric embedded 
in each cell of the matrix; rather, it is the probability of ex-
posure, on a continuous scale, that is shown. Since many 
uses of exposure information involve a binary exposure 
variable, the most obvious tactic would be to use a cut-
point on the probability scale to demarcate exposed from 
unexposed. For the current study, an occupation code was 
considered ‘exposed’ to a specific agent if the proportion 
of jobs with this code in CANJEM that were considered 
as exposed (by the experts) to this agent was greater than 
or equal to 25%, a threshold that has been used in sev-
eral epidemiological studies using JEMs for exposure as-
sessment (Lacourt et al., 2013; El-Zaemey et al., 2018; 
Hinchliffe et al., 2021).

For instance, the database used to create CANJEM 
included 30 jobs coded as ‘Mechanical Engineer 
(General)’ (ISCO-1968 code 0-24.10). Among these, 
six were considered ‘exposed’ to metallic dust. So, the 
probability of exposure to metallic dust for ‘Mechanical 
Engineer – General’ workers is 20% (=6/30). Based on 
our cut-point set at 25%, this occupation code was con-
sidered as ‘unexposed’ to this agent for the current study.

Annals of Work Exposures and Health, 2022, Vol. 66, No. 5� 553

http://www.canjem.ca
http://academic.oup.com/annweh/article-lookup/doi/10.1093/annweh/wxab106#supplementary-data
http://academic.oup.com/annweh/article-lookup/doi/10.1093/annweh/wxab106#supplementary-data


As indicated above, the information in a CANJEM 
cell was only used if there were at least 10 jobs for a 
particular occupation code. If there were fewer than 10 
jobs in the denominator for probability of exposure, the 
exposure status was set as ‘undefined’.

The original expert coding on which CANJEM is 
based included an estimate of intensity of exposure to 
each agent thought to be present for a given job, using 
the three-point scale (low, medium, and high). This esti-
mate for a given job held by an individual was based on 
the particulars of the detailed job description provided. 
For the current study, we converted the number of ob-
servations corresponding to each class of intensity into 
a unique ordinal index (low, medium, and high) of in-
tensity of exposure for each occupation code. For this 
purpose, we first extracted for each code–agent com-
bination the distribution of the exposed jobs across the 
intensity categories. Then, this distribution was trans-
formed into a quantitative index by weighting the num-
bers of observations corresponding to each category by 
a 1–5–25 exponential scale (considered by the experts to 
reflect most closely the relationship of low to medium 
to high) (Sauve et al., 2018) and we calculated the mean 
value. In order to re-transform the continuous mean into 
a single ordinal value for the occupation code (low, me-
dium, high), we used two cut-points corresponding to 
midpoints between the weights: √(1*5) = 1.93 between 
low (1) and medium (5), and √(5*25) = 11.18 between 
medium (5) and high (25). We selected this approach, ra-
ther than the simpler ‘most frequent category’, because 
its calculation is based on the intensity values of all ex-
posed jobs. Moreover, the ‘most frequent’ approach is 
problematic in cases of ties as well as situations where, 
for example, there would be five jobs at high and four 
jobs at low, yielding, in our opinion, an unreasonable 
final rating of high.

For instance, among ‘Mechanical Engineers 
(General)’, 33.3% (10/30) of the jobs were considered 
as exposed to iron. The distribution of these 10 ex-
posed jobs was 5, 5, and 0 for low, medium, and high 
exposure, respectively. Applying the 1–5–25 scale, the 
weighted mean calculated for this combination was 3 
(=(5×1+5×5+0×25)/10), which falls within the interval 
(1.93–11.18), resulting in a final exposure category for 
the cell of ‘medium’ intensity.

IRR in exposure estimates
The computation of IRR in estimating exposure status 
between the two coders entailed several steps. First, we 
identified all jobs in our sample that could be linked to 
CANJEM for both occupation codes assigned by the 
coders. Jobs not meeting this criterion were excluded 

from analysis. Then IRR in exposure status between 
the 2 coders was then calculated for each of the 
258 agents.

For computation of IRR in exposure status, we re-
tained three distinct statistics each of which uses different 
approaches to estimate chance agreement probability: (i) 
the Cohen’s kappa coefficient (kappa), the prevalence 
and bias-adjusted kappa (PABAK) (Byrt et al., 1993), 
and the Gwet’s AC1 statistic (AC1) (Wongpakaran et al., 
2013; Gwet, 2014).

IRR in exposure intensity also entailed several steps 
and its computation was restricted, for each agent, to 
jobs for which both experts’ occupation codes corres-
ponded to an ‘exposed’ status. Considering these jobs 
(corresponding to cell ‘D’ in Table 1), only agents with 
at least 10 ‘exposed’ jobs (D ≥ 10) were kept for ana-
lyses, the other situation meaning that IRR computa-
tion is unfeasible (D = 0) or feasible but prone to large 
imprecision (0 < D < 10). IRR in exposure intensity 
was computed using both weighted kappa and Gwet’s 
AC2 (AC2), which is the weighted extension of AC1 
to ordinal variables and ranges from −1 to 1 (Gwet, 
2008, 2014). Their computation was based on linear 
weights.

Additional scenarios
We computed the same IRR metrics as described above 
for two additional scenarios:

Restricted to jobs coded differently by the two experts 
(‘discordant codes’)
While the main analysis measures the overall agree-
ment in a typical study population, discrepancy in ex-
posure can actually only come from cases where the 
same jobs were coded differently. This sub-analysis fo-
cuses on these jobs. Significant agreement for jobs coded 
differently would support the following hypothesis: 
even if the coders attributed a different code, they were 
working with the same job descriptions. Therefore, even 
if the actual codes differ, they would reflect similar tasks/ 

Table 1:  Example of exposure status agreement 
crosstable

For each of 258 agents

Coder 2

1 Exposed No Yes

No A B

Yes C D
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environment and share similarities reflected in the cor-
responding exposure profiles.

Restricted to jobs coded differently based on codes ran-
domly assigned (‘random codes’)
If the above hypothesis holds, IRR in metrics meas-
ured on jobs coded differently but based on evaluating 
the same job description should be higher than the 
IRR measured on occupation codes selected entirely at 
random. To verify this, we created the second additional 
scenario where, for each job coded differently by the two 
coders, and before assigning exposures, we replaced each 
expert assigned code by another code randomly selected 
from the list of occupations available in our version 
of CANJEM.

Finally, as we expected that prevalence of exposure 
would be associated with agreement results, we stratified 
the analysis according to the proportion of occupation 
codes considered as ‘exposed’ (i.e. with probability of 
exposure ≥ 25%) in CANJEM, the denominator being 
the number of occupation codes covered by the version 
of CANJEM used for the current study (N = 465 for 
ISCO-68 codes). Thus, depending on this proportion, 
each agent was classified in the corresponding classes 
defined arbitrarily: <5% (196 agents); [5–15%] (49 
agents); [15–25%] (8 agents); and ≥25% (5 agents).

Sensitivity analysis
Considering that IRR in exposure estimates may also 
depend on the threshold used to define exposure status 
for the occupation codes, we repeated IRR computations 
by selecting two other thresholds of probability of ex-
posure: 5 and 50%, limited to the agents for which the 
metrics were computable for the three thresholds.

Statistical analysis
Analyses were performed using SAS® v9.4. A SAS pro-
gram was developed to automate IRR computations. 
Spot verifications were performed using the MAGREE 
macro.

Results

The two coders assigned the same ISCO code to 43.2% 
of the 1000 jobs in our sample.

Since we required at least 10 jobs for a CANJEM cell 
to be informative, those jobs that were coded by one or 
both of the coders with a code that did not satisfy this 
criterion were excluded from consideration. This led to 
the exclusion of 141 jobs, leaving in the analysis 859 
jobs. Of these jobs, 406 (47.3%) were coded identically 
by the two coders.

IRR in exposure estimates obtained after linking 
to CANJEM
Exposure status
Kappa was computable for 220 of the 258 agents 
covered by CANJEM, the others having a probability of 
chance agreement equal to 1 leading to a null denomin-
ator. Across the 220 computed values, kappa varied be-
tween 0.00 and 1.00 with a median (Q1, Q3) of 0.68 
(0.59, 0.75). PABAK, computed for each of the 258 
agents, varied between 0.73 and 1.00, with a median of 
0.99 (0.95, 1.00). AC1, computed for each of the 258 
agents, varied between 0.75 and 1.00, with a median 
of 0.99 (0.97, 1.00). Detailed results by agent are pre-
sented in Supplementary Material (available at Annals 
of Occupational Hygiene online).

Figure 1 shows boxplots of the three indices across 
agents, stratified by the type of analysis: overall, dis-
cordant codes, and random codes. Figure 1 shows kappa 
was consistently lower than PABAK and AC1, which re-
mained close to 1 across the three scenarios (although 
a decreasing visual trend is still discernible). In con-
trast, the median kappa went from 0.68 overall, to 0.28 
for the ‘discordant codes’ scenario, and −0.01 for the 
‘random codes’ scenario.

Results obtained with PABAK and AC1 statistics 
being very close as illustrated in Fig. 1, the next results 
are presented for Kappa and AC1 only. Results related to 
PABAK are available in Supplementary Material (avail-
able at Annals of Occupational Hygiene online).

Figures 2 and 3 show the results of the stratification 
by exposure proportion (i.e. <5%; [5%–15%]; [15%–
25%], and ≥25%).

The trends illustrated in Fig. 1 (lower kappa com-
pared to PABAK and AC1, decreasing agreement from 
‘overall’ to ‘discordant codes’ to ‘random codes’) re-
main present across the strata of exposure proportion 
shown in Figs 2 and 3. In addition, Fig. 2 shows kappa, 
while more variable in the lower exposure proportion 
categories, is, in median, approximately stable across all 
categories. Figure 3, on the other hand, shows a strong 
trend of decreasing AC1 values when exposure pro-
portion increases. These trends are further illustrated 
in Supplementary Figs S2–S4 (available at Annals of 
Occupational Hygiene online), which show scatterplots 
of agent-specific agreement values versus exposure 
proportion.

Intensity of exposure among exposed jobs
After restriction to jobs (among the 859) for which 
both assigned codes generated an ‘exposed’ status 
and to agents with at least 10 jobs defined as ‘ex-
posed’ using both codes, 102 agents satisfied the 
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condition. Considering these 102 agents, the number of 
jobs (among the 859) for which both codes generated an 
‘exposed’ status ranged from 10 (5 agents) to 254 (PAHs 
from any source) with a median of 28 jobs.

Weighted kappa was computable for 96 of these 
102 agents ranging from −0.36 to 1.00, with a me-
dian (Q1, Q3) value of 0.79 (0.68, 0.91) while me-
dian AC2 ranged from 0.53 to 1.00 with a median 
of 0.95 (0.89, 0.99) based on 102 agents. We inves-
tigated the influence of sample size on agreement (for 
a given agent, the number of jobs for which both oc-
cupation codes generated an ‘exposed’ status), and 
found no noticeable pattern. Supplementary Figs S5 
and S6 (available at Annals of Occupational Hygiene 
online) show scatterplots of agent-specific agreement 
values versus sample size for weighted kappa and AC2, 
respectively. Detailed results by agent are presented 
in Supplementary Material (available at Annals of 
Occupational Hygiene online).

For the two additional scenarios, 40 (discordant 
codes) and 13 (random codes) agents satisfied the in-
clusion criteria, respectively. Distribution of IRR in ex-
posure intensity among exposed agents for the three 
scenarios is presented in Fig. 4 based on weighted kappa 
and in Fig. 5 based on AC2. Figures 4 and 5 show a 
high contrast between the three scenarios when using 
weighted kappa, with almost null values when codes 
were randomly generated, and notable, albeit smaller, 
difference when using AC2.

When focussing on a restricted list of 13 agents in-
cluded in the ‘random codes’ analysis, so that comparison 
of the scenarios is made using the same agents, the median 
(Q1, Q3) weighted kappa for exposure intensity were 
0.76 (0.72, 0.81), 0.33 (0.12, 0.36), and −0.05 (−0.18, 
0.09) for the scenario based on all jobs, on jobs coded dif-
ferently using experts’ codes and random codes, respect-
ively. Similarly, median AC2 were 0.92 (0.90, 0.95), 0.83 
(0.75, 0.88), and 0.50 (0.40, 0.67), respectively.

Figure 1.  Distribution of IRR statistic for exposure status to each of the 258 agents covered by CANJEM (using ISCO-1968 classi-
fication and based on 859 informative jobs). For each boxplot, the following information was provided: minimum, 25th–50th–75th 
percentiles and maximum. Exposure status was defined according to a 25% threshold of probability of exposure. Kappa statistic 
for exposure status was computable for 220, 209, and 233 agents when considering the scenarios based on all jobs (experts 
coding) and jobs coded differently (experts coding and random coding) respectively. For all scenarios, PABAK and AC1 statistics 
were computed based on 258 agents.
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Sensitivity analysis
The selection of another threshold to define binary ex-
posure status had different impact on levels of IRR 
in both exposure status and intensity depending on 
the metrics used (see Supplementary Table S1 and 
Supplementary Figs S8–S12, available at Annals of 
Occupational Hygiene online). For exposure status, no 
pattern emerged for Kappa, but agreement increased for 
PABAK and AC1 (~ median increase of 0.03–0.05 from 
5 to 25%, the increase from 25 to 50% being negligible). 
For exposure intensity, a slightly stronger pattern was 
observed for both weighted kappa (+0.12/+0.03) and 
AC2 (+0.05/+0.02).

Discussion

Interest in using JEMs to estimate the occupational 
exposure of subjects in the workplace has led to their 
becoming increasingly common tools. But such an in-
direct method of exposure assessment requires the 

implementation of an occupation and/or industry coding 
stage which is prone to variability as reported in sev-
eral studies (Mannetje and Kromhout, 2003; Pilorget 
et al., 2003) including the current one. Little was known 
about the impact of this variability on the exposure es-
timates obtained through a JEM; the current study pro-
vides some evidence for >250 chemical agents through 
two different exposure metrics (i.e. exposure status and 
intensity of exposure) often used for risk assessment 
purposes.

In terms of the job codes themselves, our experts 
agreed 47.3% of the time, a proportion higher than re-
ported by Pilorget et al. (37.2%) in a study of 1344 jobs 
and Koeman et al. (36%), in a study of 210 jobs, but 
within the range provided in the review by Mannetje and 
Kromhout for various classification systems (Mannetje 
and Kromhout, 2003).

We observed several patterns in terms of the agree-
ment in exposure estimates, the main contribution of 
this work because of the number of agents available 

Figure 2.  Distribution of Cohen’s kappa coefficient for exposure status to each of the 258 agents covered by CANJEM (using 
ISCO-1968 classification and based on 859 informative jobs) according to the proportion of exposed codes and for each scenario. 
For each boxplot, the following information was provided: minimum, 25th–50th–75th percentiles and maximum. Exposure status 
was defined according to a 25% threshold of probability of exposure. Numbers of agents retained for each proportion of exposed 
ISCO-68 codes in CANJEM ([0–5%[/[5–15%[/[15–25%[/≥25%): Scenario based on all jobs: N = 158/N = 49/N = 8/N = 5. Scenario 
based on jobs coded differently (experts coding): N = 147/N = 49/ N = 8/N = 5. Scenario based on jobs coded differently (random 
coding): N = 171/N = 49/N = 8/N = 5.
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in CANJEM and of the range of exposure prevalence 
covered. As measured by the traditional kappa, overall 
IRR in exposure status was, on average, quite high [me-
dian (Q1, Q3) of 0.69 (0.59, 0.75)], compatible with 
results reported by Pilorget et al. for asbestos (0.58–
0.65), by Burstyn et al. for any asthmagen (0.4–0.8), 
and by Koeman et al. for 10 agents (0.66–0.84), al-
though in the latter case they compared ordinal ex-
posure categories (none, low, high). Our results are 
also in the same, even upper, range of inter-rater studies 
comparing exposure assessment by expert judgement 
and/or JEMs (Teschke et al., 2002; Ge et al., 2018). 
Agreement in exposure intensity, albeit measurable only 
on a subset of agents (102) with at least 10 jobs deemed 
exposed according to both coders, was similarly rela-
tively high, with weighted kappa in median (Q1, Q3) of 
0.79 (0.68,0.91), computable for 96 agents. These re-
sults would suggest, bearing in mind they varied across 
agents, that typical agreement in assigning occupation 
codes generally translates into acceptable reliability in 
exposure estimates, given the range of values reported 

for comparison of exposure estimates across different 
methods.

Differences between scenarios
The numbers above reflect reliability measured over 
the whole study population, and are the results of an 
average of perfect agreement for the jobs coded the 
same, and imperfect agreement for the jobs coded dif-
ferently (in our case, approximately half the study 
population). IRR values for jobs coded differently dir-
ectly reflect the loss of information caused by the dis-
agreement. In our study, the loss was consistent across 
exposure status and intensity, with median values 
(kappa and weighted kappa) going down from ~0.7–0.8 
to ~0.3–0.4. Koeman et al. hypothesized in their dis-
cussion that discordant codes could still reflect similar 
exposure. Together with results from the ‘random code’ 
scenario, showing median agreement close to zero both 
for intensity and exposure status (kappa and weighted 
kappa), our results provide, for the first time, quanti-
tative empirical evidence of the exposure information 

Figure 3:  Distribution of Gwet’s AC1 statistics for exposure status to each of the 258 agents covered by CANJEM (using ISCO-
1968 classification and based on 859 informative jobs) according to the proportion of exposed codes and for each scenario. For 
each boxplot, the following information was provided: minimum, 25th–50th–75th percentiles and maximum. Exposure status 
was defined according to a 25% threshold of probability of exposure. Numbers of agents retained for each proportion of exposed 
ISCO-68 codes in CANJEM ([0–5%[/[5–15%[/[15–25%[/≥25%): All scenarios: N = 196/N = 49/N = 8/N = 5.
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retained despite disagreement in the assigned occupa-
tional codes.

Exposure prevalence/differences across metrics
Agreement in exposure status was computed using dif-
ferent metrics (kappa, PABAK, Gwet’s AC) because the 
cross tables corresponding to the agreement calcula-
tions were severely unbalanced due to the general low 
prevalence of occupational exposure. In this situation, 
the above metrics, based on different assumptions, tend 
to diverge. For example, in the case of very low preva-
lence kappa becomes very imprecise, whereas AC1 and 
PABAK (which evaluate chance agreement differently) 
may seem very high in part because of the high absolute 
proportion of agreement.

The stratification of the analysis for exposure status 
according to prevalence of exposure (in our case, pro-
portion of occupation codes classified as exposed) led 

to a clear illustration of the differences between kappa, 
PABAK and AC1. Most agents (196 of 258) in our study 
are associated with low prevalence (<5% exposed occu-
pation codes). For these, because of a very high chance 
agreement probability (most jobs are unexposed), the 
denominator for kappa will be close to zero, rendering 
its calculation very imprecise. Hence, our results show 
highly variable kappa values for these agents, variability 
decreasing with increasing exposure prevalence (Fig. 
2 and Supplementary Fig. S2, available at Annals of 
Occupational Hygiene online). However, median kappa 
did not change across prevalence categories. This is in 
stark contrast with PABAK and AC1, both with very 
similar behaviour: overall values were very high, so as 
to almost render the three scenarios undistinguishable, 
and both decreased with exposure prevalence. The pat-
tern was similar when comparing weighted kappa to 
Gwet’s AC2. The debate as to which metric best reflects 

Figure 4.  Distribution of weighted kappa coefficients for intensity of exposure among exposed subjects to each agent covered 
by CANJEM (using ISCO-1968 classification). For each boxplot, the following information was provided: minimum, 25th–50th–
75th percentiles, and maximum. Number of agents retained for the analysis (using a threshold of exposure set at 25%): 96 with 
the scenario based on all jobs (expert coding), 39 with the scenario based on jobs coded differently (expert coding), and 13 with 
the scenario based on jobs coded differently (random coding).
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agreement in our study is outside the scope of this work. 
In the end, we focussed on the more traditional kappa 
and weighted kappa because they showed better con-
trast across the scenarios studied and facilitated com-
parison to available literature. Moreover, the imprecise 
kappa values for individual agents (especially those with 
<5% exposed occupation codes) are less worrisome in 
our study, where we were interested in overall patterns, 
thanks to the large number of agents involved. Finally, 
the patterns observed with kappa and weighted kappa 
across scenarios were similar, the only differences being 
higher absolute values in AC1, AC2, and PABAK, and 
a decreasing agreement with higher prevalence. It is 
interesting (and expected) to note that for the higher 
prevalence category, kappa values yielded median values 
across scenarios quite close to PABAK and AC1 (~ 0.7–
0.5–0 compared with ~0.8–0.7–0.3 for AC1 and 0.7–
0.6–0.2 for PABAK).

Variation across agents
Apart from differences related to exposure prevalence, 
we expect variations in agreement metrics across agents 
to be mostly random depending on occupations where 
the difference occur and where the agents are present. 
Indeed, except for the lower strata of exposure preva-
lence (where kappa is known to be imprecise), kappa 
values were relatively narrowly distributed. AC1 and 
PABAK values were also relatively narrowly distributed, 
in their case within all strata of exposure prevalence.

Sensitivity analyses
Through our sensitivity analysis involving other thresh-
olds used to define exposure status, median kappa 
remained stable across the three thresholds (after restric-
tion to agents for which the metrics were computable 
for the three thresholds). For other metrics related to ex-
posure status and intensity, we observed a slight decrease 

Figure 5.  Distribution of Gwet’s AC2 statistics for intensity of exposure among exposed subjects to each agent covered by 
CANJEM (using ISCO-1968 classification). For each boxplot, the following information was provided: minimum, 25th–50th–75th 
percentiles, and maximum. Number of agents retained for the analysis (using a threshold of exposure set at 25%): 102 with the 
scenario based on all jobs (expert coding), 40 with the scenario based on jobs coded differently (expert coding), and 13 with the 
scenario based on jobs coded differently (random coding).
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in levels of IRR when selecting the 5% threshold and an 
increase in IRR with the 50% threshold. For exposure 
status (AC1 and PABAK), such an observation is related 
to the higher probability of two different codes being 
considered as non-exposed as the threshold increases. 
For intensity of exposure, such an observation is re-
lated to the proportion of exposed jobs that falls in the 
medium category (the most frequent category for most 
agents) that generally increases with increasing threshold 
thereby reducing the unbalance compared to the low 
and high categories (see Supplementary Excel File, avail-
able at Annals of Occupational Hygiene online).

The pattern of results we found using ISCO-1968 
was similar to those found when using the six other 
classifications covered by CANJEM (see Supplementary 
Tables S2–S3 and Supplementary Figs S13–S17, avail-
able at Annals of Occupational Hygiene online). For 
these classifications at least, it can be affirmed that the 
occupation and industry coding decisions made by dif-
ferent experienced coders combined with a JEM, leads 
to quite similar occupation agent estimates.

Impact on risk assessment
As mentioned above, our estimates of overall reliability 
are somewhat in the upper range of those observed in 
studies comparing exposure assessment methods (e.g. 
expert versus JEM) in population-based studies. This is 
reassuring given the elevated (though typical) proportion 
of different codes, and suggests that job coding errors 
would be a limited source of misclassification overall. 
However, the analyses based on jobs coded differently 
clearly showed a loss of information, albeit a partial loss. 
This loss will cause some impact of misclassification on 
risk estimation. It is hard to predict the direction of the 
effect, as it depends on a combination of sensitivity, spe-
cificity and prevalence, only indirectly associated with 
reliability. Interestingly, Burstyn et al. (2013) demon-
strated a simulation-based method to obtain estimates of 
sensitivity and specificity from those of prevalence and 
reliability. In a later study, Burstyn et al. (2018) used the 
approach to correct for the impact of the associated mis-
classification on odds ratios in a case–control study of 
cancer (Pintos et al., 2012).

Conclusion

Especially when prevalence is low, when the 2*2 tables 
of exposure status will contain one cell (concordantly 
unexposed) with the overwhelming majority of data, it 
feels important to make efforts to reduce the errors as-
sociated with the small number of exposed. This would 
be achieved by concentrating coding resources on jobs 

deemed potentially exposed (from preliminary screening 
for example), and those ending up unexpectedly ex-
posed, in an effort to preserve sensitivity and specificity.
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Supplementary data are available at Annals of Work Exposures 
and Health online.
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