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Transforming growth factor-b (TGF-b) and programmed death ligand 1

(PD-L1) initiate signaling pathways with complementary, nonredundant

immunosuppressive functions in the tumor microenvironment (TME). In

the TME, dysregulated TGF-b signaling suppresses antitumor immunity

and promotes cancer fibrosis, epithelial-to-mesenchymal transition, and

angiogenesis. Meanwhile, PD-L1 expression inactivates cytotoxic T cells

and restricts immunosurveillance in the TME. Anti-PD-L1 therapies have

been approved for the treatment of various cancers, but TGF-b signaling

in the TME is associated with resistance to these therapies. In this review,

we discuss the importance of the TGF-b and PD-L1 pathways in cancer,

as well as clinical strategies using combination therapies that block these

pathways separately or approaches with dual-targeting agents (bispecific

and bifunctional immunotherapies) that may block them simultaneously.

Currently, the furthest developed dual-targeting agent is bintrafusp alfa.

This drug is a first-in-class bifunctional fusion protein that consists of the

extracellular domain of the TGF-bRII receptor (a TGF-b ‘trap’) fused to a

human immunoglobulin G1 (IgG1) monoclonal antibody blocking PD-L1.

Given the immunosuppressive effects of the TGF-b and PD-L1 pathways

within the TME, colocalized and simultaneous inhibition of these pathways

may potentially improve clinical activity and reduce toxicity.
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1. The role of TGF-b in cancer
physiology

Transforming growth factor-b (TGF-b) is a pleiotropi-

cally acting cytokine, of which there are three isoforms

that are encoded by different genes that are ubiquitously

expressed across tissues. These isoforms activate signal-

ing pathways via type I and type II TGF-b receptors,

and the activity of TGF-b is regulated at a variety of

steps [1,2]. TGF-b is secreted by cells in an inactive

form attached to a peptide partner (the latency-

associated peptide, LAP). This latent form can undergo

isoform-specific activation through the cleavage of the

LAP by extracellular proteases to release active TGF-b,
through integrins (such as amb6 or amb8) binding to the

LAP to exert a physical force to release active TGF-b,
or through modification of the LAP by thrombospondin

[3]. The active TGF-b then binds to the serine/threonine

protein kinase receptors TGF-bRI and TGF-bRII,

sometimes with the aid of the TGF-bRIII receptor,

betaglycan; the activated receptor complex then phos-

phorylates specific SMADs, a family of signal-

transduction proteins, that form heterotrimeric SMAD

complexes. These activated SMAD complexes interact

with cell-specific transcription factors in the nucleus [3].

While SMAD2, SMAD3, and SMAD4 participate in

TGF-b signaling, SMAD6 and SMAD7 inhibit TGF-b
signaling [3]. The resulting signaling pathway can induce

a large and diverse set of cellular responses that are

highly context- and tissue-specific [3,4].

Physiologically, TGF-b maintains immunological self-

tolerance and acts to suppress cancer by regulating

epithelial proliferation, apoptosis, and differentiation

[3,5]. TGF-b signaling undergoes changes during malig-

nant transformation, resulting in TGF-b functioning as

a tumor promoter rather than a suppressor [4,6]. Aber-

rant TGF-b activation and signaling can promote dis-

ease progression by stimulating epithelial–mesenchymal

transition (EMT), angiogenesis, cancer-associated

fibroblast (CAF) activation, and immunosuppression

within the tumor microenvironment (TME) [7–9]. High

expression of TGF-b in the TME correlates with poor

clinical outcome and increased likelihood of metastasis

in various tumor types [10,11].

Epithelial–mesenchymal transition is implicated in

migration and invasion of cancer cells (Fig. 1) [12]. EMT

may increase the number of cancer stem cells [13], and

TGF-b signaling in the TME can further promote this by

enabling epithelial cells to acquire stem cell-like properties

[14]. EMT is also associated with resistance to anti-

programmed cell death (ligand) 1 (PD-[L]1) therapies, tar-

geted therapies, and chemotherapy [15–17]. Aberrant

TGF-b signaling can upregulate the expression of proan-

giogenic factors such as vascular endothelial growth fac-

tor (VEGF), platelet-derived growth factor (PDGF), and

basic fibroblast growth factor (bFGF), resulting in

increased blood vessel density and tumor size [18,19].

TGF-b signaling in the TME is associated with the tran-

sition of fibroblasts into CAFs that contribute to tumor

drug resistance and metastasis [20,21]. CAFs can remodel

the extracellular matrix to influence T-cell migration and

trap T cells in the stroma, as well as express a variety of

cytokines that are involved in immune suppression and

metastasis: interleukin (IL)-6, IL-8, IL-11, CCL2, PGE2,

CXCL12, and TGF-b [17,20–23].
TGF-b plays an important role in immunity, partic-

ularly in immunosuppression, as evidenced by the fact

that most immune cells respond strongly to its effects

[4]. Immunosuppression by TGF-b in cancer involves

a phenotypic change in a variety of immune cells: den-

dritic cells, tumor-associated macrophages (TAMS),

tumor-associated neutrophils, natural killer (NK) cells,

myeloid-derived suppressor cells (MDSCs), regulatory

T cells (Treg cells), and cytotoxic T cells (Fig. 1)

[8,9,23,24]. TGF-b is an autocrine survival signal for

myeloid precursors and drives their differentiation to

highly immunosuppressive MDSCs at the expense of

macrophages and dendritic cells [25]. In the TGF-b-
rich TME, dendritic cells shift into a tolerogenic phe-

notype, with reduced antigen presentation and ability

to activate T cells [26]. Macrophages shift from an

inflammatory (M1) to a tumor-trophic (M2) pheno-

type to become TAMs. This phenotype expresses

proinflammatory cytokines at a reduced rate, while

expression of TGF-b and VEGF are increased [27].

Rather than developing an antitumor phenotype,

mature neutrophils in the TME preferentially adopt a

phenotype that promotes tumor growth, immunosup-

pression, metastasis, invasion, and angiogenesis [28].

TGF-b can suppress the proliferation and cytotoxicity

of NK cells and reduce their interferon gamma (IFN-

c) production. IFN-c is an activator of macrophages

and stimulates NK cells and neutrophils [3,24]. Undif-

ferentiated T cells can switch to a Treg phenotype in

the presence of TGF-b; this switch can lead to both

the inactivation of effector and cytotoxic T cells and

an increase in MDSCs, which subsequently differenti-

ate to tumor-associated macrophages or tumor-

associated neutrophils [3,24]. Systemic TGF-b levels

are often increased in people with cancer relative to

those in healthy individuals, and elevated TGF-b levels

are associated with poor prognosis and aggressive can-

cer [27]. However, the use of TGF-b as a biomarker is

complicated by the technological challenges associated
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with measuring active TGF-b levels in the TME and

the predominance of latent TGF-b in circulation [29].

2. Targeting TGF-b for cancer therapy

Inhibition of the TGF-b pathway remains an active

area of interest in cancer research, and TGF-b-
targeted neutralizing antibodies, vaccines, antisense

oligonucleotides, and small-molecule inhibitors have

all been investigated in clinical trials of solid tumors

[1,8]. In addition to overcoming immunosuppression,

preclinical studies have demonstrated that the block-

ade of TGF-b signaling suppresses fibrosis, EMT, and

angiogenesis and inhibits tumor growth [7,8].

The 3 major strategies for targeting TGF-b are to

block expression and activation of TGF-b, block the

binding of TGF-b to its receptors (including sequester-

ing or ‘trapping’ TGF-b), or inhibit TGF-b receptor

kinase signaling. Therapies that block TGF-b activa-

tion and expression include gemogenovatucel-T, a

plasmid-based therapy; SRK-181, a TGF-b1 antibody;

abituzumab, a pan-am integrin antibody; PF-06940434,

an amb8 integrin antagonist; and cotsiranib, a small

interfering RNA therapeutic that inhibits the expres-

sion of TGF-b1. Gemogenovatucel-T is a gene therapy

consisting of a plasmid of a bifunctional short hairpin

RNA that suppresses mature TGF-b1/2 processing

and expresses the immune-stimulatory cytokine granu-

locyte–macrophage colony-stimulating factor [30,31].

In a phase 1 prospective study, patients receiving

gemogenovatucel-T (n = 15) had a 1-year overall sur-

vival (OS) rate of 73% vs 23% in patients not receiv-

ing gemogenovatucel-T (n = 13) [32]. No grade ≥ 3

treatment-related adverse events (TRAEs) were

observed in the gemogenovatucel-T-treated patients,

and the most common TRAEs included grade 1 injec-

tion site induration and injection site erythema

reported in 12 and 11 patients, respectively. SRK-181,

which inhibits TGF-b1 activation by targeting regions

of the latent TGF-b complex that mediate cell-

associated activation, may provide a means to selec-

tively block activity in certain cells and is currently

being studied in patients with solid tumors

(NCT04291079) [33]. Abituzumab blocks the activa-

tion of TGF-b by binding to the am integrin subunit.

In a phase 1/2 trial in patients with metastatic
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Fig. 1. TGF-b-rich TME promotes survival mechanisms, including angiogenesis, immune suppression, fibrosis, and tumor cell plasticity.

Through these mechanisms, TGF-b signaling prevents antitumor immune responses, limits drug and immune cell access to the tumor, and

promotes resistance to therapy. Through these processes, TGF-b also promotes invasion and metastasis. bFGF, basic fibroblast growth

factor; CAF, cancer-associated fibroblast; CTL, cytotoxic T lymphocyte; DC, dendritic cell; EMT, epithelial–mesenchymal transition; IFN,

interferon; MDSC, myeloid-derived suppressor cell; NK, natural killer; PDGF, platelet-derived growth factor; TAM, tumor-associated

macrophage; TGF, transforming growth factor; TME, tumor microenvironment; Treg, regulatory T cell; VEGF, vascular endothelial growth

factor.
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colorectal cancer (N = 216), abituzumab therapy in

combination with the standard of care (SOC) showed

acceptable tolerability, but the primary endpoint of

progression-free survival was not met. However, OS

benefit was observed in patients with tumors showing

high-integrin amb6 expression in each of the abituzu-

mab dosing arms compared with the SOC; the median

OS was not reached (NR) (95% CI, 9.7-NR months)

for the abituzumab 1000 mg + SOC group, 15.0

months (95% CI, 10.5–23.2 months) for the abituzu-

mab 500 mg + SOC group, and 10.2 months (95% CI,

5.8–13.1 months) for the SOC group [34]. High-

integrin amb6 expression correlated with worse survival

outcomes in the SOC treatment group but correlated

with increased survival benefit upon treatment with

either abituzumab 1000 mg + SOC (hazard ratio [HR],

0.41 vs 1.58 in the high-integrin and low-integrin

groups, respectively) or abituzumab 500 mg + SOC

(HR, 0.55 vs 1.48 in the high-integrin and low-integrin

groups, respectively). Treatment-emergent AEs

(TEAEs) occurred in 100% of patients in both the

lower-dose and the higher-dose abituzumab groups,

with the most common TEAEs being diarrhea (65%

and 67%, respectively), stomatitis (25% and 30%),

and asthenia (21% and 29%). PF-06940434 is cur-

rently under investigation for treatment of patients

with advanced or metastatic solid tumors, but data

indicating efficacy have yet to be published [35]. Cot-

siranib, a TGF-b1 and COX-2 small interfering RNA

inhibitor, is under investigation in basal cell carcinoma

(NCT04669808) and in patients with advanced solid

tumors with cholangiocarcinoma, hepatocellular carci-

noma, or liver metastases (NCT04676633) [36,37].

Therapies that block TGF-b ligand currently in clin-

ical development include neutralizing antibodies

(fresolimumab, SAR439459, and NIS793) and a fusion

protein that functions as a TGF-b1/3 ‘trap’

(AVID200) [38–41]. The pan-TGF-b-neutralizing anti-

body, fresolimumab, was investigated in patients with

advanced melanoma or renal cell carcinoma (N = 29);

1 patient experienced a partial response (PR), and six

patients experienced stable disease. Gingival bleeding,

headache, and epistaxis were the most common

TRAEs, with each occurring in 13.8% of patients.

Potentially, TGF-b-related skin lesions, including acti-

nic keratosis and hyperkeratosis (10.3% each), kera-

toacanthoma and squamous cell carcinoma of the skin

(6.9% each), and basal cell carcinoma (3.4%), were

also common [41]. SAR439459 is a pan-TGF-b anti-

body that has demonstrated preclinical activity in

human cell lines and murine tumor models, in which

treatment inhibited the TGF-b-induced suppression of

CD8+ T cells and the development of Treg cells [42]. In

a phase 1b study (NCT02947165), no dose-limiting tox-

icities were reported in patients (N = 120) with

advanced solid tumors receiving the TGF-b1/2 inhibi-

tor, NIS793 in combination with spartalizumab, and

PRs were reported in 4 patients across cohorts. The

most common TRAEs were rash (n = 15), pruritus

(n = 10), fatigue (n = 9), and nausea (n = 8) [43,44].

AVID200 in syngeneic mouse tumor models has

demonstrated activity and increased T-cell infiltration

into the TME [45], as well as antifibrotic activity in a

separate model of idiopathic pulmonary fibrosis [46]. In

idiopathic pulmonary fibrosis, the accumulation of acti-

vated, heterogenous myofibroblasts, analogous to the

conversion of fibroblasts to CAFs in cancer, is mediated

by TGF-b signaling [47]. In the phase 1 AVID200-03

dose-escalation study (NCT03834662), proinflammatory

serum marker levels were increased in a dose-dependent

manner in patients (N = 19) receiving AVID200; tumor

biopsies showed modulation of TGF-b signaling and

immune activation [48]. Grade 3 TRAEs were reported

in 2 patients (diarrhea, lipase elevation, and anemia).

Another class is the oral small-molecule inhibitors

of TGF-bR kinases, including LY3200882, vactosertib,

LY2109761, and galunisertib, that prevent SMAD-

mediated TGF-b signaling [49–52]. The TGF-bRI inhi-

bitor, LY3200882, is currently being investigated in

patients with solid tumors (NCT02937272) [49].

Vactosertib, a small-molecule kinase inhibitor of TGF-

bRI, is being investigated in combination with

pembrolizumab in colorectal cancer or gastric/gastroe-

sophageal junction cancer (NCT03724851) [53]; vac-

tosertib is also being investigated in combination with

durvalumab in the second-line treatment of non-small-

cell lung cancer (NSCLC; NCT03732274) [54]. In a

phase 1 dose–escalation study, 35.3% of patients

receiving vactosertib at ≥ 140 mg (n = 17) achieved

stable disease. The most common TRAE was fatigue

[52]. In a preclinical study, the TGF-bRI inhibitor,

LY2109761, depleted high CD44 and Id1 glioma-

initiating cells (both indicators of poor prognosis) in

human glioblastoma specimens [50]. In a translational

study, the TGF-bRI inhibitor galunisertib was used as

a monotherapy to enhance antitumor T-cell immunity

and antigen spreading in a mouse model of breast can-

cer [51]. Clinically relevant doses of galunisertib were

used to enhance the antitumor activity of anti-PD-L1

therapy (antimurine PD-L1 clone), resulting in tumor

regression and enhanced T-cell activation in a murine

colorectal cancer model [51].

TGF-b signaling has been implicated in the develop-

ment and function of the heart, which may present a

challenge for systemic inhibition of TGF-b as an anti-

cancer therapy [55]. Toxicity concerns have been raised
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for inhibitors of the TGF-bRI kinase ALK5, based on

preclinical studies that showed increased incidence of

heart valve lesions in animals receiving the TGF-bRI

kinase inhibitors AZ12601011 and AZ12799734 [56].

Galunisertib, which belongs to this class, was selected

for clinical development because incidence of heart

lesions appeared only at very high doses or with contin-

uous treatment for 6 months. Clinical research involv-

ing > 300 patients has shown that the animal model

toxicities of concern for galunisertib have not been

reported in humans when intermittent dosing is applied

[57]. An anti-TGF-bRII antibody, LY3022859, was

under clinical investigation in patients with advanced

solid tumors (N = 14), but the trial was discontinued

due to the absence of clinical efficacy and incidence of

cytokine storm, despite prophylactic administration of

antihistamines and corticosteroids [58].

3. The role of the PD-L1 pathway in
cancer

The PD-1 receptor and its ligand, PD-L1, are a critical

barrier to antitumor immunity. The PD-L1 pathway

mediates tumor immune evasion by suppressing cell

killing by cytotoxic T cells and NK cells that express

PD-1 via expression of PD-L1 by tumor cells, Treg

cells, MDSCs, and macrophages in the TME, resulting

in loss of tumor immunosurveillance [59,60]. Inhibition

of the PD-L1 pathway, by blocking of either the recep-

tor or the ligand, has the potential to disinhibit cyto-

toxic T cells in the TME, resulting in long-lasting

antitumor activity in subsets of patients across tumor

types [59–62]. However, relieving T cells from inhibi-

tion through anti-PD-(L)1 therapy initiates a negative

feedback loop, stimulating PD-L1 production by

MDSC and subsequent T-cell reinhibition [60,62].

Anti-PD-(L)1 therapy has changed the treatment

landscape for a variety of solid tumor types, including

NSCLC, melanoma, squamous cell carcinoma of the

head and neck (SCCHN), renal cell carcinoma (RCC),

and urothelial carcinoma (UC), due to higher response

rates and more manageable toxicity profiles than

chemotherapy. Prior to the use of anti-PD-(L)1 ther-

apy, second-line chemotherapy provided response rates

of < 10% in NSCLC [63]. In the phase 1 KEYNOTE-

001 study of the PD-1 inhibitor pembrolizumab in

patients with advanced NSCLC (N = 495), the objec-

tive response rate (ORR) was 19.4%, with a median

duration of response of 12.5 months. TRAEs were

reported in 70.9% of patients (most commonly fatigue

[19.4%], pruritus [10.7%], and decreased appetite

[10.5%]). This led to the National Comprehensive

Cancer Network recommending pembrolizumab as a

second-line treatment for PD-L1-positive NSCLC

[64,65]. Chemotherapy (dacarbazine) was the SOC for

metastatic melanoma for 3 decades after its US Food

and Drug Administration approval. In the phase 3

CheckMate 066 study in patients with advanced mela-

noma (N = 418), the PD-1 inhibitor nivolumab had a

median OS of 37.5 months in the nivolumab group vs

11.2 months in the dacarbazine group and an ORR of

40.0% (95% CI, 33.3%-47.0%) vs 13.9% (95% CI,

9.5%-19.4%) with dacarbazine (odds ratio, 4.06), with

66.7% of nivolumab responders experiencing an ongo-

ing response after 38.4 months [66,67]. TRAEs were

reported in 77.7% and 77.6% in the nivolumab and

dacarbazine cohorts, respectively; the most common

TRAEs were pruritus (23.8%), diarrhea (18.9%), and

rash (18.4%) in the nivolumab cohort. Second-line

chemotherapy provided response rates of 3–13% in

patients with recurrent/metastatic SCCHN, but promis-

ing results from immune checkpoint inhibitors have led

to the approval of pembrolizumab and nivolumab in

this setting [68]. In the phase 1b KEYNOTE-012 study

cohort of pembrolizumab in patients with second-line

recurrent/metastatic SCCHN (N = 192), the ORR was

18%, and the median duration of response was NR

(range, 2+ to 30+ months) [68,69]. TRAEs occurred in

64% of patients, with the most common TRAEs being

fatigue (22%), hypothyroidism (10%), rash (9%), pruri-

tus, and appetite decrease (8% each).

A phase 2 study of nivolumab in patients with meta-

static RCC (N = 168) showed an ORR of > 20% across

all doses, with a large proportion of responders (40%)

experiencing an ongoing response at 24 months [70].

Most patients (73%) experienced a TRAE, the most

common of which were fatigue (22–35% of patients

across dose groups), nausea (10–13% across dose

groups), and pruritus (9–11% across dose groups). In a

head-to-head phase 3 study, the median OS was

25.0 months (95% CI, 21.8-NR months) for nivolumab

vs 19.6 months (95% CI, 17.6–23.1 months) for the

mechanistic target of rapamycin inhibitor, everolimus.

The ORR was 25% vs 5% (odds ratio, 5.98) [71]. Nivo-

lumab is now recommended by the National Compre-

hensive Cancer Network for second-line treatment of

RCC [72]. TRAEs occurred in 79% of patients receiv-

ing nivolumab, with the most common TRAEs being

fatigue (33%), nausea, and pruritus (14% each). Prior

to the use of anti-PD-(L)1 therapies in UC, the progno-

sis of patients receiving second-line chemotherapy was

very poor. Pembrolizumab previously showed survival

benefit vs chemotherapy in patients with advanced UC

in a phase 3 study, with a median OS of 10.3 months

(95% CI, 8.0–11.8 months) vs 7.4 months (95% CI,

6.1–8.3 months). TRAEs occurred in 60.9% of patients
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receiving pembrolizumab; the most common TRAEs

were pruritus (19.5%), fatigue (13.9%), and nausea

(10.9%) [73]. Although the first-line SOC for patients

with locally advanced or metastatic UC is platinum-

based chemotherapy, it provides limited long-term bene-

fits because the median progression-free survival is

approximately 6–8 months and OS is approximately

8–15 months, likely due to development of chemoresis-

tance [74–76]. In the phase 3 JAVELIN Bladder 100 trial,

avelumab first-line maintenance significantly prolonged

OS vs best supportive care alone (21.4 months [95%

CI, 18.9–26.1 months] vs 14.3 months [95% CI,

12.9–17.9 months]; HR, 0.69) in patients with UC that

had not progressed on first-line chemotherapy. [77]

TRAEs were reported in 98.0% of patients receiving ave-

lumab, the most common of which were fatigue (17.7%),

pruritus, and urinary tract infection (17.2% each).

4. Rationale for the dual inhibition of
TGF-b and PD-L1

Despite improvements in treatment outcomes across a

variety of tumor types, as of 2019, the median ORR for

PD-(L)1 monotherapy in solid tumors is approximately

20%, indicating that a significant unmet need remains

[78]. Although durable antitumor responses can be

achieved with approved PD-(L)1 inhibitors, some

patients never respond to anti-PD-(L)1 therapy (primary

refractory), while others develop resistance while receiv-

ing anti-PD-(L)1 therapy (acquired resistance) [79].

There are three main phenotypes associated with

PD-(L)1 resistance: a TME lacking lymphocytes

(‘immune desert’), a TME in which lymphocytes are

physically excluded from tumor cells (‘immune-

excluded’), and a TME in which lymphocytes infiltrate

the tumor tissue (‘inflamed’) but are inactivated

through a negative feedback loop of PD-L1 signaling,

resulting in T-cell ‘exhaustion’ [80,81].

TGF-b and PD-L1 are nonredundant pathways

driving immunosuppression in the TME [9,60]. TGF-b
can promote PD-(L)1 resistance by converting conven-

tional T cells to immunosuppressive Treg cells and

increasing the survival of myeloid progenitors that dif-

ferentiate to potent MDSCs [25,82]. Both of these pro-

cesses result in increased expression of TGF-b, while

MDSCs express PD-L1 and drive Treg cell differentia-

tion [25,82]. In a preclinical study, inhibition of TGF-

b reduced the number of Treg cells, increased the

number of effector T cells, and restored sensitivity to

anti-PD-L1 therapy [83]. In the context of an

‘immune-excluded’ phenotype, TGF-b promoted acti-

vation of CAFs, which serve as a barrier to T-cell infil-

tration of the tumor parenchyma, that has been shown

to limit the efficacy of anti-PD-L1 therapy in bladder

cancer [17]. Lastly, T-cell ‘exhaustion’ is a phe-

nomenon in which tumors exhibit robust immune infil-

tration within the TME (as in the ‘inflamed’

phenotype) but are ineffective in controlling tumor

growth. PD-L1 binding of the receptor PD-1 on

immune cells can promote a negative feedback loop

whereby T cells express other checkpoint molecules

such as TIGIT, LAG-3, and TIM3 to limit cytotoxic

activity [80].

Given the importance of the TGF-b and PD-L1

pathways in the development of cancer, the simultane-

ous inhibition of these pathways may potentially

enhance the antitumor activity observed when each

pathway is targeted alone (Fig. 2). A recent analysis of

plasma levels of soluble TGF-b and PD-L1 in 90

patients treated with first-line chemotherapy found

that there was a positive correlation between TGF-b
and PD-L1 at baseline and following treatment and

that an increase in soluble TGF-b levels following

chemotherapy was associated with worse prognosis

[84]. In addition, in a biomarker analysis of pretreat-

ment tumor samples from the phase 2 IMvigor210

trial, high expression of TGF-b was associated with

lack of response to PD-L1 blockade with atezolizumab

[17]. Inhibition of TGF-b may thus remove a barrier

Avoiding
immune
destruction

Evading
growth
supressors

Deregulating
cellular
energetics

Genome
instability and
mutation

Sustaining
proliferative
signaling

Tumor-promoting

Activating
invasion and 
metastasis

Inducing
angiogenesis

Resisting
cell death

Enabling
replication and 
immortality

TGF-β Pathway

TG
F-β Pathway

PD
-1

/P
D-L1 Pathway

Tumor Survival
Mechanisms

Fig. 2. TGF-b and PD-L1 signaling pathways are implicated in

overlapping but nonredundant tumor survival mechanisms, such

that simultaneous inhibition may enhance antitumor activity

over inhibition of either pathway alone. PD-1, programmed death 1;

PD-L1, programmed death ligand 1; TGF, transforming growth

factor.
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in solid tumors to immune checkpoint inhibitor-based

therapy [85]. Furthermore, in PD-L1-positive tumors,

the TGF-b is concentrated in the TME; hence, a single

molecule targeting PD-L1 and TGF-b may ensure sup-

pression of TGF-b signaling in the TME compared

with independent dual combination therapies. A pre-

clinical study evaluated the anticancer efficacy of 2

bifunctional molecules: 1 targeting TGF-b and PD-L1

and 1 targeting TGF-b and CTLA-4. Both bifunctional

molecules were superior to their parent immune

checkpoint inhibitors (atezolizumab and ipilimumab,

respectively) used alone or in combination with the

TGF-bRII domain in causing tumor regression in mur-

ine models [86]. An additional bispecific antibody for

TGF-b and PD-L1, YM101 was recently described in a

preclinical study. YM101 demonstrated the ability to

bind all 3 isoforms of TGF-b, and its antitumor activity

was better than the combination of anti-TGF-b and

anti-PD-L1 treatments in mouse tumor models [87].

Preclinical studies of bintrafusp alfa, a first-in-class

bifunctional fusion protein composed of the extracellu-

lar domain of the TGF-bRII receptor to function as a

TGF-b ‘trap’ fused to a human immunoglobulin G1

monoclonal antibody blocking PD-L1 (Fig. 3), also

demonstrated that simultaneous inhibition of both

pathways using a bifunctional approach resulted in

superior antitumor activity compared with either the

TGF-b ‘trap’ or anti-PD-L1 antibody [88]. In the

absence of a specific anti-PD-L1 moiety, the TGF-b
trap reduced the plasma levels of TGF-b1 but did not

decrease the TGF-b-dependent signaling in the TME

[89], indicating the importance of the bifunctional nat-

ure of bintrafusp alfa to ensure that suppression of

TGF-b occurs only in the TME. In preclinical studies,

bintrafusp alfa sequestered all 3 isoforms of TGF-b in

the TME and bound efficiently and specifically to PD-

L1 (both in vitro and in vivo). This resulted in superior

tumor regression compared with a TGF-b ‘trap’, an

anti-PD-L1 antibody, or the combination of both [88].

The fact that the isolated TGF-bRII ectodomain

shows high binding affinity toward TGF-b1 and TGF-

b3 but not TGF-b2, and yet bintrafusp alfa neutralizes

all three circulating isoforms in both mice and humans

[88,90], suggests an avidity effect. This is because both

of the TGF-bRII ectodomain moieties, configured in

an obligatory dimeric structure in bintrafusp alfa, can

Fig. 3. Mechanism of action of bintrafusp alfa, a first-in-class bifunctional fusion protein composed of the extracellular domain of TGF-bRII

to function as a TGF-b ‘trap’ fused to a human IgG1 antibody blocking PD-L1. Through colocalized, simultaneous inhibition of these

pathways, bintrafusp alfa has the potential to enhance immune cell access to the tumor, limit metastasis, and improve response to

anticancer therapy. Bintrafusp alfa has the potential to inhibit angiogenesis through suppression of TGF-b activity via stromal modulation and

may restore normal vascular homeostasis, thereby enhancing drug delivery and T-cell infiltration into the TME. CAF, cancer-associated

fibroblast; EMT, epithelial–mesenchymal transition; NK, natural killer; PD-1, programmed death 1; PD-L1, programmed death ligand 1; TAM,

tumor-associated macrophage; TGF, transforming growth factor; TME, tumor microenvironment.
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simultaneously bind to each protomer of the TGF-b
homodimer, providing avidity. A radiolabeling study

of bintrafusp alfa showed that while the spleen and

lung can attract PD-L1-targeting antibodies, thereby

limiting biodistribution, bintrafusp alfa localizes to the

TME in vivo [91]. Preclinical data have shown reduced

cancer fibrosis with bintrafusp alfa, which can result in

(a) enhanced immune cell access to the tumor, (b)

restored drug access to the tumor, and (c) reduced

metastatic potential of the tumor [88,89,92]. Bintrafusp

alfa has the potential to inhibit angiogenesis through

suppression of TGF-b activity via stromal modulation

and may restore normal vascular homeostasis, thereby

enhancing drug delivery and T-cell infiltration into the

TME [93–95]. Likewise, bintrafusp alfa may reduce

the expression of VEGF and subsequent angiogenesis

by sequestering TGF-b [83].

Given the effect of radiation therapy to increase

TGF-b activation and immunogenicity by antigen

release, bintrafusp alfa may be a suitable combination

partner for radiation therapy by counteracting TGF-b
signaling, increasing infiltration of CD8+ T cells, and

enhancing the abscopal effect [88,96–98]. In addition,

bintrafusp alfa may reduce radiation-induced fibrosis,

which has been linked to treatment resistance [88,99].

Similarly, preclinical data support synergistic effects

with the combination of bintrafusp alfa and chemother-

apy because TGF-b inhibition may normalize the extra-

cellular matrix and improve drug delivery and

resistance through effects on fibrosis, EMT, and angio-

genesis and elimination of chemotherapy-resistant can-

cer stem-like cells [88,100]. Simultaneous targeting of 2

nonredundant immunosuppressive pathways may result

in superior antitumor activity.

5. Treatment strategies for the dual
inhibition of TGF-b and PD-L1

5.1. Approaches combining anti-TGF-b and anti-

PD-(L)1 agents

Many TGF-b-targeting therapies are under clinical

investigation in combination with anti-PD-(L)1 thera-

pies, especially in tumor types that have had poor

responses to anti-PD-(L)1 monotherapies. For advanced

gynecological cancers, gemogenovatucel-T is under

investigation alone or in combination with atezolizumab

(NCT03073525) and in combination with durvalumab

(NCT02725489) [30,101]. Galunisertib in combination

with durvalumab was studied in patients with metastatic

pancreatic cancer (NCT02734160) [102]. An initial anal-

ysis reported 1 PR among 42 evaluable patients [103].

Seven grade ≥ 3 TRAEs occurred; increased aspartate

aminotransferase and c-glutamyltransferase were the

most common events. Galunisertib in combination with

nivolumab is being investigated in patients with

advanced refractory solid tumors, NSCLC, and hepato-

cellular carcinoma (NCT02423343) [104]. In the hepato-

cellular carcinoma cohort, two PRs were reported

among 47 patients [105]. The most common TEAEs

were fatigue (33.6%), anemia (25.5%), peripheral edema

(22.8%), and abdominal pain (21.5%); grade 3/4

TRAEs were much less frequent, with neutropenia

(2.7%), fatigue, anemia, increased bilirubin, hypoalbu-

minemia, and embolism (1.3% each) being the most

common events. LY3200882, either alone or in combi-

nation with chemotherapy, radiation, or anti-PD-L1

therapy (NCT02937272), is currently under investigation

in a phase 1 study of patients with solid tumors [49]; 1

PR was reported among 30 patients [106]. No grade ≥ 3

TRAEs were reported; the most common TRAEs were

thrombocytopenia, acneiform dermatitis, rash, and con-

stipation (two patients each). SAR439459 is currently

under investigation in a phase 1b study (NCT03192345),

either alone or in combination with cemiplimab, an

anti-PD-1 agent, for treatment of patients with advanced

solid tumors [38]. NIS793 is under investigation in a

phase 1 study (NCT02947165), either alone or in combi-

nation with spartalizumab, an anti-PD-L1 agent, for

treatment of patients with advanced solid tumors [43].

In a phase 1 study (NCT04152018), PF-06940434 is cur-

rently under investigation as a monotherapy and as a

combination partner with an anti-PD-L1 therapy (PF-

06801591) for treatment of patients with advanced or

metastatic solid tumors [35]. Together, these results pro-

vide evidence that dual inhibition of TGF-b and PD-(L)

1 may provide a more manageable safety profile in line

with PD-(L)1 monotherapy than that observed for

TGF-b monotherapy. However, the limited efficacy

observed with these combinations suggests that further

improvements may be possible through dual-targeting

agents that localize TGF-b inhibition within the TME.

Additionally, no biomarkers of response to TGF-b inhi-

bition have been identified to date. Based on preclinical

studies that identified distinct cellular and molecular

profiles of responders vs nonresponders to dual inhibi-

tion of TGF-b and PD-L1 [107,108], further investiga-

tion is warranted into immune phenotype and TGF-b-
related gene expression signatures, as well as genomic

biomarkers.

5.2. Dual-targeting agents

To date, there are 2 single-molecule TGF-b/PD-L1

inhibitors in clinical development: bintrafusp alfa and
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Table 1. Overview of therapies currently under investigation targeting TGF-b and PD-L1. CTLA-4, cytotoxic T-lymphocyte-associated protein

4; EGFR, epidermal growth factor receptor; GARP, glycoprotein A repetitions predominant; GM-CSF, granulocyte–macrophage colony-

stimulating factor; HCC, hepatocellular carcinoma; HMGA2, high mobility group A2; mAb, monoclonal antibody; NSCLC, non-small-cell lung

cancer; PARPi, poly ADP-ribose polymerase inhibition therapy; PD-1, programmed death 1; PD-L1, programmed death ligand 1; siRNA, small

interfering RNA; TGF-b, transforming growth factor-b; TGF-bR, transforming growth factor-b receptor; VEGF, vascular endothelial growth

factor.

TGF-b inhibitor

Combination

partner(s)

Mechanism

of action Clinical trial ID Phase Patient population

Primary

completion date

Bintrafusp alfa None Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT03631706 [130] 3 Advanced NSCLC

with high PD-L1

tumor expression

Trial discontinued

January 19,

2021 [131]

Bintrafusp alfa Chemotherapy Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT04066491 [114] 2 Locally advanced/

metastatic biliary

tract cancer

Trial discontinued

Aug 23, 2021 [132]

Bintrafusp alfa None Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT03833661 [133] 2 Platinum-experienced,

locally advanced/

metastatic biliary

tract cancer

November 2020

Bintrafusp alfa None Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT04489940 [134] 2 HMGA2-expressing

triple negative

breast cancer

February 2023

Bintrafusp alfa None Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT04246489 [135] 2 Advanced

unresectable

or metastatic

cervical cancer

April 2022

Bintrafusp alfa Concurrent

chemoradiation

Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT03840902 [116] 2 Unresectable

stage III

NSCLC

May 2023

Bintrafusp alfa Chemotherapy Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT03840915 [115] 1b/2 Stage IV NSCLC January 2022

Bintrafusp alfa None Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT02517398 [117] 1 Advanced solid

tumors

September 2022

Bintrafusp alfa None Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT02699515 [118] 1 Advanced solid

tumors

September 2022

Bintrafusp alfa Chemotherapy

and radiation

or bevacizumab

(anti-VEGF)

Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT04551950 [136] 1 Locally advanced or

advanced cervical

cancer

May 2022

Bintrafusp alfa None Bifunctional

TGF-b ‘trap’/

anti-PD-L1 mAb

NCT04349280 [137] 1b Platinum-experienced

metastatic or locally

advanced/

unresectable

urothelial cancer

September 2022

Galunisertib Nivolumab

(anti-PD-1)

TGF-bRI inhibitor NCT02423343 [104] 1b/2 Advanced refractory

solid tumors,

recurrent/

refractory

NSCLC, HCC

December 2018

Galunisertib Durvalumab

(anti-PD-L1)

TGF-bRI inhibitor NCT02734160 [102] 1b Metastatic pancreatic

cancer

August 2018

LY3200882 Chemotherapy,

radiation,

and/or

LY3300054

(anti-PD-L1)

TGF-bRI inhibitor NCT02937272 [49] 1 Solid tumors February 2020
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SHR-1701, another TGF-bRII/PD-L1 bifunctional

fusion protein. SHR-1701 is currently being evaluated

in phase 1/2 studies in patients with locally advanced/

metastatic solid tumors (Table 1) [109–113]. To our

knowledge, bintrafusp alfa is the most developed

single-molecule therapy, with multiple phase 2 trials in

biliary tract cancer, NSCLC, cervical cancer, and other

solid tumors (Table 1) [88–90,98,114–120].
In a phase 1 dose–escalation and dose–expansion

study (NCT03710265), no dose-limiting toxicities were

observed, and the maximum tolerated dose was not

reached for patients (N = 49) with advanced solid

tumors receiving SHR-1701; in patients who were

evaluable for efficacy (n = 45), the ORR was 17.8%

(95% CI, 8.0%–32.1%), with 7 of 8 responses ongo-

ing. The most common TRAEs (incidence > 15%)

were increased alanine aminotransferase/aspartate

aminotransferase, anemia, hypothyroidism, and

increased bilirubin/conjugated bilirubin [121]. In an

expansion cohort of a phase 1b study (NCT03774979),

patients with epidermal growth factor-positive NSCLC

(N = 27; 24 were evaluable for efficacy) receiving

SHR-1701 had an ORR of 16.7% (95% CI, 4.7%-

37.4%). Grade 3 TRAEs occurred in 7.4% of patients,

Table 1. (Continued).

TGF-b inhibitor

Combination

partner(s)

Mechanism

of action Clinical trial ID Phase Patient population

Primary

completion date

NIS793 Spartalizumab

(anti-PD-1)

Anti-TGF-b mAb NCT02947165 [43] 1 Advanced malignancies June 2021

NIS793 Chemotherapy +/-

spartalizumab

Anti-TGF-b mAb NCT04390763 [40] 2 Metastatic pancreatic

ductal adenocarcinoma

January 2023

PF-06940434 PF-06801591

(anti-PD-1)

a-m/b-8 integrin

inhibitor

NCT04152018 [35] 1 Advanced/metastatic

solid tumors

January 2024

SAR439459 Cemiplimab

(anti-PD-1)

Pan-TGF-b

inhibitor

NCT03192345 [38] 1b Advanced solid tumors April 2023

SHR-1701 None TGF-b-RII/PD-L1 NCT03710265 [109] 1 Locally advanced/

metastatic solid

tumors

November 2019

SHR-1701 None TGF-b-RII/PD-L1 NCT04324814 [113] 1 Advanced solid

tumors

May 2022

SHR-1701 Radiotherapy TGF-b-RII/PD-L1 NCT04560244 [112] 2 Metastatic NSCLC September 2022

SHR-1701 None TGF-b-RII/PD-L1 NCT03774979 [111] 1 Advanced solid tumors July 2021

SHR-1701 None TGF-b-RII/PD-L1 NCT04282070 [110] 1b Recurrent/metastatic

nasopharyngeal

carcinoma

April 2022

Gemogenovatucel-T Durvalumab

(anti-PD-L1)

TGF-b1/2 inhibitor,

GM-CSF

expresser

NCT02725489 [101] 2 Advanced breast and

gynecological cancers

December 2019

Gemogenovatucel-T Atezolizumab

(anti-PD-L1)

TGF-b1/2 inhibitor,

GM-CSF

expresser

NCT03073525 [30] 2 Advanced gynecological

cancers

January 2021

Vactosertib Durvalumab

(anti-PD-L1)

TGF-bRI inhibitor NCT03732274 [54] 1b/2 Advanced NSCLC October 2022

Vactosertib Pembrolizumab

(anti-PD-1)

TGF-bRI inhibitor NCT03724851 [53] 1b/2 Metastatic colorectal

or gastric cancer

June 2021

AVID200 None TGF-b1/3 ‘trap’ NCT03834662 [39] 1 Advanced or metastatic

solid tumors

February 2020

Cotsiranib None TGF-b1/COX-2

siRNA inhibitor

NCT04676633 [36] 1 Advanced solid

tumors with

cholangiocarcinoma,

HCC, or liver

metastases

March 2024

Cotsiranib None TGF-b1/COX-2

siRNA inhibitor

NCT04669808 [37] 2 Basal cell carcinoma December 2021

SRK-181 Anti-PD-(L)1

antibody

therapy

Anti-TGF-b mAb NCT04291079 [138] 1 Advanced or

metastatic

solid tumors

December 2021
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including anemia, hypokalemia, and asthenia (3.7%

each) [122].

Results from 2 phase 1 studies (NCT02517398 and

NCT02699515) of > 670 patients treated with bintra-

fusp alfa demonstrated promising clinical activity in

various expansion cohorts of advanced solid tumors

[90,120,123–129]. Durable responses of > 6 months

were reported in multiple advanced solid tumor types,

and response rates were compared favorably with his-

torical data for anti-PD-(L)1 therapies in the same

tumor type, although no head-to-head studies have

been conducted. Additionally, the safety profile

appeared manageable and consistent with colocalized,

simultaneous inhibition of the TGF-b and PD-L1

pathways. The most common TRAE preferred terms

were rash maculopapular, pruritus, rash, asthenia, and

hypothyroidism. TRAEs leading to discontinuation of

bintrafusp alfa occurred at a rate of 6–20%. Skin

lesions, including those that have been observed with

fresolimumab, were observed at a rate of 3–13.3%
across eight expansion cohorts.

Interestingly, the cardiac toxicity observed in ani-

mals treated with ALK5 inhibitors (AZ12601011 and

AZ12799734) [56] and cytokine release observed with

anti-TGF-bRII antibody (LY3022859) in patients with

advanced solid tumors [58] have not been seen in pre-

clinical or clinical trials with bintrafusp alfa. Simulta-

neous, colocalized inhibition of TGF-b and PD-L1

may explain why these TRAEs are not observed in

patients treated with bintrafusp alfa, as localization of

TGF-b inhibition to the TME may prevent AEs asso-

ciated with systemic inhibition of TGF-b.
Finally, while dual-targeting agents have demon-

strated significant advantages over combinations of

TGF-b and PD-L1 inhibitors in the clinical setting

[81,82], larger head-to-head clinical trials are necessary

to confirm these findings. Based on an increasing num-

ber of reports that implicate the actions of other TGF-

b family ligands (e.g., activins) in malignancies, future

development is also warranted for alternative bifunc-

tional molecules with specificity for TGF-b family

ligands in combination with immune checkpoint inhi-

bitors. Additionally, investigation into sequential inhi-

bition of TGF-b and PD-(L)1 (or PD-[L]1 and TGF-

b) would help to explain the complex biologic inter-

play of these two pathways.

6. Conclusions

Tumor-promoting activities of TGF-b within the

TME, which include EMT, fibrosis, angiogenesis, and

immunosuppression, are nonredundant with the

tumor-evasive mechanisms mediated by PD-L1; hence,

simultaneous inhibition of TGF-b and PD-L1 path-

ways may allow for increased overall efficacy com-

pared with independent blockade of either pathway

alone. A single-molecule therapy targeting both path-

ways has the potential for a localized optimal suppres-

sion of TGF-b within the TME, a benefit that is not

provided by combining independent therapies, as evi-

denced by the superior preclinical activity of bintra-

fusp alfa compared with dual inhibition by two

molecules. Based on its proposed mechanism of action,

the bifunctional nature of bintrafusp alfa and other

dual-targeting agents provides colocalized, simultane-

ous inhibition of the TGF-b and PD-L1 pathways

within the TME and represents an attractive potential

therapy for patients with advanced solid tumors.
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ness of Merck KGaA, Darmstadt, Germany, will endea-

vor to gain agreement to share data in response to

requests.
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