
Potential Applications of Artificial Intelligence and Machine 
Learning in Radiochemistry and Radiochemical Engineering

E. William Webb, PhD, Peter J.H. Scott, PhD*

Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA

Keywords

Radiochemistry; Radiolabeling; Positron emission tomography; Copper-mediated 
radiofluorination

INTRODUCTION

Radiochemistry for PET applications is a complex amalgam of different areas of expertise. 

The field combines fundamental organic chemistry and analytical sciences, all under the 

constraint of timely production for short-lived isotopes (11C, 18F, and 68 Ga) to meet medical 

demand with sufficient activity and purity. Taken as a whole, these constraints have barred 

all but a few small molecules from being studied in animals and/or being commercialized. 

Although the generation of novel molecules for further study is addressed else-where in this 

issue, the role of radiochemists in the radiotracer pipeline (Fig. 1) is to identify which site 

in the molecule is best for labeling, to determine what is the ideal strategy for labeling 

at that site, to optimize the chemistry to effectively produce the radiolabeled product 

compound, and finally, to develop an appropriate analytical technique to verify the identity 

and purity of the labeled molecule. To date, the main approach to achieving these ends 

has been through substantial trial and error, consuming a great deal of time (both human 

and instrument) and resources. As many of the tools used in artificial intelligence (AI) and 

machine learning (ML) become accessible to researchers, there is mounting potential to turn 

these tools to the problems encountered in the production of radiolabeled molecules for PET 

applications.1 Although a commonly bandied “buzzword” meant to evoke a superhuman 

ability to understand a system, AI is simply the “intelligence” displayed by machines 

that emulates the “natural intelligence” of animals or humans through the application of 

mathematical and computer science algorithms for evaluating data (“machine learning”) and 

executing decisions. These do not replace humans in the scientific process; rather, these can 
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be thought of as convenient “experts” and tools to complement and enhance chemists in the 

field. In this perspective, the authors outline some of the potential applications of AI in the 

field of radiochemistry.

HOW MACHINE LEARNING WORKS

There is some disagreement as to whether ML is a subfield of AI or a separate field 

that overlaps with some of the AI field.2,3 Regardless of this disagreement, a functional 

definition is that AI is a nonbiological system that displays human-like intelligence through 

rules, whereas ML is represented by algorithms that learn from data and examples.3 An 

AI could be developed by an expert to run through a set of encoded decisions (a series 

of if-then statements), similar to an expert’s logical and experiential workflow. Following 

the encoding, an AI agent would then be capable of following the same logic for a novel 

input to determine a predicted output just as the expert would provide based on their 

logic and experience. Alternatively, ML could be used to develop a similar set of encoded 

decisions starting from data or examples using a variety of algorithms, just as the expert 

once learned.3 The focus of this perspective is on the development of AIs in radiochemistry 

from data, without the intermediacy of an expert, and thus is most aptly described as ML for 

radiochemistry and radiochemical engineering.

ML has been traditionally broken into 3 categories: (1) supervised learning, in which the 

algorithms are presented with data containing example inputs (features) and corresponding 

desired outputs (labels); (2) unsupervised learning, in which the labels are not given, 

and algorithms discover underlying structure; and (3) reinforcement learning, in which 

an algorithm interacts with an environment and is provided with rewards to maximize or 

losses (penalties) to minimize.3,4 Depending on the question under study by the researcher, 

the appropriate mode of ML may be different. For example, examining a large set of 

chest radiograph images using unsupervised learning techniques may identify certain 

characteristics consistent with a pathologic condition (perhaps an increase in localized 

densities or increased heart size) without knowing those attributes were a part of the 

diagnosis. Alternatively, radiographic images labeled with a diagnosis may be used to 

train a supervised model to diagnose on the basis of an image. However, for the purposes 

of radiochemical engineering and radiochemistry, supervised and reinforcement learning 

methods are the most easily applicable.

Whatever the approach and the problem under study, care must be taken to verify that 

the model generalizes.4 With small data sets and a large number of features, overfitting 

can readily occur in supervised learning.4,5 This functionally tests whether the model can 

“memorize” rather than correctly perform the desired function. In unsupervised learning 

contexts, clustering and attribute features can be identified simply because of the original 

data set. Testing an additional data set composed of similar data to verify that the same 

features are recognized prevents making assertions that will not hold.5,6
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IDENTIFICATION OF OPTIMAL SITE AND STRATEGY FOR LABELING

After identifying an appropriate target molecule, a key part of radiochemistry is 

to distinguish next which site is optimal for labeling from a metabolic stability 

perspective and radiochemical accessibility.7 Automated retrosynthetic analysis dates back 

to proposals by Corey and colleagues8,9 in the late 1960s, and as accessibility has 

risen with hardware capabilities, additional implementations of ML and AI as applied 

to retrosynthetic analysis have seen an upswing.10 Schematically, older versions of the 

programs developed for automated retrosynthetic analysis sought to “disconnect” molecules 

according to template reactions that were encoded by an expert.10,11 For example, in 2’-

methoxyphenyl-(N-2’-pyrinyl)-p-fluoro-benz-amidoethylpiperazine (MPPF) an amide bond 

may be retrosynthetically broken down into an acyl chloride and an amine according 

to one template, whereas another template breaks down the molecule into an amide 

and an electrophile, whereas still another may break the same amide bond into a 

palladium-catalyzed carbonylation-amination (Fig. 2A). The program iteratively applies 

these templates to the building blocks produced by each disconnection until arriving at a 

set of building block molecules that are commercially available or unable to be disconnected 

into simpler species using the set of templates. This produces an entire “tree” of routes 

that converge on the target molecule (Fig. 2B). However, this “tree” contains some effective 

routes and some ineffective routes.10 To identify the most viable path for synthetic efforts, 

the various routes need to be ranked by some criteria. The various retrosynthetic routes 

may be scored by “greenness,” by length of route, commercial availability of building 

block materials, or some other criterion developed alongside the program.10–12 More recent 

advances have used ML and reaction databases to eliminate the need for an expert in 

the construction of template sets and more sophisticated scoring systems that measure 

the feasibility of the forward reactions to determine the viability of a given retrosynthetic 

route.10

In contrast to typical, multistep organic synthesis, radiochemists are specifically focused on 

just one step: the incorporation of the radioisotope, ideally as the last step in the synthetic 

pathway. This last step is further complicated as different radiolabeling strategies may 

require completely different starting materials, conditions, workup, or purification strategies, 

all of which must be completed while limiting radiation exposure, using standardized 

equipment, and incorporating sufficient activity for transport to the scanning suite and 

completion of the imaging study. For example, apply a retro-radio-synthetic approach 

to [11C]UCB-J as a prospective compound for labeling (Fig. 2C).13 Any of the aryl 

fluorides (highlighted in green) could potentially undergo effective labeling via SNAr14 or 

a transition metal-mediated radiofluorination with [18F]fluoride.15 Alternatively, at another 

site, an iodopyridyl moiety could be labeled with [11C]MeLi,16 whereas the used strategy 

of methylation with [11C]MeI of a pyridyl trifluoroborate13 offers still another labeling 

chemistry (highlighted in red). Ab initio, the selection of which strategy to pursue is an 

extremely difficult problem. An SNAr approach would necessitate the formation of any of 

several highly reactive electrophiles, whereas using a transition-metal–mediated approach, 

such as copper-mediated radiofluorination, may not tolerate ortho-fluorine substitution.14,15 

Taken altogether, this obligates either a brute force approach to radiosynthesis, testing 
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all possible methodologies presented in the literature and variations thereof in a limited 

throughput manner, or testing the most easily accessed methodology, which, even if 

modestly successful, may not be optimal. If either of those approaches fail to provide 

sufficient activity in a timely fashion, all too often the target molecule is discarded as 

“unlabelable.”

Just as ML provides additional tools for retrosynthetic analysis, ML has potential as 

a fundamental tool for constructing a retro-radio-synthesis tool. Similar to traditional 

retrosynthetic analysis tools, template reactions for radiolabeling can be developed. 

However, the difference between traditional retrosynthetic tools and any potential tool for 

retro-radio-synthesis is in the scoring function defined for radiochemistry. Any program 

for this purpose will seek to maximize feasibility, activity, and specific activity while 

minimizing time for the all-important radiolabeling step and metabolic breakdown7,17,18 

rather than the economics or “greenness” of the route. Foundationally, this will require a 

change in the way radiochemistry methodology development is conducted. Methodologies 

will need to be conducted with the intent of translation of the corresponding data set into an 

ML model that can be further augmented as additional methodologies are developed.10 For 

this to occur, substrate scopes, the main data sets of methodologies, must be redefined. This 

redefinition of substrate scope evaluations must include the following:

1. Not just successful reactions but also unsuccessful reactions

2. Substrates that span the chemical space of accessible or pertinent substrates

3. “Clean” data

Only by following these constraints can robust ML models be developed to define the 

feasibility of any proposed reaction. Reaction chemical space is complex, and although two 

substrates may “seem” similar to a radiochemist, they may perform radically different for 

a given methodology. As demonstrated by Taylor and colleagues,19 two seemingly similar 

aryl boronic acid pinacol esters undergo labeling with extremely different efficacy (Fig. 3A). 

Without actively conducting this experiment, it would be difficult to predict this effect, as 

humans would identify these two substrates as near in chemical space. In contrast, with 

appropriate featurization, most ML algorithms could identify whether these two substrates 

are neighbors in feature space or not. Given a novel substrate that could potentially be 

reactive, unreactive model substrates may be nearer in n-dimensional chemical feature space 

than successful scope substrates (Fig. 3B). This would lead to the prediction that the novel 

substrate is more likely to perform similarly to poor performing substrates, but without 

substrate scopes that contain these unsuccessful substrates such a comparison is unable to 

be made by models. Unfortunately, the inclusion of ineffective substrates in the literature 

remains a rarity, except in the case of clearly instructive examples.

Unsuccessful substrates help define the radiolabeling reaction efficiency surface (Fig. 3B). 

To best define that surface, substrates would be selected to fully span and represent the 

whole of chemical space. However, spanning chemical space is a daunting and, in truth, 

impossible prospect. The number of molecules theoretically accessible in small molecule 

chemical space is more than 1060 molecules.20 Even when the set of methodology input 

molecules is reduced to only those functionally pertinent, such as aryl boronate derivatives 
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for a Chan-Lam coupling,21 and then reducing further to the set of commercially available 

(as an approximate estimation of actual accessibility), brings one into a regime ~106 

molecules. This is still beyond the synthetic accessibility of most laboratories that lack 

high-throughput experimentation equipment. Because this scale remains synthetically out of 

reach to most laboratories, two approaches have become commonplace: additive screening 

with a model reaction22 and identification of representative sets23,24 (Fig. 3C). Additive 

screening is able to readily identify functional groups that act as poisons using a single 

analytical method but fail to capture the effect those functional groups may have when more 

proximate to the reactive center.19,22,23 For the identification of representative libraries, 

after property calculations are performed on a large number of potential molecules, the 

set may be reduced through principal components analysis23 or via finding the most 

diverse small set using the Kennard-Stone Algorithm.25,26 These informer sets may not 

include all potential functionality and may also be combined with additive screening to 

provide an information-rich data set for model construction.24 To date, a standardized set of 

representative functional group molecules for additive screening has not been demonstrated, 

but the introduction of a common set would provide a better evaluation of differences 

between literature methodologies. By attempting to span a wider range of chemical space 

algorithmically, ML models will demonstrate higher generalizability to novel molecules, in 

particular, for the substrates of labeling interest.

“Clean” data are, unfortunately, the most ambiguous and potentially most important part 

for the construction of ML data sets for predicting labeling efficiency. There are few 

standardized and tabulated data of radiochemical reactions and conditions that are fit to 

be parsed and mined for AI development. Even the wider organic chemistry field notes the 

absence of tabulated reaction data.10 Minute variations in multiple variables that are not 

clearly annotated in the literature can combine to produce a very large “hidden” variable. 

Differences in amount of precursor, amount of activity used, the preparation of that activity, 

or even amounts of different counterions all may have an effect on labeling efficiency. In a 

supervised learning problem when two data sets that share a common point are combined, 

without clear annotation of these differences, one input may map to two outputs in the 

training set. This will increase the error rate of the model simply because of this “hidden” 

difference. To achieve so-called “clean” data, as many variables as possible need to be 

annotated and consistent across all experiments. With data sets designed for ML, the major 

hurdle for implementation and use of ML can be overcome and the potential of AI for 

radiolabeling chemistry realized.

REACTION OPTIMIZATION

After determining an appropriate target and labeling strategy, radiochemistry becomes 

an optimization problem, in both reaction development and analytical chemistry. For 

optimization of a specific reaction, chemist-led or design-of-experiment approaches have 

been most prevalently applied.27 Fully automated systems have the brute-force capability 

to conduct many more experiments than a chemist; however, a chemist’s intuition may 

be more efficient in identifying the best experiment to run for optimization.28,29 Although 

a chemist’s instinct and flexibility may be invaluable, it cannot be parallelized and is 

dependent on the chemist who, although perhaps an expert on one type of reaction, may 
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not be an expert on the specifically needed reaction. In the case whereby the chemist is 

not an expert, a large number of variable conditions may be readily identified from the 

literature, leading to an exponentially increasing number of potential experiments (“the curse 

of dimensionality”).

As a complement to chemical intuition and to speed navigation of this high dimensional 

optimization problem, efforts have been undertaken to automate the decision-making 

process of a chemist so that an optimal set of conditions can be identified in a minimal 

number of experiments. These algorithms are most similar to a reinforcement learning 

approach: an initial environment is defined, and on the basis of the outcome of those 

experiments, additional experiments are selected to maximize (optimize) a reward function 

(Fig. 4).

For a continuous, single objective variable system optimization, for example, identifying 

optimal amounts of reactants or chromatography gradients, various algorithms have been 

demonstrated, such as the Nelder-Mead simplex method, Stable Noisy Optimization by 

Branch and Fit, and gradient descent optimization.29,30 However, chemistry is rife with 

categorical variables as well as continuous variables. For these, alternative approaches, 

like mixed integer linear programming, as demonstrated by the Jensen lab,28–31 Bayesian 

optimization,32,33 or Deep Reinforcement Optimization,34 may be used to optimize across 

mixed variables. Even multiple objective optimizations have been demonstrated to be 

feasible.33

Taken as a whole, the opportunities for optimization algorithms in radiochemistry are 

plentiful. Ideal analytical methods that most efficiently and effectively characterize 

the target molecule can be found in an automated fashion; optimization of reaction 

conditions can be treated as a multi-objective maximization problem for yield, purity, 

molar activity, and ease of purification. The high degree of automation currently used 

in radiochemistry will facilitate the implementation of these techniques. However, further 

efforts will be needed to adapt fully automated systems (both hardware and software) into 

a radiochemical optimization workflow. At present, standard automated synthesis boxes 

that are commercially available (both cassette-based modules and fixed tube systems)35 

balance current good manufacturing practice (cGMP) features and flexibility for production 

of various different radiotracers, but are poorly adapted to sequential, fully automated 

testing. With appropriate equipment and software application programming interfaces 

(API), implementation of AI into the workflow for radiochemistry methodology and tracer 

development becomes accessible to general radiochemistry laboratories.

PRODUCTION AND OTHER CONCERNS

The workflow of radiochemistry extends past identification and development of a tracer to 

long-term, repeated production.36 In the course of long-term production, additional issues 

may arise that impact effective production. These range from maintenance of automated 

equipment like cyclotrons and synthesis boxes to changes in the quality of production 

reagents. Provided a problem in these areas can be defined and reduced to several input 

factors (for example, electrical current use or coolant temperature may provide alarms for 
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cyclotron maintenance) or sufficient tabulated data collected for unsupervised-learning and 

identification of underlying patterns, the potential for implementing ML in other areas may 

be readily realized.

SUMMARY

Radiochemistry, as a field, has readily embraced automated technology to solve various 

problems, including radiation safety and cGMP compliance. For both radiochemistry and 

radiochemical engineering, ML and AI offer an additional, powerful tool for evaluating data. 

This tool will be applied with increasing regularity and offers many time- and cost-saving 

advantages over traditional resource-intensive laboratory approaches. This perspective sheds 

light on the potential problems to which ML may be applied, and how to begin approaching 

those problems. This article is far from exhaustive, and the only limit as to what problems 

are fit for ML and AI is how well scientists and engineers can define their problems to apply 

these techniques.
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CLINICS CARE POINTS

• ML/AI programs and models are not infallible and must be undergo 

adequate robustness testing via external validation and at all points in 

model development, appropriate controls to prevent information leakage and 

bias must be in place. These include use of cross-validation and external 

validation datasets to prevent information leak and appropriately large and 

varied datasets to prevent bias. Any developed models or programs must 

demonstrate real world performance prior to implementation.

• A number of “black box” algorithms exist but for medical applications 

and cGMP, development of non-“black box”-models is paramount for 

transparency, standardization, quality control, trustworthiness and long-term 

security.
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KEY POINTS

• Selecting an appropriate radiolabeling strategy and optimizing it for a new 

radiotracer has historically been a resource-intensive task.

• Machine learning has potential as a fundamental tool for designing 

radiochemical syntheses.

• Efforts are underway to use machine learning for identification of optimal 

labeling strategies and radiochemistry reaction optimization.
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Fig. 1. 
Radiotracer development and production workflow and areas of radiochemist involvement.
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Fig. 2. 
(A) Template-based retrosynthetic analysis of a complex molecule. (B) Exhaustive 

deconstruction and generation of multiple potentially viable routes. (C) Retro-radio-

synthetic analysis of [11C]UCB-J.
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Fig. 3. 
(A) Similar substrates that display drastically different activity.19 (B) Literature bias of 

methodology scope toward highly reactive substrates around optimal reactivity rather than 

potentially reactive or unreactive substrates. (C) Comparison of how different screening 

strategies span chemical space.
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Fig. 4. 
Algorithmic and automated optimization.
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