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Abstract

Cellular metabolites play a crucial role in promoting and regulating cellular activities, but it has 

been difficult to monitor these cellular metabolites in living cells and in real time. Over the past 

decades, iterative development and improvements of fluorescent probes have been made, resulting 

in the effective monitoring of metabolites. In this review, we highlight recent progress in the 

use of fluorescent probes for tracking some key metabolites, such as adenosine triphosphate, 

cyclic adenosine monophosphate, cyclic guanosine 5′-monophosphate, Nicotinamide adenine 

dinucleotide (NADH), reactive oxygen species, sugar, carbon monoxide, and nitric oxide for both 

whole cell and subcellular imaging.

Keywords

fluorescent probes; metabolites; imaging

1. Introduction

Metabolites are essential components in biological systems, and as such, play a significant 

role in all biological processes [1, 2]. For example, numerous cellular metabolites, such 

as adenosine triphosphate (ATP), NAD+/NADH, amino acids, and sugars have been 

found to be essential in cell physiology and signalling pathways [3]. Meanwhile, the 

abnormal fluctuation of cell metabolites, such as redox state and nitrogen could result 

in inflammation and diseases in living organisms [4, 5]. Therefore, analysis of these 

metabolites would provide deeper insight into both physiological and pathophysiological 

processes. Metabolomics studies metabolites, the substrates and products of metabolism that 

drive important cellular functions, such as energy generation and storage, signalling, and 

apoptosis [5–7]. It has been applied for assessing changes of comparing cell line mutants, 

drug discovery, toxicology, natural product discovery, studying global effect of genetic 
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manipulation, cancer, and nutrition [8–10]. Despite the importance of metabolomics, it is 

much less developed than genomics or proteomics because it is much more difficult to detect 

and quantify metabolites, which vary widely in speciation and concentration, but have only 

subtle structural differences. Lack of effective metabolomic methods, particularly for in situ 
and real-time detection in vivo is a major barrier to our full understanding of physiological 

and pathophysiological processes.

A common analytical method for most cellular metabolites is mass spectrometry, which 

is often combined with liquid chromatography [11, 12]. While the mass spectrometry is 

extremely powerful in detecting numerous metabolites simultaneously, it cannot distinguish 

between isomers and enantiomers, making it difficult to identify common metabolites such 

as L-amino acids versus D-amino acids and anomers of sugars [13]. It also can be difficult 

for living cell analysis of metabolites because the location and concentration of metabolites 

in living cells can change quickly in response to different signals [14, 15]. Therefore, there is 

a need to develop a complementary method for rapid, sensitive, and selective detection and 

quantification of metabolites in living cells and in vivo.

Fluorometric assays are such a complementary approach for analysing cell metabolites, 

which is based on the presence of fluorescence tags or probes [1, 16]. In general, the major 

advantages of fluorescence analysis of cell metabolites include high sensitivity, capabilities 

for performing time-based studies of concentration, experiments that are non-destructive 

to the cell, and high-throughput detection [17]. While some metabolites can be directly 

analysed in individual cells by autofluorescence via their intrinsic fluorescent compounds, 

only a very limited number of the metabolites display autofluorescence [18]. To overcome 

this limitation, fluorescent probes which combine a molecule that can bind these small-

molecule metabolites and a fluorophore can be introduced in cells [1, 19–22].

After introducing the fluorescent probe into cells, a fluorescence microscope can be used to 

visual-ise cellular metabolites within their sub-cellular location using different fluorescence 

imaging analysis methods to achieve deeper understanding of biological processes [23]. 

Over the past decades, numerous fluorescent probes have been developed and they can be 

categorized into two types: whole cell and sub-cellular imaging. In this review, we highlight 

recent advances in the past 10 years in fluorescent probes for imaging metabolites in either 

whole cells or sub-cellular locations, focusing mainly on representative examples of small 

molecule fluorophore probes, nanomaterial based fluorescent probes, and light-up (aptamer/

dye) fluorescent probes. In particular, we discuss the strengths and limitations as well as 

some new trends in the development with illustrative examples.

2. Whole cell imaging

Cellular metabolite fluctuations are a common feature of many diseases and therefore a 

promising target for diagnostics and therapeutical interventions. Therefore, a large number 

of fluorescent probes have been developed to image the cellular metabolites and their 

applications for the whole cell imaging has been the most extensively studied and widely 

used in biological studies. (Examples are listed in table 1, figure 1 and table 2.)
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2.1. Fluorescent probe for cellular ATP detection

ATP is one of the most important cellular metabolites because it is the primary energy 

currency in living organisms and plays critical roles in many biological processes. Many 

efforts to develop fluorescent probes have been made over the last several decades to 

visualize ATP in living cells. These probes have been developed using both direct and 

indirect detection mechanisms from a variety of physical formats, such as small organic 

indicators, nanomaterials, and fluorogenic probes

Magnesium Green is one of the best small organic indicators, developed by Leyssens et 
al in 1996, for indirectly detecting ATP hydrolysis [97]. Most of the intracellular ATP 

are complexed with Mg2+, while ADP has lower affinity for magnesium ions than ATP. 

Therefore, hydrolysis of MgATP can lead to an increase in free Mg2+ concentration and 

subsequent increase in Magnesium Green fluorescence. Shin et al then applied Magnesium 

Green to indirectly visualize ATP in hair cells [24]. The fluorescence of Magnesium Green 

could be excited with illumination in visible range, reducing the phototoxicity. However, 

Magnesium Green is not a ratiometric probe, showing a simple increase in fluorescence 

increase upon binding Mg2+, which makes it a challenge to use in quantitative studies. To 

directly image cellular ATP, quinacrine, another small molecule probe, stains peptide-bound 

ATP found in high concentrations in intracellular granules [98]. Researchers have been using 

quinacrine to image ATP release in endothelial and epithelial cells [25–27]. In addition, 

Pak et al developed an imidazolium-based, ratiometric fluorescent probe for ATP with a 

pyrene excimer clamp [28, 29]. This fluorescent probe will form a pyrene-adenine-pyrene 

sandwich via π–π stacking when it binds with ATP. Thus, the probes were applied to 

monitor the decrease of ATP levels in HeLa cells upon addition of an ATP synthase inhibitor 

(oligomycin).

Aptamers are short, single stranded DNA or RNA oligonucleotides capable of specific, 

high-affinity molecular binding. Aptamers are widely used in studying small-molecule 

metabolites, which can be engineered to detect metabolite such as ATP in the nanomolar to 

millimolar ranges [99, 100]. However, cell permeability and oligonucleotide degradation by 

nucleases hinder their use in cell imaging [101, 102]. To solve this problem, nanoparticles 

have been used to deliver and protect aptamers from degradation by nuclease in cells. For 

example, Qiang et al employed a carboxyfluorescein (FAM)-labelled DNA aptamer, which 

binds to ATP, and polydopamine nanosphere to create a biosensor for protecting the aptamer 

and quenching its fluorescence [30]. The aptamer released when adding ATP to system. 

Zheng et al constructed an aptamer nano-flare, that can directly quantify ATP in living cells 

[31, 103]. The aptamer nano-flares were composed of a gold nanoparticle core, which is 

functionalized with a dense monolayer of aptamers. However, these fluorescence probes 

employed an ‘always on’ design, which lacks target-activatable nature, will inevitably 

result in a high-background and low signal-to-noise ratio [32, 33, 104]. To overcome the 

problem, Zheng et al designed a fluorescence resonance energy transfer (FRET)-based DNA 

nanoprism with a split aptamer design for ATP sensing in living cells [32]. The nanoprism 

showed high cellular permeability and successfully realised ‘FRET-off’ to ‘FRET-on’ 

sensing of ATP in living cells [32]. Moreover, Zhao et al developed an upconversion 

nanoparticle conjugated with a photocleavable linker (PC linker) modified ATP aptamer 
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sensors, which can detect ATP in living cells in a conversion luminescence-activatable 

manner [33]. One disadvantage of this aptamer-based fluorescence probe is that the aptamers 

are selective for ATP over other nucleotides (GTP, CTP, and UTP), but cannot distinguish 

between adenine derivatives (ATP, ADP, and AMP) [105].

Although both small organic indicators and aptamer-based fluorescent probes have been 

widely used in imaging studies, they still face a challenge during sample preparation 

because of the need to introduce exogenous reagent by cell penetration or cell loading. 

On the contrary, the genetically encoded indicators such as fluorescent protein-based are in 

part or wholly encoded imaging reagents by a specific gene sequence. The most recently 

developed fluorescent protein-based probes are capable of undergoing FRET. These probes 

typically composed of a donor fluorescent protein and an acceptor fluorescent protein that 

are separated by an analyte binding domain. When binding with the analytes, this domain 

undergoes a conformational change that changes the distance between two fluorescent 

proteins, resulting in a change of FRET efficiency. Tsuboi et al reported ATP-sensitive K+ 

(KATP) channels fused to a cyan and yellow fluorescent protein FRET pair (ECFP–EYFP) 

for imaging ATP concentration changes in HEK-293 cells [106]. Imamura et al generated a 

series of FRET-based probes for ATP named ‘ATeam’, in which the ε subunit of the Bacillus 
subtilis F1F0ATP synthase acts as the ATP sensing domain [34]. Yaginuma et al reported 

a ratiometric single fluorescent protein probe called ‘QUEEN’ (quantitative evaluator of 

cellular energy) to quantify absolute ATP concentrations [35]. Recently, intensiometric 

single fluorescent protein probes developed by Aria et al and Lobas et al enabling the 

simultaneous visualization of cellular ATP dynamics [36, 37].

Since the absolute ATP, ADP, and AMP can fluctuate, the ratio of ATP/ADP ratio can be a 

more reliable indicator of cellular energy status. The ratiometric single fluorescent protein 

probe ‘Perceval’ developed by Berg et al and improved version ‘Perceval HR’ has been used 

for measuring cellular ATP/ADP ratio [20, 38]. Zala et al also used the Perceval to measure 

ATP/ADP ratio in neurons and found out that mitochondrial trafficking is dependent on 

mitochondrial ATP but not glycolysis [39].

2.2. Fluorescent probes for intracellular second messengers

Cyclic adenosine monophosphate (cAMP) is a second messenger of many G protein-coupled 

receptors (GPCRs) and regulates cAMP-dependent kinase (PKA) and the exchange protein 

activated by cAMP (Epac) to participate in cellular metabolism. The first cAMP fluorescent 

probe (FICRhR) for cellular imaging was reported by Adams et al, which was a FRET-based 

probe utilizing dissociation of purified regulatory and catalytic subunits of PKA, sensing the 

cellular cAMP by microinjection [49]. Later, the FICRhR probe was applied to investigate 

the link between cAMP and diverse biological activities and to monitor cAMP levels in 

the processes of stimulated Aplysia neurons [50, 51]. Moreover, the FICRhR probe was 

also introduced into single cells within brain slice preparations by perfusable patch pipettes 

[52]. However, the requirement for invasive loading of PKA holoenzyme in this method 

limits its applications. To solve this limitation, researchers developed genetically encoded 

versions of FICRhR, which could be introduced into cell by a routine transfection. Zaccolo 

et al developed FICRhR-like genetically encoded probe, which was composed of enhanced 
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blue fluorescent protein-labelled type 2 regulatory subunits of PKA and GFP-labelled 

catalytic subunits [53]. Subsequently, many labs have also carried out optimization studies 

on this probe [54–57]. DiPilato et al constructed a fluorescent probe to monitor cellular 

cAMP dynamics and Epac activation by sandwiching the full-length Epac1 between cyan 

and yellow mutants of GFP [58]. Over the years, multiple labs developed and improved 

FRET-based fluorescent probe for cAMP with different characteristics regarding sensitivity, 

kinetics, and dynamic ranges.

As an alternative to the FRET-based methods, single-wavelength methods were developed, 

which the cAMP binding domain was fused to only one fluorophore. Tewson et al first 

developed a single-wavelength intensiometric cAMP probes cADDis [59], then Moore et al 
optimized the probe that cADDis fused with a 5HT6 receptor and mCherry to target cilia 

and measure the cAMP ratiometrically [60]. Recently, Kellenberger et al first developed a 

RNA-based fluorescent probe for cyclic di-AMP (cdiA, is also a second messenger in Gram-

positive bacteria, some Gram-negative bacteria, and Archaea) by fusing of Spinach2 aptamer 

to ligand-binding domains of cdiA riboswitches, visualizing intracellular cdiA levels in live 

Listeria monocytogenes strains [61].

The other important second messenger is cyclic guanosine 5′-monophosphate (cGMP), 

which participates in many physiological processes in mammals. cGMP can be used to 

regulate effectors such as cGMP-specific phosphodiesterases (PDEs), cGMP-dependent 

protein kinases (PKGs) and cyclic nucleotide-activation ion channels. Therefore, the 

visualization of intracellular cGMP is critical for understanding of cGMP signalling 

pathway. Several different cGMP binding domains have been used as sensing units in 

genetically fluorescent probes. For example, the binding domain of Cygnus in cGMP energy 

transfer sensors (cGES) was from PDEs [62, 63] and cGMP indicators (cGi) [64] were from 

PKGs and PDEs. These binding domains were used to separate donor fluorescent protein 

and acceptor fluorescent protein. Moreover, Sato et al, reported a fluorescent probe named 

CGY-del1 for cGMP that contained PKG fused to single fluorescent protein [65]. Honda et 
al optimized the selectivity for cGMP and eliminated the constitutive kinase activity of the 

binding domain to reduce the disturb from the probe [107, 108].

Breaker’s group first reported the Cyclic di-GMP riboswitch (named c-di-GMP-I) [66] in 

eubacteria and then discovered another c-di-GMP riboswitch termed c-di-GMP-II in the 

Clostridium difficile [67]. Kellenberger et al designed two different probes for live cell 

imaging of c-di-GMP and cyclic AMP-GMP by fusing the Spinach aptamer to variants of 

a natural GEMM-I riboswitch (c-di-GMP-I), demonstrating the ability to change specificity 

of the RNA-based probes by taking advantage of rational mutations to the ligand binding 

domain instead of by inserting distinct aptamers [68]. Zhou et al discovered three new 

c-di-GMP riboswitches (Bc3, Bc4, and Bc5 RNA), which were fused between the two 

fluorescent protein genes amcyan and turbofp [69]. Recently, Wu et al designed a ratiometric 

RNA probe that comprised of dinitroaniline-binding aptamer (DNB)-based sensing domain 

and Broccoli domain to quantify the intracellular c-di-GMP concentration by DNB-to-

Broccoli fluorescence ratio [70].
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2.3. Fluorescent probes for intracellular NAD pools

Nicotinamide adenine dinucleotide (NAD) is a central cofactor involved in many enzymatic 

reactions, especially as a major electron carrier in redox reactions [109–111]. NAD exists 

in two forms, the oxidized form NAD+ and the reduced form NADH [111]. NAD+ can 

be reduced to NADH in the process of glycolysis and in the tricarboxylic acid (TCA) 

cycle [112]. NADH can be re-oxidized back to NAD+ in the electron transfer chain [111]. 

Meanwhile, NAD can also be phosphorylated to NADP via NAD kinases [111]. The NAD+/

NADH redox couple is served as a regulator of cellular energy metabolism of glycolysis 

and mitochondria oxidative phosphorylation [113, 114]. While NADP+, together with its 

reduced form NADPH, maintain redox balance and support the biosynthesis of fatty acids 

and nucleic acids [114]. Therefore, similar to ATP, the NAD pool plays an important role 

in cellular energy balance, which is determined by the ratio of NAD+/NADH and NADP+/

NADPH. Nowadays, the well-developed fluorescent probes for cellular NAD pool imaging 

are genetically encoded fluorescent probes. Zhao et al first inserted the circularly permuted 

fluorescent proteins (cpFPs) into NADH sensing domain (Rex) subunit to sense the NADH 

[71]. To date, there are several genetically encoded fluorescent probes that can detect NAD+/

NADH ratios: Peredox [72, 73], Rex YFP [74], and SoNar [75, 76]. Peredox and Frex family 

probes were based on inserting a cpYPs into the Rex dimer between its subunits, detecting 

the NAD+/NADH ratios via Rex intersubunit interactions. While Rex YFP and SoNar were 

based on integrating a circularly permuted yellow fluorescent proteins (cpYFPs) into the 

loop between nucleotide-binding domains of each Rex subunit.

2.4. Fluorescent probes for intracellular amino acids

Glutamate plays a critical role in amino acid metabolism, participating not only signal 

transduction, but also regulating nitrogen circulation together with glutamine and 2-

oxoglutarate [115–117]. The glutamate-sensing fluorescent reporter (GluSnFR) [77–79] and 

fluorescent indicator protein (FLIP) for glutamate [80–82] were the primary genetically 

encoded fluorescent probes, which fused the glutamate periplasmic binding protein (PBP) 

GltI (also known as ybeJ) to enhanced cyan fluorescent protein and a yellow fluorescent 

protein Citrine [118] or Venus [119]. Marvin et al also reported an intensity-based GluSnFR 

(iGluSnFR), fusing the binding protein GltI to cpFPs cGFP [120, 121]. Namiki et al 
developed a small molecule fluorescent probe, which consists of the mutated glutamate 

receptor GluR2 subunit of an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor and a small molecule fluorescent dye, termed EOS [40]. Gruenwald et al studied 

another pivotal amino acid, glutamine, measuring the glutamine concentration in living cells 

by an array of FLIPQ-TV sensors with different affinities [82]. Okada et al applied bacterial 

PBPs to construct FRET-based probes, taking advantage of PBPs’ structure to expand the 

dynamic range of the probes [122].

2.5. Fluorescent probes for intracellular sugar

Sugar metabolism is involved in many types of metabolic reactions in living organisms. 

The PBPs have been used as the substrate-binding element of protein-based fluorescent 

probes by linking to fluorescent protein. These fluorescent probes are named as FLIP family 

probes (which are also FRET-based probes) due to the hinge-bend movement of probes 
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leading to FRET response. Frommer et al used PBPs to design a series FLIP probes to 

monitor the intracellular distribution of many sugars including glucose, galactose, maltose, 

ribose, arabinose, sucrose, lactate, and trehalose [83–89]. Since the intracellular sugar 

concentrations and distribution were directly related to carbohydrate metabolism, these 

FLIP probes have been broadly applied in many areas, such as the food, pharmaceutical, 

and biofuel industries. Ballerstadt et al reported a fluorescent affinity hollow fibre probe 

for transdermal glucose monitoring, which consisted of the dyed beads (Safranin O and 

Pararosanilin) and Alexa488-Con A (Alexa fluor 488 labelled Concanavaline A) inside 

a hollow fiber dialysis membrane [123]. Then Heo et al developed a probe based on 

fluorescent hydrogel fibers for long-term monitoring of glucose in vivo [124]. Although the 

use of protein-based fluorescent probes in metabolite research and bioprocess visualization 

has progressed, there is still a need to develop new probes for other critical sugar 

metabolites.

2.6. Fluorescent probes for intracellular redox state

Reactive oxygen species (ROS) refers to a series of key oxygen (O2) metabolites, 

including hydrogen peroxide (H2O2), hydroxyl radical (•OH), hypochlorous acid (HClO), 

superoxide anion (O2
•−), singlet oxygen (1O2), ozone (O3), and organic peroxides [125–

132]. The changes of intracellular ROS will influence the redox equilibrium, resulting 

in macromolecular damage and is implicated in various diseases such as atherosclerosis, 

diabetes, neurodegeneration, cancer, and aging [126]. Numerous fluorescent probes have 

been developed to image the intracellular ROS or redox states. The genetically encoded 

fluorescent probes for sensing ROS or redox states were taking advantage of existing 

a sensing domain from naturally occurring protein structures by linking to fluorescent 

proteins. For example, redox-sensitive GFP with two surface-exposed cysteines close to 

the chromophore was used to monitor the molecule’s own redox states [90, 133, 134]; 

redox-sensitive polypeptide-flanked CFP/YFP leads to FRET signal changes response to 

different redox states [91]; the environmentally sensitive fluorescent protein (Venus) was 

fused with responsive domain of the transcriptional regulatory protein OhrR to visualize 

organic hydroperoxides, which constantly generate cellular stress [135]. The other types of 

fluorescent probe were based on small molecules. Taking H2O2 as an example, the majority 

of H2O2 probes were based on the oxidation of boronate esters [16, 41]. Other H2O2 sensing 

reactions cover C–S bond cleavage of perfluoro-benzyl sulfonates [42], oxidation-induced 

C–C bond cleavage of benzils [43], C–N bond cleavage of anilines [44], and direct oxidation 

of phosphorous [45], selenium [136, 137] and tellurium [138]. Most of the small molecule-

based fluorescent probes for redox states have been extensively reviewed [16, 139–142]. 

Readers wishing to further advance this field would be advised to read recent discussion 

from Tampieri and Lu in order to address which ROS are present in solution [143, 144].

2.7. Fluorescent probes for intracellular other significant metabolites

Carbon monoxide (CO) is generally regarded as a toxicant or pollutant. Nevertheless, more 

and more studies suggest that CO, like NO, functions as an essential second messenger 

[145]. Wang et al reported a genetically encoded fluorescent probe COSer for monitoring 

intracellular CO by fusing a dimeric CO-sensitive heme protein to cpYFP [92]. Xu et al 
reported a novel cell membrane-anchored fluorescent probe ANRP, which complexed ANR 
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(a cell membrane-anchored fluorophore designed by grafting a positive charged ammonium 

group onto a long and linear hydrophobic Nile Red molecule.) with palladium, monitoring 

the release of CO from living cells [46]. Sato et al have reported a novel cell-based 

fluorescent probe to visualize picomolar levels of NO release from living cells, made 

by combining endogenously expressed guanylate cyclase with a FRET-based cGi [93]. In 

addition, the small molecule-based fluorescent probes for NO were well-developed. The 

most common method involves the use of o-Diamino aromatics under aerobic conditions, 

which firstly reported by Nagano’s group [47]. In the presence of O2, o-Diamino aromatics 

could react with NO to furnish fluorescent triazole derivatives [146–148]. Other fluorescent 

probes are summarized in several reviews [149, 150]. 2-Oxogluatarate (2OG) is another 

metabolite that plays an important role in metabolism and also serves as a signalling 

molecule in various organisms. Zhang et al reported FRET-based genetically encoded 

fluorescent probe for detecting 2OG in real-time; results showed the probe’s dynamic range 

appeared identical to the physiological range observed in Escherichia coli [94]. Citrate 

is also a critical metabolite in various biological systems, such as mitochondrial energy 

generation, inflammatory response, blood coagulation, and cytosolic biomacromolecular 

synthesis [48, 151]. Ewald et al developed FRET-based genetically encoded fluorescent 

probe for citrate; they optimized peptide linkers to achieve an optimal change ratio and 

modified the citrate-binding pocket to obtain a probe with the proper affinity for the 

application [95]. Hu et al also reported another fluorescent probe, which was based on 

carbon nitride nanoribbons for visualizing intracellular citrate anion [48]. Lactate also plays 

metabolic and signalling roles in healthy tissues. As the fluctuation of lactate level is 

associated with inflammation, hypoxia/ischemia, neurodegeneration, and cancer, visualizing 

intracellular lactate levels has diagnostic and therapeutic applications [88]. San Matín et al 
reported a genetically encoded FRET lactate probe that discriminates lactate flux in different 

cells; results showed T98G glioma cells have 3–5-fold higher rate of lactate production 

than normal cells [88]. Recently, Galaz et al developed a genetically encoded FRET probe 

Lapronic for imaging lactate/pyruvate ratio in living cells’ cytosolic and mitochondria 

matrix, allowing the assessment of glycolytic/oxidative metabolism with a straightforward 

fluorescent readout [96].

3. Subcellular imaging

Sub-cellular organelles are specialized subunit within cells, which are usually enclosed 

by their own lipid bilayer. The main eukaryotic organelles include nucleus, mitochondria, 

lysosome, endoplasmic reticulum (ER), and Golgi apparatus. All of these organelles play a 

critical and indispensable role in cellular processes [152, 153]. The dynamic fluctuations of 

intracellular metabolites in subcellular microenvironments determine cellular metabolism, 

homeostasis, signal conduction, and immunity; abnormal levels of the sub-cellular 

metabolites can cause disorders, which are associated with various major diseases [154–

156]. Monitoring intracellular metabolites in subcellular structures is therefore important 

for bioanalysis and related drug discovery. Organelle fluorescent probes mainly contain 

three domains: localizing group, fluorophores, and recognition domain [154, 157, 158]. 

Fluorescent probes with diverse localizing groups can be localized in specific organelles 

by utilizing different physiochemical properties of diverse organelles [159]. After reaching 
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the subcellular location of interest, they can subsequently target or react with diverse 

metabolites by recognition domain and further make detectable signal changes via different 

response mechanisms. Herein, we summarized the fluorescent probes for monitoring the 

fluctuation of metabolites with sub-cellular accuracy.

3.1. Fluorescent probes for imaging mitochondrial metabolites

Mitochondria, the double-membrane constructed organelles and the primary compartments 

for intracellular respiration in most eukaryotes, regulate energy generation, calcium 

circulation, protein synthesis, cell proliferation, division, and death pathways [160]. 

Abnormal metabolite levels in mitochondria may lead to mitochondrial dysfunction, which 

is related to neurodegenerative disease, malignant cancers, and cardiac diseases. Thus, 

fluorescent probes that specifically accumulate in mitochondria play critical roles in 

monitoring the mitochondrial functions and investigating various mitochondrial disease 

[161–166]. During mitochondrial respiration, proton pumps in the mitochondrial inner 

membrane transport protons into the mitochondrial membrane space, resulting in a 

highly negative mitochondrial transmembrane potential (MMP, approx. −180 mV) [167, 

168]. Therefore, most fluorescent probes for mitochondria attract the negative potential 

of the mitochondrial membrane by cations. The fluorescent probes with intrinsic or 

post-functionalized cationic aromatic structures can be applied to image mitochondria. 

Delocalized lipophilic cations (DLCs) have been shown to possess the ability to localize 

mitochondria [169–171]. Typical DLCs ligands include triphenylphosphonium (TPP), 

quinoline derivatives, and positive charged pyridine; rhodamine and cyanine are the common 

fluorophores for the design of probes for mitochondria imaging (figure 2) [156, 172–178]. 

Except for MMP based fluorescent probes, mitochondria transport proteins have also been 

developed for targeting. The localizing ligands, such as peptides and pyruvate, possess the 

affinities for specific mitochondrial protein, which have been used for designing the probes 

for imaging mitochondria [160, 179–181].

ATP is primarily produced in mitochondria and the fluctuation of ATP will lead to, or is 

caused by, mitochondria dysfunction. Thus, it is essential to monitor the ATP in and around 

the mitochondria. Until now, several methods have been developed. The genetically encoded 

fluorescent probes for imaging mitochondrial ATP are based on fusing a mitochondrial 

localizing sequence to a fluorescent protein gene. Imamura et al fused a duplex of the 

mitochondrial localizing signal of cytochrome c oxidase subunit VIII to the N terminus of 

ATeams indicator, which made the indicator localized to the mitochondria properly [34]. 

Then, Depaoli et al applied this mitochondria-localizing ATeams indicator to investigate 

the dynamic of mitochondrial ATP pools in response to acute glucose removal, glucose 

substitution, as well as mitochondrial toxins [185]. Over the past decades, only few 

small molecule-based fluorescent probes developed for localizing mitochondrial ATP and 

based on MMP. Srivastava et al first developed a photoinduced electron transfer based 

molecular scaffolds/fluorescent probes that can monitor mitochondrial ATP [186]. Wang 

et al then developed a multisite-binding, switchable fluorescent probes ATP-Red 1 to 

monitor mitochondrial ATP levels [187]. Tan et al reported a fluorescent probe named 

Mito-Rh to real time monitor mitochondrial ATP, which was constructed by an ATP-

sensitive fluorophore rhodamine, ATP reaction site diethylenetriamine and mitochondria-
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localizing site TPP [182]. Recently, Ren et al reported a novel ratiometric fluorescent probe 

Rh6G–ACFPN for quantitatively detecting the mitochondrial ATP levels [188]. Several 

nanoparticles have been developed to delivery fluorescent probes to mitochondria. Deng et 
al developed zeolitic imidazole frameworks to encapsulate the ATP sensitive fluorophore 

Rhodamine B, monitoring mitochondrial ATP fluctuation during cellular glycolysis and 

apoptosis [189]. Liu et al developed yellow emissive single-layered graphene quantum 

dots with dual recognition sites including π-conjugated single sheet to sense ATP and 

positively charged site to localize in mitochondria [183]. Recently, our group applied 

positively charged nanoparticles called DQA-somes to deliver a PC ATP aptamer sensor to 

mitochondria for spatiotemporally controlled monitoring of mitochondrial ATP fluctuation 

[184]. This approach kept the fluorescent probe inactive before reaching the mitochondria 

and can be activated by light to detect ATP.

To make sure cellular energy supply, diverse electron-transport chain (ETC) reactions 

for ATP synthesis are performed in mitochondria. The electrons leaked from ETC can 

react with oxygen molecules to generate O2
•− and transformed into H2O2, ONOO−, •OH, 

1O2 et al under the catalysis of diverse enzyme [173–175, 190, 191]. These metabolites 

can not only maintain the mitochondria redox homeostasis, but also regulate the cellular 

function. Various of fluorescent probes for mitochondria imaging have been developed 

for visualizing ROS levels during the cell processes. For genetically encoded fluorescent 

probes, the mitochondria-localizing sequences are fused to ROS sensitive fluorescent protein 

sequences so that the expressed protein probes can respond to mitochondrial ROS. Hyper 

is a classic family of genetically encoded probes for H2O2, which consists of circularly 

permuted YFP (cpYFP) inserted into the regulatory domain of the prokaryotic H2O2-

sensing protein OxyR. Researchers developed hyper probes by fusing the mitochondria-

localizing sequences so that the probes can localize to the mitochondria matrix [192, 

193] and mitochondria intermembrane space [194] of HEK and other cells. Wang et al 
employed adenovirus-mediated gene transferred to express ROS sensitive cpYFP in the 

mitochondrial matrix of cultured adult cardiac myocytes using the cytochrome C oxidase 

subunit IV (COX IV) localizing sequence (mtcpYFP) [195]. TPP modified small molecule 

fluorescent probes have been widely applied in mitochondria specific metabolites imaging. 

For example, MFDBZH [190] and HKSOX-1 probes [196] for sensing O2
•−; PMN-TPP 

[197], RMClO-2 [198] and RSTPP [199] probes for sensing HOCl; MNAH probe [200] for 

sensing 1O2. Other cationic groups are widely used in the design of probes for imaging 

mitochondria, such as cyan [201–203] and rhodamine [175, 198, 199, 204–206], which 

are also served as the fluorophore for the probe. In addition, peptides have also been 

developed for the design of fluorescent probes for imaging mitochondria [207]. TPP group 

has also been used in fluorescent nanoparticle probes. For example, Gong et al reported 

a mitochondrial oxidative stress amplifier to image GSH, MitoCAT-g, which consists of 

carbon-dot-supported atomically dispersed gold (CAT) with further surface modifications of 

TPP and cinnamaldehyde [208].

NADH is the important hydrogen carrier during TCA cycle (TCA cycle), and can release 

more energy to cells. Mitochondria-localizing sequences have also been used in genetically 

encoded fluorescent probes for mitochondrial NADH imaging. The genetically encoded 
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NADH sensors, such as Frex, Peredox, RexYFP, and SoNar, are already genetically 

introduce to mitochondria by fusing the mitochondria-localizing sequences [74, 209–211].

Owing to the crucial biological function of mitochondria, fluorescent probes for imaging 

mitochondrial metabolites have been widely developed and employed. Nevertheless, most 

of the localizing ligands are lipophilic cationic structures, which may reduce the MMP. 

Furthermore, the fluorescent probes can easily leak out or become untargeted due to 

the MMP lost during various stimulations and cannot work precisely in these situations. 

Although genetically encoded fluorescent probes are able to anchor to mitochondria 

covalently with high selectivity and avoid the fluorescent probe leakage or poor targeting, 

we cannot guarantee the gene transfection efficiency, and the repeated washing steps may 

cause the change of mitochondrial microenvironment. In addition, the process of gene 

transfection makes the genetically encoded fluorescent probes difficult to apply in in 
vivo imaging. As we know, there are thousands of biomolecules in mitochondria, such 

as mitochondrial DNA, RNA, enzymes, ions, lipids, and amino acids. So, in situ imaging 

and measurement of specific mitochondrial metabolites at ultralow concentrations using 

fluorescent probes remains a challenge. A lot of reported fluorescent probes only work 

when cells are stimulated by various chemical agents or abundant of exogenous analytes 

are added. There are still relatively few probes can detect basal concentrations, which 

limits the further explorations of physiological and biological functions of these metabolites. 

Ratiometric fluorescent probes are promising for eliminating these interferences, but only 

limited ratiometric fluorescent probes for mitochondria imaging have been developed until 

now.

3.2. Fluorescent probes for imaging nuclear metabolites

The nucleus is the crucial organelle that serves as the container of the majority of DNA in 

cells, maintaining the integrity of genes and regulating the gene expression to control the 

cell activity [212, 213]. The nucleus is enveloped by a double-layered membrane containing 

hundreds of nuclear pores and ribosomes. Some small molecules and ions can permeate 

via the nuclear membrane freely. Meanwhile, the large biomacromolecules, such as RNA 

and ribosomes, can transit through the nuclear pores by energy related pathway. Owing 

to the large amount of DNA in nucleus, small cationic fluorescent probes with two or 

more cationic centres and hydrophobic planar aromatic structure can be used to target to 

the minor grooves in negatively charged DNA double-strands to accomplish the nuclear 

localizing, such as commercialized Hoechst dye or DAPI [212, 214]. Dickinson et al 
reported another nucleus-localizing ligand modified probe, arylboronate based fluorescent 

probe, for imaging the nuclear H2O2 [215]. Moreover, modifying the fluorescent probes 

with nuclear localization signal (NLS) peptides enables the probes to bind to importins and 

further delivering into nucleus through nuclear pores (figure 3(A)) [213]. For example, Wen 

et al developed a peptide conjugated small molecule probes based on 1,8-naphthalimide 

and boric acid ester for imaging nuclear H2O2 [216]. Meanwhile, protein tagging is also 

a promising strategy for the development of fluorescent probes for imaging nucleus. The 

protein tagging ligands used for imaging nucleus include SNAP-tag [217, 218], HaloTag 

[219], coumarin [220] and HaloRT ligand. Imamura et al reported FRET-based genetically 

encoded fluorescent probe fused with the SV40 large T-antigen sequence to imaging the 
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nuclear ATP [34]. However, nanomaterials are rarely used in the imaging of nuclear 

metabolites due to size limitation for nanomaterials to localize in nucleus [221].

Several reports have shown that the modification of NLS peptides to molecules or 

nanomaterials can be sufficient to drive to the fluorescent probe to the nucleus specifically, 

and using this method, nucleus-localizing cancer therapy has been broadly studied. 

However, many fluorescent probes need long incubation time for positioning to nucleus 

due to the low targeting efficiency. Meanwhile, it is difficult to directly conjugate the probes 

with nucleus-localizing molecular scaffolds or NLS peptides, probably due to the minor 

structural alterations which can reduce the affinity of localizing ligands [154, 158]. Protein 

tagging appears to be an ideal way for positioning the probes to almost any organelles 

including the nucleus. But the synthesis process is difficult and complex, and the loss 

of solubility of probes after binding to the substances may hamper the application of 

protein tagging probes or genetically encoded fluorescent probes. In addition, non-specific 

or un-tagged fluorescent probes need to be washed out repeatedly before imaging to lower 

the background fluorescence, which can change the nucleus microenvironment of cells. 

Therefore, the development of novel ultrasensitive fluorescent probes for imaging nuclear 

metabolites should be given more attention.

3.3. Fluorescent probes for imaging lysosomal metabolites

The lysosome is the main digestive compartment in cells, where many macromolecules 

are delivered for degradation [159]. The main characteristics of lysosomes are acidic 

microenvironment (pH ~ 5.0) and an abundance of hydrolases [158]. Most importantly, 

lysosomes are responsible for foreign substance scavenging, digestion, and autophagy [229–

231]. As the importance of lysosomes have been understood, more and more fluorescent 

probes for imaging lysosomal metabolites have been developed.

Similarly, the genetically encoded fluorescent probes localized in lysosome by fusing 

the lysosome localizing sequences. For example, McCue et al reported a genetically 

encoded fluorescent probes fused with lysosomal resident membrane protein LAMP1 to 

image lysosomal Ca2+ [232]. Other types of fluorescent probes are usually modified with 

lipophilic amines for driving probes into lysosomes. The protonated amines in lysosomes 

are membrane permeable so that the lysosomes can entrap the probes selectively (figure 

3(B)) [222, 233]. The lysosome-localizing ligands morpholine has been broadly applied 

in the development of lysosome-localizing small molecule fluorescent probe for imaging 

the lysosomal ATP, H2O2, HOCl, NO, and HNO (figure 3(C)) [223, 234–240]. The 

other popular localizing ligand N,N-dimethylethylenediamine has been used for imaging 

lysosomal NO and H2S [241, 242]. Recently, Jun et al reported a ratiometric two-photon 

fluorescent probe Lyso-ATP for imaging lysosomal ATP by changing the core into 

rhodamine 6G and introducing a BODIPY at the end of the tetraamine chain, which showed 

the lysosome fusion process [243]. Nanomaterials have also been developed for imaging the 

lysosomal metabolites. For example, Jin et al constructed a nanoflare composed of AuNP, 

i-motif and ATP aptamer to image lysosomal ATP (figure 3(D)) [224]. The fluorescent 

carbon dot developed by Geng et al was also used in imaging the lysosomal ATP [244].
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Although, in recent years, the development of fluorescent probes for imaging lysosomal 

metabolites has been made significant progress. There are still remaining certain limitations. 

For instance, the localizing principle of most reported fluorescent probes are based on 

trapping lipophilic amines and cannot be used to differentiate between endosomes, auto-

phagosomes, autolysosomes and other acidic organelles. Furthermore, these localizing 

ligands are toxic to living cells because they can cause the alkalization of lysosome 

microenvironment, making them unsuitable for long-term tracing. While the genetically 

encoded fluorescent probes need to be washed out to lower the background fluorescent 

before imaging, which may also influence the lysosome microenvironment. Meanwhile, 

the fluorescent of some probes can be quenched owing to the acidic lysosomal 

microenvironment. The emission wavelengths of most of the reported probes are located 

in the visible region, which hinder the application in deep tissue imaging due to the poor 

penetration capability. These shortcomings greatly limit the development and application 

of lysosome-localizing fluorescent probes. Therefore, it is still a challenge to develop 

the fluorescent probes for imaging lysosomal metabolites with strong anti-interference 

capability, outstanding selectivity, and high sensitivity.

3.4. Fluorescent probes for imaging the metabolites in ER

The ER can be divided into rough ER and smooth ER based on whether they contain 

ribosomes. The rough ER is responsible for protein synthesis, while the smooth ER is 

mainly in charge of lipid and carbohydrate metabolism and calcium signalling. During these 

biological processes, the metabolites like ATP, ADP, ROS, NO, HNO, and H2S are essential 

for ER functions. Once the homeostasis of metabolites in ER is out of control, it can cause 

several types of disorder in ER. Therefore, the development of ER-localizing fluorescent 

probes and tracing of the fluctuation of metabolites become a new strategy to study the 

metabolism process in ER.

The ER-localizing sequences have been fused to genetically encoded fluorescent probes. 

Vishnu et al reported ER-localizing ATeam ERAT4.01 to record the ER ATP changes in 

real-time, revealing that the ATP levels within the ER were significantly lower than in the 

mitochondria and that Ca2+ release from the ER induced ATP increase within ER lumen 

[245]. Then this ER-localizing probe had also been applied in imaging ATP depletion of 

ATP/ADP exchanger in ER membrane [246]. The most popular ER-localizing ligand for 

small molecule fluorescent probes is p-toluene sulphonamide, such as ERBZT for O2
•− 

(figure 3(E)) [225], ER-ClO for HOCl [247], ER-Nap-NO for NO [248], and Na-H2S-ER 

for H2S [249].

Over the past decades, a series of fluorescent probes have been developed for imaging 

specific metabolites selectively in ER. However, the targeting principle of these fluorescent 

probes still remains unknown, which hamper the development of ER-localizing fluorescent 

tools and the understanding of physiological and biological functions of different 

metabolites. Although the conjugation of ER-localizing dyes seems feasible, a slight change 

of molecular charge and bulk may influence the targeting capability. Meanwhile, the protein 

tagging methods can also be used to drive the fluorescent probes to ER, but the synthetic 

difficulty and complexity make this probe need to be further improvement. In addition, 
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the emission wavelength of most of the probes are also localized in visible region, which 

hinder the in vivo application. Until now, probes for imaging and quantification of in situ 
metabolites in ER are still rare, so the development of this kind of probe could speed up the 

understanding of biological functions of ER.

3.5. Fluorescent probes for imaging the metabolites in Golgi apparatus

The Golgi apparatus is another crucial intracellular organelle for the modification, storage 

and transportation of carbohydrates, lipid and proteins. Modified and labelled cargoes 

in Golgi apparatus will be transferred to the final destinations, such as lysosomes and 

cytoplasmic membrane, and further exert the biological functions [158, 159, 226]. Notably, 

the stress-signalling overload in Golgi apparatus can result a series of disorders and further 

lead diverse diseases. However, the probes for imaging the metabolites in Golgi apparatus 

have not been well developed.

The developed Golgi apparatus-localizing genetically encoded fluorescent probes, by fusing 

amino acids 1–60 of the human galactosyl transferase truncated at position 60 in its 

luminal domain to N terminus of sensing domain, have been used to image Zn2+ in Golgi 

apparatus [250]. However, it has not been applied to the imaging of other metabolites 

in Golgi apparatus. Owing to a large quantity of cysteine residue recognition receptors 

in Golgi apparatus, the localizing ligand of some small molecule fluorescent probes are 

containing L-cysteine, such as CCA for O2
•− (figure 3(F)) [226] and SF-1 for HOCl [251]. 

Recently, Zhu’s group reported two small molecule fluorescent probes for sensing H2S in 

Golgi apparatus, one is containing a phenylsulfonamide moiety as a localizing group and 

a 1,8-Naphthalimide moiety as a sensing group (figure 3(G)) [227], the other one has a 

trifluoromethyl moiety as a localizing group and quinoline as a sensing group (figure 3(H)) 

[252]. They also applied the trifluoromethyl moiety and thiobenzoate moiety to image the 

cysteine in Golgi apparatus [228].

Due to the lack of effective localizing ligand, fluorescent probes for imaging the Golgi 

apparatus have not received much attention. Although L-Cysteine has been reported to be a 

promising localizing ligand, we still need to do the further investigation of universality. With 

the development of the enzyme-activated probes, they will have the potential to apply in the 

Golgi apparatus-localizing fluorescent probes.

4. Summary and prospective

Metabolites serve critical roles in biology and any imbalance or fluctuation of these 

metabolites may result in diseases such as cancer, diabetes, obesity and neurodegeneration 

[2, 253]. The detecting and imaging cellular metabolites can help us to understand their 

roles in cellular metabolisms under both physiological and pathological conditions, thereby 

providing a powerful basis for diagnosis and treatment of these diseases. The development 

of fluorescent probes has made a remarkable contribution to biology, making it possible 

to observe the biochemical process directly inside living cells and sub-cellular organelles 

[254, 255]. Therefore, fluorescent probes for imaging subcellular metabolites have attracted 

much attention. Based on various localizing ligands, recognition groups, and fluorophores, 

many sub-cellular localized probes have been developed and applied in different areas, such 
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as monitoring inflammation, diabetes, depression, and cancers. The development of these 

fluorescent probes has also greatly promoted our understanding of molecular mechanisms 

of different biological processes. In this review, we summarize the fluorescent probes for 

imaging metabolites in whole cells and subcellular systems. Localization, detection, and 

response principles are also discussed. Even though many fluorescent probes have been 

developed and applied, there are still several challenges in their application.

Although researchers have made extensive efforts in the development of fluorescent probes 

for imaging metabolites with subcellular accuracy during past decades, the development of 

fluorescent probes for whole cell imaging are significantly more than that of fluorescent 

probes for subcellular imaging. The main reasons for this limitation are the lack of efficient 

sub-cellular localizing ligands and potential toxic effects. For example, the most widely used 

mitochondria-localized ligand TPP can decrease MMP due to the cationic feature, and the 

TPP-modified fluorescent probes can leak out when the MMP is lost; the lysosome-localized 

ligand morpholine can cause the alkalization effect. Otherwise, the strategies that can 

efficiently localize sensors in other organelles, such as ER, Golgi apparatus, or the nucleus, 

are still rare, which severely limits the understanding of biological processes in these sub-

cellular organelles. In addition, this limitation also affects the development of genetically 

encoded fluorescent probes for imaging the sub-cellular metabolites. Therefore, it is very 

important to develop the reliable localizing strategies and novel non-toxic localizing ligands 

for imaging the metabolites in subcellular organelles.

Furthermore, many of the cellular metabolites discussed here are present in ultralow 

concentration, sensitive to the environment, and have a short lifetime. Most reported probes 

failed in tracing the metabolites due to the poor sensitivity and/or specificity. Therefore, 

novel fluorescent probes for imaging the subcellular metabolites with lower detection 

limit and higher specificity are required. The promising solutions for these limitations are 

to explore higher-throughput probe screening systems, novel detection mechanisms, and 

accurate theoretical calculation methods. In addition, the fluorescent probes for imaging the 

subcellular metabolites with signal amplification may also contribute to improving detection 

sensitivity in future.

The signal-noise ratio is an important parameter in fluorescent imaging, because there 

are autofluorescent biomolecules in living cells, and they are emissive when exposure 

to the laser irradiation, that will interfere with the imaging resolution. Moreover, the 

emission wavelength of most reported fluorescent probes is in the visible region, hindering 

the application in background free in vivo imaging. Therefore, it is critical to develop 

fluorescent probes with high quantum yields, long lifetime, outstanding photostability and 

deep-tissue penetration capability. The fluorescent probes that can promote two or more 

photon excitations in near infrared emissions are promising for designing the novel probes.

Many different diseases are closely related to abnormal concentration or fluctuation of 

metabolites. In addition, the communication between metabolites from different sub-cellular 

organelles is also a promising area for investigators to explore the understanding of 

metabolism.

Hong et al. Page 15

Biomed Mater. Author manuscript; available in PMC 2022 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Over the past decades, considerable progress has been made to the development of 

fluorescent probes to image metabolites in whole cell and subcellular. The progress is 

mainly in the area of the improving the imaging resolution, specificity, sensitivity and better 

explanation for molecular mechanisms in diverse biological processes. However, several 

challenges remain as described in the above paragraphs. Given the tremendous progress that 

has been made so far, we are confident that researchers in the field will be able to meet 

these challenges to develop more fluorescent probes with higher performance to enhance our 

understanding of metabolisms that play significant roles on all biological processes.
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Figure 1. 
Examples of FP for ATP visualization. (A) Small molecule FP; (B) nanomaterial based 

FP; (C) genetically encoded FP. Reprinted with permission from [29, 30, 34]. Reprinted 

with permission from [29]. Copyright (2009) American Chemical Society. Reprinted with 

permission from [30]. Copyright (2015) American Chemical Society. Reproduced from [34]. 

CC BY 4.0.
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Figure 2. 
Integration of common groups and their application examples for mitochondrial metabolite 

probes design: (A) TPP cation. Reprinted with permission from [182]; (B) indolium cation. 

Reprinted with permission from [178]; (C) rhodamine cation. Reprinted with permission 

from [175]; (D) pyridinium cation. Reprinted with permission from [176]; (E) mitochondrial 

localization sequence. Reprinted with permission from [34] and selection nanomaterials 

for visualizing mitochondrial metabolites: (F) s-GQDs. Reprinted from [183]; (G) 

DQAsome. Reprinted with permission from [184]. Reprinted with permission from [182]. 
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Copyright (2017) American Chemical Society. Reprinted from [178], Copyright (2016), 

with permission from Elsevier. Reprinted with permission from [175]. Copyright (2017) 

American Chemical Society. Reprinted from [176], Copyright (2018), with permission from 

Elsevier. Reproduced from [34]. CC BY 4.0. Reproduced from [183] with permission of The 

Royal Society of Chemistry. Reproduced from [184] with permission of The Royal Society 

of Chemistry.
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Figure 3. 
Integration of typical groups and their application examples for (A) nucleus; (B)–(D) 

lysosome; (E) ER; (F)–(H) Golgi apparatus localized fluorescent probes. Reprinted with 

permission from [213, 222–228]. Reproduced from [213] with permission of The Royal 

Society of Chemistry. Reprinted with permission from [222]. Copyright (2015) American 

Chemical Society. Reprinted from [223], Copyright (2016), with permission from Elsevier. 

Reproduced from [224] with permission of The Royal Society of Chemistry. Reprinted 

from [225], Copyright (2017), with permission from Elsevier. Reproduced from [226] with 
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permission of The Royal Society of Chemistry. Reproduced from [227] with permission of 

The Royal Society of Chemistry. Reprinted from [228], Copyright (2020), with permission 

from Elsevier.
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