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Introduction
Oncologists are regularly tasked to make individu-
alized recommendations for their patients using 
evidence derived from clinical trials.1 A key step 
toward this goal is to determine whether the esti-
mated treatment effect in the overall trial cohort, 
also known as the ‘main effect’, varied in the subset 
of trial participants most relevant to the patient 
seen in the clinic.2 Forest plots are a commonly 
used tool to visualize and facilitate such subgroup 
comparisons in oncology clinical trials.1,3 A com-
mon mistake when interpreting forest plots is to 
conclude that the treatment effect is not significant 

for subgroups with confidence intervals (CIs) that 
cross the vertical line corresponding to the null 
point of no effect, that is, 1.0 when the hazard ratio 
(HR) relative scale is used.1,4,5 However, crossing 
the null point only means that the data for these 
subgroups were statistically compatible with no 
effect; the data may be equally or more compatible 
with many other values (Figure 1).4,6

To facilitate interpretation of forest plots, Cuzick5 
proposed to de-emphasize the no-effect point and 
instead focus on the vertical line corresponding to 
the point estimate for the main effect. This is 
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Background: Oncologists often refer to forest plots to determine which patient subgroups may 
be more likely to benefit from a therapy tested in a randomized clinical trial (RCT). We sought 
to empirically determine the information content of subgroup comparisons from forest plots 
of RCTs.
Methods: We assessed all forest plots from RCTs of therapeutic interventions presented orally 
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were considered as showing evidence of treatment effect heterogeneity in forest plots when 
their confidence intervals (CIs) did not overlap with the vertical line corresponding to the main 
effect observed in the overall RCT cohort. Subgroups were considered as showing evidence 
of treatment effect homogeneity in forest plots when their CIs did not meaningfully differ, 
within 80–125% equivalence range, with the values compatible with the main effect. All other 
subgroups were considered as inconclusive.
Results: A total of 99 forest plots were presented, and only 24.2% contained one or more 
subgroups suggestive of treatment effect heterogeneity. A total of 81 forest plots provided 
enough information to evaluate treatment effect heterogeneity and homogeneity. These 
81 forest plots represented a total of 1344 individual subgroups, of which 57.2% were 
inconclusive, 41.1% showed evidence of treatment effect homogeneity, and 1.6% yielded 
evidence suggestive of treatment effect heterogeneity.
Conclusion: The majority of subgroup comparisons were inconclusive in this empirical 
analysis of forest plots used in oncology RCTs. Different strategies should be considered to 
improve the estimation and representation of subgroup-specific effects.
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because the question clinicians are interested in 
when looking at forest plots is whether the treat-
ment effect in a particular subgroup differs from 
the reported main effect. If the CIs of a subgroup 
do not cross the vertical line corresponding to the 
main effect, then this can serve as a signal of treat-
ment effect heterogeneity that may merit further 
exploration.1,3,5 More comprehensive subgroup 
analyses may include tests for treatment-by-sub-
group interactions to formally determine whether 
the relative treatment effect, commonly expressed 
by HRs in oncology, varies across subgroups.3,7–9 
However, some guidelines recommend against 
the presentation of p values of treatment-by-sub-
group tests for interaction in forest plots due to 
the risk of misinterpretation and type I error infla-
tion from multiple comparisons.10 However, the 
same concerns apply for the crude visualization of 

subgroup point estimates and their CIs in forest 
plots, with the added limitation that forest plots 
are less informative and less sensitive to potential 
signals of exploratory subgroup differences than 
full modeling for treatment-by-subgroup interac-
tion effects.3 Motivated by these considerations, 
we empirically evaluated the information content 
of forest plots in studies presented at the Annual 
Meeting of the American Society of Clinical 
Oncology (ASCO).

Methods

Study design and outcome definitions
We focused on the most recent ASCO Annual 
Meetings, 2020 and 2021, and evaluated all oral 
presentations (Plenary Sessions, n = 30, or Oral 

Figure 1.  Example forest plot looking at subgroup differences in hazard ratio (HR) estimates from a hypothetical randomized 
controlled trial of a new treatment versus control. The dotted vertical line highlights the overall treatment effect point, also known 
as the ‘main effect’. For each group of interest, the size of the yellow squares corresponds to the sample size, whereas the blue 
horizontal lines represent the 95% confidence interval (CI). The area shaded in gray represents the ‘indifference zone’ for the 
overall treatment effect, assuming that treatment effects between 80% and 125% of the 95% CI for the main effect do not represent 
clinically meaningful differences between each subgroup and the main effect. In this example, the 95% CI for the main effect HR is 
0.46–0.74 corresponding to an indifference zone of 0.368–0.925. Accordingly, all subgroups with 95% CI that are only compatible with 
values within the indifference zone show treatment effect homogeneity. Subgroups with 95% CI that do not overlap with the dotted 
vertical line (main effect) show evidence of treatment effect heterogeneity. All other subgroups are inconclusive.
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Abstract Sessions, n = 646). Presentations were 
included if they reported the results of a rand-
omized clinical trial (RCT) that evaluated any 
therapeutic intervention (n = 147). We initially 
screened each presentation that met inclusion cri-
teria for the presence of a forest plot, and if pre-
sent, we descriptively characterized the forest plot 
using consistent terminology (Figure 1 and 
Supplemental File 1).

Although forest plots are based on refutational 
metrics naturally suited toward demonstrating 
treatment effect heterogeneity,5,6,11 readers often 
seek to determine evidence of treatment effect 
homogeneity (i.e. lack of treatment effect hetero-
geneity) from forest plots. To facilitate this task, 
we developed a simple approach (see section on 
‘Assessing treatment effect homogeneity in forest 
plots’ below for additional details) and calculator 
(Supplemental File 2) to estimate an ‘indifference 
zone’ of no clinically meaningful difference 
between the main effect and each subgroup visu-
alized by a forest plot (Figure 1). We used indif-
ference limits of 80–125% corresponding to the 
commonly used thresholds for bioequivalence 
and clinical equivalence.12 A subgroup compari-
son represented by a forest plot was accordingly 
deemed informative if it either (1) provided a sig-
nal of subgroup treatment effect heterogeneity 
compared with the main effect as evidenced by 
the subgroup CIs not overlapping with the main 
effect5 (e.g. subgroups 2, 3, and 4 in Figure 1), or 
(2) indicated subgroup treatment effect homoge-
neity compared with the main effect as evidenced 
by the subgroup CIs being only compatible with 
values within the indifference zone (e.g. sub-
groups 6 and 8 in Figure 1). Forest plots provid-
ing no evidence of treatment effect heterogeneity 
or homogeneity were deemed inconclusive (e.g. 
subgroups 1, 5, 7, and 9 in Figure 1).

Assessing treatment effect homogeneity  
in forest plots
Theoretical considerations.  In the frequentist 
approach most commonly used in forest plots, the 
point estimate is the value that the data are most 
compatible with the background statistical model-
ing assumptions.11 The subgroup CIs include all 
other values compatible with the data under the 
background assumptions at the specified confi-
dence level, which is usually set at 95% confidence, 
corresponding to hypothesis tests at the 0.05 type I 
error alpha level.11,13 The higher statistical uncer-
tainty inherent in subgroup analyses can yield wide 

CIs that may include values compatible with favor-
ing the treatment or control group and may include 
the null point. No meaningful conclusions can be 
drawn when the wide CIs of a subgroup cover 
divergent treatment effects. Conversely, a common 
error known as ‘second-order nullism’ is to con-
clude consistency of treatment effect between a 
subgroup and the overall cohort when the CIs of 
the subgroup do cross the vertical line at the main 
effect level.14 This ‘absence of evidence is not evi-
dence of absence’ fallacy is a more intricate, but 
equally incorrect version of first-order nullism 
whereby a large p value is thought to provide evi-
dence in support of no treatment effect.6,15 The 
wide CIs of patient subgroups may include treat-
ment effect values that are not compatible with 
those included in the typically more narrow CIs of 
the overall trial cohort. Thus, accepting the null 
hypothesis of no difference between a subgroup 
and the overall cohort based on the lack of a statis-
tical signal in noisy data obscured by random error 
may mislead researchers into failing to capture 
subtle, but real signals of treatment effect heteroge-
neity.6,15,16 It is therefore more prudent to deem 
the results of such subgroups with wide CIs repre-
sented by forest plots as ‘inconclusive’.1,4,14,17,18

First- and second-order nullism arise because fre-
quentist metrics are naturally refutational and are 
thus well-suited to detecting signals of incompat-
ibility with the tested hypothesis (usually the null 
hypothesis), such as the absence of treatment 
effect homogeneity.6,11,19,20 Refutation of the null 
hypothesis of treatment effect homogeneity sug-
gests the presence of treatment effect heterogene-
ity. On the other hand, determining the presence 
of treatment effect homogeneity is a more indirect 
task that typically requires first the specification 
of equivalence or noninferiority margins and then 
to show that the CIs of the subgroup of interest lie 
within these margins.21,22 However, no such 
approach has been developed to date for forest 
plots of subgroup differences in RCTs, despite 
the clinical interest in this setting to detect signals 
of treatment effect homogeneity between sub-
groups and the main effect. To address this need, 
we developed a practical approach and calculator 
(Supplemental File 2) based on the estimation of 
indifference margins defining an ‘indifference 
zone’ of no clinically meaningful difference 
between the main effect and each subgroup visu-
alized by a forest plot.

Indifference zone estimation.  All indifference 
zone estimations are performed in the log-scale 
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(additive scale) because modeling of relative treat-
ment effect estimates, such as HRs, in RCTs is 
always done in this scale. The indifference zone 
can be specified based on clinically plausible 
indifference limits. For example, treatment effects 
that differ within 80–125% of each other are com-
monly considered to be clinically equivalent. At 
the HR scale, this corresponds to a HR for the 
main treatment effect being clinically meaningful 
when it is less than 0.8 or greater than 1.25. Note 
that the inverse of 0.8 (1/0.8) = 1.25 and thus 
specifying the lower indifference limit (e.g. 80%) 
will automatically yield the corresponding upper 
indifference limit (e.g. 125%). The 80–125% cri-
terion is also typically used as the bioequivalence 
limit by the World Health Organization and the 
United States Food and Drug Administration.12 
We accordingly used this limit to define the indif-
ference zone used in the present study.

The point estimate and CIs of the overall group 
define the main treatment effect values that are 
most compatible with the observed data at the 
specified confidence level, which is usually set at 
95% confidence. This defines the confidence 
margin that includes all values compatible with 
the data for the main treatment effect at the speci-
fied confidence level. The indifference zone is 
used to determine the treatment effect values that 
differ within 80–125% (or any other specified 
indifference limit) from the confidence margin of 
the main treatment effect. The specified indiffer-
ence level i (e.g. 0.8, corresponding to 80%) and 
its inverse (e.g. 1/0.8 = 1.25, corresponding to 
125%) is logarithmically transformed to the addi-
tive scale (loge(i) and loge(1/i), respectively). 
Loge(i) is then added to the log-transformed 
lower bound of the main treatment effect CI to 
obtain the lower bound of the indifference zone, 
whereas loge(1/i) is added to the log-transformed 
upper bound of the main treatment effect CI to 
obtain the upper bound of the indifference zone. 
The estimated lower and upper bounds of the 
indifference zone can then be exponentiated from 
the additive scale to the relative treatment effect 
scale commonly presented in forest plots.

Indifference zone calculator.  We provide a simple 
calculator (Supplemental File 2) for readers to 
estimate the lower and upper bounds of the indif-
ference zone for the main treatment effect pre-
sented in forest plots. The calculator allows the 
specification of the indifference level i (e.g. 80%) 
for relative treatment effect reduction and then 
estimates the corresponding indifference level 1/i 

(e.g. 125%) for relative treatment effect increase. 
The lower and upper bounds of the CI for the 
main treatment effect shown in the forest plot can 
then be inputted, and the calculator estimates the 
corresponding lower and upper bounds of the 
indifference zone, highlighted in red.

Results
The results are summarized in Table 1, and the 
detailed extracted features of each abstract are 
provided in Supplemental File 1. Almost half of 
the studies used forest plots for subgroup analy-
ses, with some studies displaying more than one 
forest plot (31.4%). Most forest plots (85.9%) 
did not include a vertical line at the overall effect 
point estimate. Out of the 99 forest plots pre-
sented, only 24.2% showed one or more sub-
groups with evidence of treatment effect 
heterogeneity. Treatment effect homogeneity was 
not evaluable in 18/99 (18.2%) of forest plots 
presented, primarily because CI numerical values 
were not provided. Out of the 1344 individual 
subgroups presented in the 81 forest plots where 
both treatment effect heterogeneity and homoge-
neity were evaluable, 769 were inconclusive 
(57.2%), 553 indicated treatment effect homoge-
neity (41.1%), and only 22 yielded a signal sug-
gestive of treatment effect heterogeneity (1.6%).

Discussion
Our results suggest that forest plots are com-
monly inconclusive when used to determine sub-
group differences or similarities in treatment 
effect in oncology RCTs. This is despite the fact 
that our study used very lenient definitions for 
treatment effect heterogeneity and homogeneity. 
More specifically, we considered as positive any 
signal of treatment effect heterogeneity evidenced 
by the subgroup CIs not overlapping with the 
main effect5 and defined our indifference zone for 
treatment effect homogeneity using the bioequiv-
alence limits of 80–125% commonly used by the 
World Health Organization and the United States 
Food and Drug Administration and correspond-
ing to the clinically meaningful HR limits of 0.8–
1.25 typically used in RCTs.12 More strict 
definitions of treatment effect heterogeneity or 
more narrow bioequivalence limits would have 
yielded even higher numbers of inconclusive for-
est plots.

The statistical power of forest plots is reduced by 
the smaller sample sizes of each subgroup 
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Table 1.  Descriptive analysis of forest plots 
presented at the 2020 and 2021 American Society of 
Clinical Oncology Annual Meeting.

Forest plot in presentation

  Yes 70

  No 77

Number of forest plots per presentation

  1 48

  2 17

  3 3

  4 2

Total number of forest plots analyzed 99

Treatment effect heterogeneity in any subgroup shown in 
each of the 99 forest plots (%)

  Yes 24 (24.2)

  No 75 (75.8)

Treatment effect heterogeneity in each individual 
subgroup shown in the 99 forest plots (%)

  Yes 36 (2.2)

  No 1576 (97.8)

Total number of forest plots evaluable for 
treatment effect homogeneity

81

Interpretation of each individual subgroup shown the 81 
forest plots evaluable for homogeneity (%)

  Homogeneity present 553 (41.1)

  Heterogeneity present 22 (1.6)

  Inconclusive 769 (57.2)

p-Values for interaction shown (%)

  Yes 29 (29.3)

  No 70 (70.7)

Vertical line at overall effect point estimate (%)

  Yes 14 (14.1)

  No 85 (85.9)

Statistical approach used (%)

  Frequentist 99 (100)

  Bayesian 0 (0)

Specified confidence level (%)

  95% 95 (96.0)

  Other 4 (4.0)

95% CI numerical value shown (%)

  Yes 85 (85.9)

  No 14 (14.1)

Forest plot endpoint (%)

  OS 39 (39.4)

  PFS 35 (35.4)

  DFS 17 (17.2)

  Other 8 (8.1)

Relative outcome scale (%)

  HR 98 (99.0)

  OR 1 (1.0)

Disease setting (%)

  Metastatic 72 (72.7)

  Adjuvant 24 (24.2)

  Neoadjuvant 3 (3.0)

Type of intervention (%)

  Immune checkpoint therapy 37 (37.3)

  Targeted therapy 30 (30.3)

  Chemotherapy 25 (25.3)

  Hormone 3 (3.0)

  Other 3 (3.0)

  Procedural intervention 1 (1.0)

Cancer type (%)

  Breast 18 (18.2)

  NSCLC 15 (15.2)

  Colorectal cancer 12 (12.1)

  Other GI 12 (12.1)

  Genitourinary 8 (8.1)

  Malignant heme 8 (8.1)

  Melanoma 6 (6.1)

  SCLC 5 (5.1)

  Gynecologic 5 (5.1)

  HNSCC 4 (4.0)

  Sarcoma 4 (4.0)

  CNS 1 (1.0)

  Other 1 (1.0)

CI, confidence interval; CNS, central nervous system; DFS, disease-
free survival; GI, gastrointestinal; HNSCC, head and neck squamous 
cell carcinoma; HR, hazard ratio; NSCLC, non-small cell lung 
cancer; OR, odds ratio; OS, overall survival; PFS, progression-free 
survival; SCLC, small cell lung cancer; heme, hematology.

(Continued)

Table 1.  (Continued)
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compared with the overall trial population. Given 
that the subgroup comparisons presented by for-
est plots are typically underpowered and often 
inconclusive, cautious interpretation in oral or 
written presentations should be promoted by 
journals, professional organizations, and regula-
tory bodies. In addition to the increased type II 
error probability due to low power, scanning 
through multiple subgroups in forest plots also 
increases type I error.8,9 To reduce type I error, 
analyses for treatment effect heterogeneity should 
instead focus on prespecified biologically and 
clinically plausible subgroups. Statistical power 
can be improved by full treatment effect modeling 
that accounts for mediator-outcome confounding 
and preserves all information from continuous 
variables by flexibly incorporating them into the 
analysis model using approaches such as cubic 
splines.1,17,23,24 Interpretation of forest plots can 
be facilitated by consistently including the vertical 
line corresponding to the point estimate for the 
main effect,5 and by showing the indifference 
zone for treatment effect homogeneity using pre-
specified commonly accepted indifference limits 
such as 80–125%.

Limitations
We focused our analysis on studies presented at 
the last two annual ASCO meetings. The ASCO 
annual meeting is the largest multidisciplinary 
cancer conference where practice-changing 
findings from large RCTs are often first pre-
sented. Although physical attendance was lim-
ited by the COVID-19 pandemic, the 2020 and 
2021 ASCO Annual Meetings were highly 
attended oncology gatherings, and the studies 
presented are reflective of contemporary oncol-
ogy practice. Nevertheless, it is possible that the 
information content was different in forest plots 
used in previous years, other oncology meet-
ings, journal publications, or different medical 
fields.

Conclusion
We have performed the first empirical analysis of 
the information content of forest plots used for 
subgroup comparisons of treatment effect hetero-
geneity or homogeneity and have found the 
majority of forest plots to be inconclusive. 
Different strategies may therefore be preferable to 
investigate treatment effect heterogeneity across 
trial participants.
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