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Abstract

Adult neurogenesis, the process by which neurons are generated in certain areas of the adult 

brain, declines in an age-dependent manner and is one potential target for extending cognitive 

healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are 

increasing, these health challenges are becoming more prevalent. An age-associated loss in neural 

stem cell number and/or activity could cause this decline in brain function, so interventions that 

reverse aging in stem cells might increase the human cognitive healthspan. In this review, we 

describe the involvement of adult neurogenesis in neurodegenerative diseases and address the 

molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone 

proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to 

interventions that increase neurogenesis and regulate known targets in aging research, such as 

mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to 

physiological levels in elderly individuals and those with neurodegeneration. We suggest that 

modulating neurogenesis represents a potential target for interventions that could help in the fight 

against neurodegeneration and cognitive decline.
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1. Introduction

It is known that aging is a major risk factor for neurodegeneration, and that the most 

common neurodegenerative diseases are observed in the elderly (Hou et al., 2019). Despite 

ongoing research and progress in the field, cures for such chronic afflictions have not yet 

been found. Hence, their burden on society is very high and, as the population ages and 

lifespans lengthen, it is expected to increase (Dorsey et al., 2013; Zahra et al., 2020). 

Some researchers have suggested that a decline in the function of the central nervous 
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system (CNS) is one of the main hallmarks of aging in mammals (Hayano et al., 2019). 

As such, this decline may be susceptible to interventions that attempt to target aging itself, 

simultaneously delaying or preventing other diseases as well (extending healthspan). One 

attractive theory is that the decline in brain function with age is caused by a loss in stem cell 

number and/or activity over time, and that interventions that delay or reverse aging in stem 

cells might extend human lifespan and healthspan (Schultz and Sinclair, 2016). In the brain, 

those stem cells are neural stem cells (NSCs), and the process of generating new neurons is 

called neurogenesis.

1.1. Neurogenesis

Does adult neurogenesis exist in humans?—The discovery of neurogenesis in the 

adult mammalian brain occurred by serendipity in the 1960s by Joseph Altman and Gopal 

Das (Altman, 2011, 1962; Altman and Das, 1965). The finding was mostly neglected 

through the 1970s and 1980s (Altman, 2011), and in 1985, a widely-cited paper denied 

the possibility of the phenomenon in primates (Rakic, 1985). In the late 1990s it was 

confirmed that neurogenesis occurs in adult macaques (Gould et al., 1999) and humans 

(Eriksson et al., 1998), but the controversy remains. For example, recent studies directly 

contradict each other, with one showing that adult hippocampal neurogenesis (AHN) drops 

sharply in children to undetectable levels in adults (Sorrells et al., 2018), and the other 

showing that AHN persists throughout aging (Boldrini et al., 2018). Many questions remain 

unanswered, and while some studies supported Sorrells et al.’s study (Seki et al., 2019), 

others claimed that it was not optimized for detecting neurogenesis (due to postmortem 

delay, long fixation period and other factors). They argued that the findings by Boldrini et 

al. are more in line with the current body of knowledge that supports the existence of AHN 

in humans (Kempermann et al., 2018; Lucassen et al., 2020). Moreover, a recent study by 

Moreno-Jiménez et al. (2019), that was methodically optimized for detecting neurogenesis 

(through tissue fixation, autofluorescence quenching, epitope retrieval, antibody selection 

and selection of subjects with a short post-mortem delay), was able to detect immature 

neurons in the dentate gyrus (DG) of 13 healthy individuals up to the ninth decade of life 

(Flor-García et al., 2020; Steiner et al., 2019). However, some researchers claim that the 

number of newborn neurons in those studies is likely to be overestimated, as the expression 

of putative progenitor cell and immature neuron markers does not present definitive evidence 

for adult neurogenesis. According to their critique, these markers can be re-expressed in 

mature adult neurons through the process of “dematuration”, a phenomenon in which mature 

neurons dedifferentiate to a pseudo-immature status and re-express the molecular markers 

for neural progenitor cells and immature neurons (Hagihara et al., 2019). A recent pair of 

“Dual Perspectives” articles argue for and against the existence of AHN, but both agree 

that further in-depth studies of AHN are extremely important (Moreno-Jiménez et al., 

2021; Sorrells et al., 2021). Lastly, a recent study utilizing single-nucleus RNA sequencing 

to thoroughly profile cells from the hippocampal-entorhinal system showed that AHN is 

virtually absent from adult human donors (Franjic et al., 2021). Also, it is possible that 

higher AHN was not detected due of the postmortem delay, the insufficient number of 

cells profiled (~139k), or other confounding factors. Hence, the controversy still remains 

and, until neurogenesis has been measured more directly (e.g., after technical advances 

in magnetic resonance spectroscopic imaging) and until the cells are profiled even more 
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thoroughly, the studies cited above (Boldrini et al., 2018; Elena P. Moreno-Jiménez et 

al., 2019; Spalding et al., 2013) are the strongest proof to date that neurogenesis persists 

in humans, even in old age. While a study using magnetic resonance imaging provided 

evidence for NSCs in vivo (Manganas et al., 2007), others question if the signal is specific to 

NSCs (Ramm et al., 2009) and note that the method is unable to differentiate hippocampal 

sub-regions (Boldrini et al., 2018). We also note that even if AHN is virtually absent in aged 

humans, it may still be possible to reactivate or stimulate it with various interventions.

Where does adult neurogenesis occur?—Neurogenesis is considered to occur in two 

so-called neurogenic areas of the brain: the subgranular zone (SGZ) of the hippocampal 

DG and the subventricular zone (SVZ) of the lateral ventricles (Hagg, 2009). While there 

have been reports of adult neurogenesis in “noncanonical” sites of the mammalian brain, 

such as the neocortex of primates (Gould et al., 1999), the cerebellum of rabbits (Ponti 

et al., 2008), the amygdala of mice (Jhaveri et al., 2018) and the striatum of humans 

(Ernst et al., 2014) (summarized in (Feliciano et al., 2015)), we will mostly focus on the 

hippocampus, as a consensus hasn’t been reached in regard to neurogenesis occurring in 

other areas (and in which species), much less the dynamics of the process. For instance, 

while immature neurons (neuroblasts) migrate from the SVZ to the olfactory bulb (OB) 

through the distinct rostral migratory stream (RMS) in rodents (Hagg, 2009), the existence 

and configuration of the adult RMS in humans remains highly debated (Arellano and Rakic, 

2011; Bergmann et al., 2015; Sanai et al., 2011), just like the existence and the quantity 

of postnatal neurogenesis in the human OB (Bergmann et al., 2012; Lledo and Valley, 

2016). Unlike those areas, neurogenesis in the hippocampus has been studied to a much 

greater extent, with rodent studies showing that the exposure to enriched environment has a 

beneficial effect on both neurogenesis and aging (van Praag et al., 2000), while models of 

aging-related neurological diseases such as AD and PD show impaired AHN, which could 

be one of the mediators of their respective pathologies (Toda et al., 2019).

Age- and neurodegeneration-dependent dynamics of neurogenesis—The 

hippocampus is a major brain region involved in memory, emotional processing, and 

vulnerability to stress, and is one of the most severely affected areas in AD (Brown, 1999; 

Dhikav and Anand, 2012). In fact, a defining feature of AD is the accumulation of tau and 

amyloid-β (Aβ) (Bloom, 2014), which begins in the entorhinal cortex, a major gateway 

to the hippocampus (Maass et al., 2015), and spreads to the cortex and the hippocampus 

itself (Khan et al., 2014; Toda et al., 2019). Two recent studies found that the number and 

maturation of new-born neurons in the hippocampus progressively declined as AD advanced 

and suggested that this decline might promote cognitive deficits or exacerbate them (Elena 

P Moreno-Jiménez et al., 2019; Tobin et al., 2019). Therefore, the levels of AHN could 

be considered as one of the potential biomarkers for neurodegenerative diseases such as 

AD (Lopez-Toledano et al., 2010). To utilize this biomarker in humans, besides obviously 

making the measurement less invasive, we would first need to determine the physiological 

range of AHN in healthy subjects, especially considering how it depends on factors like 

age, exercise and caloric intake (Levenson and Rich, 2007; Van Praag, 2008). Age-related 

dynamics of AHN across species have been reviewed elsewhere (Kozareva et al., 2019). 

We will just mention its dynamics in humans, which has been estimated through 14C levels 
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in the genomic DNA of hippocampal neurons. The model estimated that around 700 new 

neurons are added in the hippocampus per day (0.004% of DG neurons), which corresponds 

to an annual turnover of 1.75% of the neurons within the renewing fraction, with a modest 

age-dependent decline (Spalding et al., 2013). However, it should be noted that the same 

study reported that the generation of new neurons in the DG does not keep up with the 

neuronal loss with age, and that the half-life of these newborn neurons in the renewing 

fraction is 10× shorter (7.1 years) than in the non-renewing fraction. It is not yet known 

whether just restoring the AHN to physiological levels would confer a therapeutic benefit for 

cognitive healthspan, or if further increase would be necessary. We will discuss this in more 

detail in the conclusion.

1.2. Functional relevance of newborn hippocampal neurons

The functional relevance of newborn hippocampal neurons has been implicated in many 

processes, such as resilience to and remission from stress, pattern separation, memory 

formation and learning, as well as in neurological disorders such as AD and PD (Anacker 

et al., 2018; Culig et al., 2017; Gonçalves et al., 2016; Höglinger et al., 2004; Elena P 

Moreno-Jiménez et al., 2019). As the latter will be described in more detail in section 2 of 

this review, we will now describe the data supporting the other roles of newborn neurons.

Stress—Animal studies showed that both stress and exposure to stress hormones 

(glucocorticoids) decrease the generation of hippocampal neurons and increase cell death 

(Culig and Belzung, 2016; Gould et al., 1998, 1992, 1991, but see Brunson et al., 2005), 

while chronic treatment with different classes of antidepressants has an opposite effect and 

increases neurogenesis (Malberg et al., 2000). Early-life stress in rodents has a negative 

effect on AHN (Criado-Marrero et al., 2020b; Naninck et al., 2015), hippocampal-dependent 

learning and memory (Rocha et al., 2021; Tzanoulinou et al., 2020) as well as on the later 

risk for cognitive impairments and AD (Hoeijmakers et al., 2017; Lesuis et al., 2018). In 

human studies, it has also been shown that smaller hippocampi constitute a risk factor 

for the development of stress-related psychopathology (Gilbertson et al., 2002). The level 

of AHN and/or the number neural progenitor cells decrease in patients with MDD and 

increase after treatment with antidepressants (Boldrini et al., 2012, 2009; Lucassen et 

al., 2010). A causal relationship between antidepressant treatment and newborn neurons 

was established, demonstrating that AHN is required for many of the behavioral effects 

of these drugs (Santarelli et al., 2003). A more nuanced picture emerged with further 

experiments showing that there are neurogenesis-dependent and -independent effects of 

antidepressants (David et al., 2009; Surget et al., 2008). Finally, gain-of-function studies 

where researchers were able to inducibly increase neurogenesis by inhibiting neuronal 

cell death (apoptosis) in transgenic mice established a role for newborn neurons in both 

resilience to and remission from stress (Culig et al., 2017; Eliwa et al., 2021; Hill et al., 

2015). Another function of the hippocampus related to mood and stress is the regulation 

of the hypothalamic–pituitary–adrenal (HPA) axis, the main neuroendocrine system in 

mammals that provides a rapid response and defense against stress (Spiga et al., 2014). 

The inhibitory hippocampal regulation of the HPA axis is attenuated by exposure to stress 

(Mizoguchi et al., 2003; Surget et al., 2011), and newborn hippocampal neurons are required 

for appropriately maintaining this regulation (Schloesser et al., 2009; Snyder et al., 2011), 
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which has implications for stress reactivity and mood disorders such as major depressive 

disorder (MDD). However, the exact role that newborn neurons play in HPA regulation and 

vulnerability to stress is not yet resolved (Lucassen et al., 2013), and has been discussed 

elsewhere (Culig et al., 2017).

Pattern separation—Pattern separation, defined as the process of transforming similar 

input patterns into less similar output patterns, is suggested to be crucial for discriminating 

memories that are similar in content and is performed in the DG (Lacy et al., 2010; 

Treves et al., 2008). Animal studies show that ablation of AHN impairs pattern separation 

(Clelland et al., 2009; Luu et al., 2012; Tronel et al., 2012), while increasing AHN is 

sufficient to improve it, regardless of whether the increase is obtained in a specific manner 

by genetically enhancing the survival of new neurons (Sahay et al., 2011) or through non-

specific interventions such as enriched environment (Clemenson et al., 2015b). Behavioral 

paradigms to study pattern separation in animals, such as the location discrimination task, 

contextual fear conditioning and the newly developed spontaneous location recognition task, 

have been described elsewhere (Reichelt et al., 2021) and a meta-analysis of behavioral data 

supports the conclusion that AHN plays an important role in pattern separation (França et 

al., 2017).

Human studies that used (high-resolution) (f)MRI have provided compelling evidence for 

the involvement of DG in pattern separation (Bakker et al., 2008; Berron et al., 2016; Dillon 

et al., 2017; Hanert et al., 2019). Other indirect evidence has been summarized elsewhere 

(Lucassen et al., 2020), and includes results from tasks for measurement of pattern 

separation specifically in human DG (Stark et al., 2019), linking improved performance in it 

with an fMRI signal in the DG, indirectly supporting the idea that this function of newborn 

neurons is conserved in humans. DG dysfunction and pattern separation impairments during 

normal aging have been reported in non-human primates and humans (Small et al., 2004; 

Toner et al., 2009; Yassa et al., 2010). Further support came from a study that examined the 

relationship between performance in pattern separation tasks with lifestyle factors correlated 

with neurogenesis (aerobic exercise and high levels of stress) (Déry et al., 2013). The 

authors reported opposing effects of aerobic exercise (known to upregulate neurogenesis) 

and depression (which is associated with reduced DG cell proliferation and/or survival) on 

memory interference. However, because both of those factors have widespread effects, it is 

possible that one or more additional variables were affected by exercise and stress, which 

themselves could have caused or contributed to the observed effects. The exact mechanism 

through which newborn cells enhance pattern separation is still not known (Gonçalves et 

al., 2016). There are various difficulties in studying pattern separation, one of them being 

that to rigorously demonstrate that the DG is involved in pattern separation, it would be 

necessary to have the knowledge of DG’s inputs and outputs. While a rigorous test of this 

kind is lacking in vivo, a direct experimental demonstration of multiple forms of temporal 

pattern separation in DG brain slices has been provided recently (Madar et al., 2019a, 

2019b). Likewise, due to the difficulties associated with measuring AHN in vivo, the direct 

confirmation of the role of newborn neurons in pattern separation is not confirmed in 

humans.
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Learning and memory—Newborn hippocampal neurons have been implicated in many 

roles associated with memory and learning (Terranova et al., 2019; Zhao et al., 2008), 

such as the discrimination of temporal contexts (Rangel et al., 2014), cognitive flexibility 

(Anacker and Hen, 2017; Garthe et al., 2016), and even forgetting (Frankland et al., 2013). 

Animal studies show that impairments in AHN can result in specific cognitive deficits, 

for example in spatial relational memory acquisition (Dupret et al., 2008), the retention 

of long-term spatial memories (Deng et al., 2009) and in contextual fear conditioning 

(Saxe et al., 2006; Zhang et al., 2021). Conversely, positive regulators of AHN (such as 

environmental enrichment, astaxanthin supplementation, administration of ginseng, etc.) 

are all linked to improvements in learning and memory performance in animals, further 

implicating the role of newborn neurons in these cognitive processes (Sakalem et al., 2017; 

Yau et al., 2015; Yook et al., 2016). A recent study in which researchers genetically 

increased NSC cycle activity and numbers by symmetric proliferative divisions in mice 

found that the resulting increase in neurogenesis compensated the age-dependent decrease 

in it, rescuing allocentric navigation and contextual memory, hence rejuvenating critical 

aspects of brain function (Berdugo-Vega et al., 2020). In humans, bilateral surgical lesions 

of the hippocampal formation result in memory deficits (Scoville and Milner, 1957). While 

studies relating hippocampal neurogenesis with memory performance in humans are sparse 

for obvious reasons, one study in patients with chronic drug-resistant temporal lobe epilepsy 

found that the proliferation and neuronal differentiation capacity of adult human NSCs 

in vitro (which the authors claim is closely linked to neurogenic potential in vivo) was 

correlated with each patient’s ability to store and recall memories prior to surgery (Coras 

et al., 2010). They showed that patients with high proliferation capacity stem cells had a 

normal memory performance prior to epilepsy surgery, while patients with low proliferation 

capacity stem cells showed severe learning and memory impairment, which suggests that 

the encoding of new memories is related to the regenerative (neurogenic) capacity of the 

hippocampus. Abilities such as encoding new memories of episodes or facts, working 

memory and processing speed exhibit an age-associated decline in both cross-sectional 

and longitudinal studies. And cognitive stimulation might protect against these declines by 

enhancing neurogenesis (Hedden and Gabrieli, 2004).

1.3. Neural stem cells

NSCs are the source of new neurons in the adult mammalian brain and may be a promising 

therapeutic target. Specifically, targeting neurogenesis through pharmacological or non-

pharmacological means may be beneficial for the treatment of a wide array of disorders, 

ranging from MDD and anxiety disorders to neurodegenerative diseases such as AD and PD 

(Berger et al., 2020; Coras et al., 2010). However, enhancing the levels of neurogenesis may 

not always be beneficial, as witnessed by some pathological conditions including epilepsy, 

where seizures induce neurogenesis and where decreasing its levels may be beneficial 

(Scharfman and Hen, 2007). Animal models of temporal lobe epilepsy show that prolonged 

seizures result in an increase of newborn neurons in the DG, but that some of them fail 

to migrate, differentiate and integrate properly (Scharfman, 2004). This type of aberrant 

neurogenesis might contribute to recurrent seizures in animals, and a similar process might 

be at play in some patients with mesial temporal lobe epilepsy (Parent et al., 2006). Since 

the neurodegenerative diseases we focus on in this review are associated with a reduction, 
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rather than an increase in neurogenesis (Winner and Winkler, 2015), we will describe NSCs 

and the regulation of their proliferation in the adult mammalian brain in this section. The 

potential pitfalls of aberrant neurogenesis and/or its increase to supraphysiological levels 

will be discussed in more detail in the conclusion of this review.

Types of stem cells—Stem cells (and by proxy NSCs) are defined on the basis of two 

functional properties: a seemingly unlimited capacity for self-renewal and multipotency 

(Seaberg and van der Kooy, 2003). Self-renewal refers to the ability of these cells to 

undergo division, maintaining their ability to differentiate into multiple mature cell types 

- neurons, astrocytes, and oligodendrocytes in the case of NSCs. There are three types of 

stem cells with the potential to be used in stem cell-based therapies. Two of these are 

physiological, present at different stages of life: multipotent adult stem cells (ASCs) and 

pluripotent embryonic stem cells (ESCs), while one type is artificially engineered from a 

non-pluripotent cell; induced pluripotent stem cells (iPSCs) (Alvarez et al., 2012; Herreros-

Villanueva, 2014; Mousavinejad et al., 2016). Although adult NSCs are multipotent, they 

generate specific cell types depending on the neurogenic region they belong to, resulting in 

a different outcome of neurogenesis in those areas. SVZ NSCs become fate restricted during 

embryonic development and produce oligodendrocytes and interneurons of the OB, which 

are inhibitory in nature (Ghosh, 2019). In contrast, the NSCs in the SGZ generate only 

excitatory granule neurons of the DG, and normally do not produce oligodendrocytes – their 

multipotency in vivo is restricted by the RNase III protein Drosha (Rolando et al., 2016). 

Other notable differences are described elsewhere (Ghosh, 2019; Nakafuku and Águila, 

2019; Urbán and Guillemot, 2014) and include the involvement of migratory maturation 

in SVZ neurogenesis, while SGZ newborn neurons do not require much migration and are 

restricted to the granule cell layer of the DG.

In the hippocampus, the process of neurogenesis starts with quiescent NSCs. These cells 

are also called radial glia-like (RGL) cells and they consist of several subpopulations with 

different properties. In a recent study they were divided into two classes on the basis of 

their morphology: type α cells and type β cells (Gebara et al., 2016). Type α cells can give 

rise to neurons, astrocytes and type β cells, while type β cells do not proliferate and may 

represent an intermediate state in the transformation of type α cells into astrocytes. Once 

these quiescent cells are activated, they can divide symmetrically to generate additional 

RGLs (self-renewal), or asymmetrically to produce proliferating intermediate progenitor 

cells (IPCs, or Type-2 cells). IPCs are lineage-restricted and undergo limited rounds of rapid 

cell division, giving rise to bipolar neuroblasts (Type 3 cells) and then immature neurons 

(Berg et al., 2018; Bonaguidi et al., 2012). A study carried out in rats showed that half of 

these newborn neurons die before they are able to mature and become integrated granule 

neurons of the DG (Dayer et al., 2003).

Regulation of proliferation—Studies in rodents have shown that the number of NSCs 

decreases with age, which contributes to reduced neurogenesis (Kuhn et al., 1996; Maslov, 

2004). Neurogenesis in rodents also decreases with age as a consequence of several 

other factors, including decreased proliferation and growth factor signaling (Shetty et al., 

2005; Tropepe et al., 1997), increased levels of corticosteroids (Drapeau and Nora Abrous, 
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2008; Montaron et al., 2006), stem cell senescence (Audesse and Webb, 2020; Cutler and 

Kokovay, 2020) and epigenetic drift (Chen and Kerr, 2019). However, how aging affects the 

specific dynamics of processes such as NSC differentiation is not clear. While NSCs are a 

heterogenous populations, with subsets that may be unevenly affected by aging (Kuhn et al., 

2018), they seem to shift from self-renewal during early development towards differentiation 

via asymmetrical division with aging (Nicaise et al., 2020). Glucocorticoid oscillations have 

been identified as one of the regulators of NSC proliferation during aging in vivo, possibly 

through an epigenetic mechanism, but it is not yet known how they affect differentiation 

(Schouten et al., 2020).

Stem cell frequency and self-renewal potential, as well as overall proliferation rate all 

decline with age in the mouse forebrain (Molofsky et al., 2006) and hippocampus (Lee et al., 

2012). Curiously, despite this age-dependent loss of NSCs and a reduction in neurogenesis, 

when NSCs are removed from the aged environment (expanded in vitro), they retain their 

ability for proliferation and multilineage differentiation, generating functional neurons that 

are similar to that of NSCs in adult mice, albeit with lower efficacy (Ahlenius et al., 2009). 

This suggests that, with aging, neurogenic niches become unfavorable for neurogenesis. 

While some authors emphasize that this behavior is dissimilar to other stem cells and 

identify cell-extrinsic factors in the aged brain as the most relevant aspect that makes NSCs 

susceptible to aging (Schultz and Sinclair, 2016), it should be noted that age-dependent, 

intrinsic changes in the NSCs themselves seem to play a role as well (Ahlenius et al., 

2009). Intrinsic and extrinsic factors that regulate NSCs have recently been reviewed 

elsewhere (Matsubara et al., 2021). These intrinsic changes, however, do not seem to 

affect the potential for functional integration of neurons differentiated from the adult and 

aged SVZ, in comparison to the neurons differentiated from NSCs of embryonic lateral 

ganglionic eminence. Taken together, these properties are highly relevant for potential future 

therapeutic applications, which will be described in more detail in section 4.

2. Neurogenesis in neurodegenerative diseases

Neurodegenerative diseases are a heterogeneous group of brain disorders, including 

Alzheimer’s disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and 

others (Cheyuo et al., 2019). Despite the different clinical manifestations and pathological 

mechanisms, progressive neuron loss/death and structural and functional defects in the 

neural system are common features of these diseases (Chi et al., 2018). Many studies 

suggest that dysregulated neurogenesis is a pivotal contributor to neurodegenerative 

diseases. While several other recent reviews focus on neurogenesis in the context of 

AD (Essa et al., 2022; Farioli-Vecchioli et al., 2022; Liu et al., 2021), our review 

explores neurogenesis on a broader level and describes how the most common geroscience 

interventions affect it. In this section, we mainly focus on the changes of neurogenesis 

in AD and PD, the two most prevalent neurodegenerative diseases, and briefly discuss 

other neurodegenerative diseases with reported defects in neurogenesis, such as HD, ataxia 

telangiectasia (A-T), and Cockayne syndrome (CS).
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2.1. Alzheimer’s disease

AD is a progressive neurologic disorder primarily affecting elderly adults and eventually 

leading to a severe cognitive decline (Alzheimer's Association, 2019). It is the leading 

cause of dementia, which is predicted to affect 152.8 million people by 2050, highlighting 

the substantial social and economic burden worldwide (GBD 2019 Dementia Forecasting 

Collaborators, 2022). Memory impairment is the typical clinical symptom of AD (Jahn, 

2013), and other clinical features involved in disease progression include executive 

dysfunction, language disorder, vision and olfactory impairment, and changes in mood 

and behavior (Graff-Radford et al., 2021; Kumar et al., 2018). AD patients are classified 

into early-onset Alzheimer's disease (EOAD) (< age 65), also known as familial AD 

and late-onset Alzheimer's disease (LOAD) (> age 65), which is more related to highly 

prevalent sporadic AD (Babcock et al., 2021). Deleterious mutations in amyloid precursor 

protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) are risk factors for EOAD. And 

Apolipoprotein E (APOE) is the major susceptibility gene associated with LOAD (Meyer et 

al., 1998). They will be discussed in more detail in section 3 of this review.

The progression of AD is associated with aging (Hou et al., 2019). Accumulated DNA 

damage and attenuated repair could exacerbate AD progression in both humans and mice 

(Hou et al., 2019). Neurons affected in AD exhibit mitochondrial dysfunction, suggesting 

a critical role of mitochondria in neuronal degeneration (Kerr et al., 2017). Additionally, 

the level of nicotinamide adenine dinucleotide (NAD+), a main contributor to mitochondrial 

dysfunction, decrease with age and in AD (Fang et al., 2017). Inflammation may be another 

critical neuropathological factor leading to neurodegenerative processes in AD (Fakhoury, 

2018; Wang et al., 2019).

AD is more prevalent in females than in males (Alzheimer’s Association, 2019). Females 

also exhibit greater cognitive decline than males (Rodríguez et al., 2008; Sohn et al., 

2018). The negative association between hippocampal volume and memory performance 

is observed exclusively in older women (Zheng et al., 2017). Female mice also exhibit an 

earlier age-related reduction of neurogenesis than male mice in the 3xAD animal models, 

as well as mitochondrial dysfunction (Demarest et al., 2020; Rodríguez et al., 2008). This 

deviation may be explained by the different levels of circulating sex hormones such as 

estrogen and testosterone (Clinton et al., 2007).

Except for genetic risk factors, aging and sex, some behaviors, such as sleep disturbance and 

caloric intake, have also been considered as risk factors for AD. Caloric restriction reduces 

Aβ and improves memory in AD mice (Hornsby et al., 2016; Schafer et al., 2015). Though 

many risk factors of AD have been revealed, the underlying mechanisms are still largely 

unknown, which impedes the discovery of drugs and treatment for the disease. Given the 

high complexity of AD, focusing on a single gene or pathway might be limiting. Treatments 

targeting aging, DNA repair, inflammation, and mitochondrial homeostasis as a combined 

strategy are more promising. And neurogenesis is a crucial modulator connecting them all.

2.1.1. Neurogenesis in AD patients—The hippocampus is one of the most affected 

brain areas in AD patients (Jahn, 2013). As AD progresses, tangles and plaques develop 

earlier in the hippocampus, entorhinal cortex, and olfactory bulb before being observed 
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in the cortex (Price et al., 1991). These brain areas involved in neurogenesis might be 

particularly vulnerable in AD and reflect the disease process. In a genome-wide gene 

expression association study of AD, neurogenesis-related genes were identified as the 

top cluster (Talwar et al., 2014). A more recent genetic meta-analysis of LOAD patients 

also confirmed several novel variants, such as TREM2, ADAM10 and GPRC5B, which 

were related to immunity, lipid processing, tau and APP pathways (Kunkle et al., 2019). 

These genes also play roles in the regulation of neurogenesis, further confirming the 

possible relationship between neurogenesis and AD (Kurabayashi et al., 2013; Raha et 

al., 2017; Zhuang et al., 2015). Additionally, several genes involved in regulating cell 

survival and growth, such as CDC42, BDNF, and VEGFA, were reduced in AD patients, 

which may negatively impact neurogenesis (Baptista and Andrade, 2018; Yan et al., 2019). 

An epigenetic study on AD patients also found that the hypermethylated genes in AD 

hippocampus were mostly related to neural differentiation and neurogenesis, supporting 

neurogenesis-related genes as the main targets of epigenetic changes in AD hippocampus 

(Altuna et al., 2019). Thus, understanding the mechanisms involved in dysregulation of 

neurogenesis should provide new opportunities for developing preventive and regenerative 

therapies for AD.

Although reduced adult neurogenesis during healthy aging has been reported (Morgenstern 

et al., 2008), its direct effects in AD are still elusive. Earlier studies on AD patients reported 

increased neurogenesis in the hippocampus (Boekhoorn et al., 2006; Briley et al., 2016; 

Gomez-Nicola et al., 2014; Jin et al., 2004; Mikkonen et al., 1999) and the increase was 

associated with higher burdens of Alzheimer-type pathology (Perry et al., 2012; Wharton 

et al., 2005). The upregulated neurogenesis might be a temporal compensatory mechanism 

to replenish cells lost through degeneration in AD, which will result in the depletion of 

the neural progenitor cell (NPC) pool. A similar result was found in an in vitro study, in 

which NPCs that were derived from fibroblasts of AD patients exhibited accelerated neural 

differentiation and reduced progenitor cell renewal (Meyer et al., 2019). In contrast, as 

mentioned before, Moreno-Jimenez et al. (2019) found that AHN persists throughout life 

and progressively declines as AD progresses in the patients (Elena P Moreno-Jiménez et 

al., 2019). Furthermore, Tobin et al. found that patients with mild cognitive impairment 

exhibited fewer NPCs than normal subjects, demonstrating a correlation between cognitive 

function and neurogenesis in AD pathology (Tobin et al., 2019). Similarly, an increased 

number of SOX2+ NSCs seems to correlate with normal cognitive capacity in AD (Briley et 

al., 2016). Indirect evidence associated with neurogenesis, like reduced hippocampal volume 

and spatial pattern separation impairment in AD patients (Martínez-Pinilla et al., 2016; 

Parizkova et al., 2020), also show the possibility of declined neurogenesis in AD subjects. 

Taken together, AHN decreases with the progression of age in AD patients, and this decrease 

is linked with impaired cognitive function.

2.1.2. Neurogenesis in AD animal models—Decreased neurogenesis has been 

reported in aged mice (Berdugo-Vega et al., 2020; Kirschen and Ge, 2019), as well as 

in transgenic animal models of AD(Demars et al., 2010; Li et al., 2009; Rodríguez et al., 

2009; Zhang et al., 2007). Strikingly, human NSC transplantation restored cognition in an 

AD mouse model, suggesting the possibility of boosting neurogenesis as an intervention 
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in AD (McGinley et al., 2018). A summary of neurogenesis studies in AD and other 

neurodegenerative diseases animal models are presented in Table 1.

The activity of neural precursors may be regulated by risk genes involved in AD such as 

APP, PS1 and APOE (Li et al., 2009; Smukler et al., 2011; Yang et al., 2011). Interestingly, 

these AD-associated gene mutations suppress multiple stages of neurogenesis in AD mice 

(Hamilton et al., 2010). Similar to the finding in humans, the deficits in neurogenesis 

are observed before the development of amyloid plaques in an APP/PS1 mouse model, 

supporting the hypothesis that altered neurogenesis might be a potential marker for early 

development of AD (Unger et al., 2016). Studies in the 5xFAD mouse model showed 

reduced newborn cells in the SGZ (Moon et al., 2014), while NSC proliferation was not 

impacted (Zaletel et al., 2018), suggesting that the disruption of neurogenesis occurs during 

differentiation. Interestingly, Choi et al. found that increasing AHN alone did not improve 

cognition in the 5xFAD mouse model, whereas increasing both AHN and brain-derived 

neurotropic factor (BDNF) could simulate exercise-induced improvement in learning and 

memory, highlighting the importance of the health of the local brain environment (Choi 

et al., 2018). A recent study on humans also showed the protective role of BDNF on 

hippocampal connectivity in AD pathology (Franzmeier et al., 2021). Given the brain 

functions not only rely on the existence of neurons, but also on how effectively the large-

scale functional networks are engaged in neuronal activities, it makes sense that a healthier 

neurogenic niche may better repair the damaged neural network and cognitive function. 

In both 2xTg AD and 3xTg AD mouse models, differentially methylated genes associated 

with cognitive improvement in the hippocampus were related to neurogenesis and synaptic 

function, showing that epigenetic changes targeting in neurogenesis might be related to 

the functions of learning and memory in AD (Lee et al., 2018; Sandoval-Hernandez et al., 

2016). For example, the histone deacetylase inhibitor, valproic acid (VPA), which has been 

suggested as a potential treatment for AD (Bottero et al., 2021), induced the differentiation 

of adult hippocampal neural progenitors in vitro (Hsieh et al., 2004). While still an open 

question, some have argued that strategies aimed at restoring and/or boosting AHN in both 

normal elderly people and subjects at high risk of AD could emerge as effective strategies to 

prevent the onset and/or counteracting the progression of the disease (Li Puma et al., 2021).

2.1.3. The effects of DNA damage on neurogenesis in AD—Both degeneration 

and neurogenesis in AD are tightly connected with DNA damage responses and oxidative 

stress (Barazzuol et al., 2017; Hou et al., 2018; Shull et al., 2009) (Barazzuol et al., 2017; 

Hou et al., 2018; J. Li et al., 2020; Shull et al., 2009). Increased DNA damage inhibits 

neurogenesis and promote cell death both in vivo and in vitro. DNA damage, detected 

by γH2AX, a marker of DNA double-strand breaks (DSB), accumulates in the brains of 

AD patients (Lin et al., 2020). Persistent DNA damage by irradiation could compromise 

hippocampal neurogenesis (Schmal et al., 2019). Reactive oxygen species (ROS) promotes 

DNA damage and cell death, which contribute to the pathogenesis of AD (Taupin, 2010). 

Some proteins involved in DNA repair also play a crucial role in neurogenesis. For example, 

neurons in vulnerable regions of the AD brain, like the hippocampus and frontal cortex, 

displayed reduced expression of ataxia telangiectasia mutated (ATM) protein and decreased 

ATM signaling in both humans and mice, which drove abnormal neuronal cell cycle reentry, 
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ultimately causing cell loss (Shen et al., 2016). Also, loss of NEIL1 or NEIL3, the primary 

DNA glycosylases for base excision repair (BER), leads to the reduction of proliferation 

capacity of hippocampal NPCs and impaired learning and memory in mice, likely due to the 

failure in the removal of hydantoin lesions of single-stranded DNA in NPCs (Regnell et al., 

2012; Yang et al., 2019). Mitochondrial DNA damage accumulated in the NSC population 

with knockdown the DNA repair protein, 8-oxoguanine DNA glycosylase (OGG1), and it 

shifted the differentiation of NSCs toward to astrocytic lineage (Wang et al., 2011). Lower 

hippocampal volume and a decline in adult neurogenesis were observed in a mouse model 

with defective DNA repair due to Polβ haploinsufficiency (Hou et al., 2018; Sykora et al., 

2015). In conclusion, neurogenesis is particularly susceptible to DNA damage, which further 

increases the risk of neurodegeneration in AD progression. Boosting DNA repair may be a 

promising treatment strategy for AD. Potential DNA repair intervention like NAD+-boosting 

molecules and its effects on neurogenesis will be discussed in section 4.2.1.

2.2. Parkinson’s disease

Parkinson's disease (PD) is the second leading neurodegenerative disease affecting 1–2% 

of the population age 65 or older, targeting twice as many men as women (Goldman and 

Fahn, 2020). PD is characterized by neuronal loss in the substantia nigra, which then 

causes striatal dopamine deficiency and intracellular inclusions, known as Lewy bodies 

(LBs) (Gibb and Lees, 1988). PD has both motor and non-motor dysfunctions. The 

motor symptoms are characterized as movement difficulty (slowness and change in gait), 

muscular rigidity (stiffness), postural instability and tremors in limbs and face (Church, 

2021). Nonmotor signs include sleep disturbance, olfactory dysfunction, visual dysfunction, 

psychiatric symptoms, and cognitive impairment (Obeso et al., 2017).

PD is a heterogeneous and complex disease with multiple genetic, epigenetic, and 

environmental risk factors. Aging is the leading risk factor (Levi and Michaelson, 2007). 

Many genes (SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, FBXO7, and DNAJC6) are 

associated with PD pathology (Goldman and Fahn, 2020). Its pathophysiology is related to 

aggregated α-Synuclein oligomers, defective mitophagy, increased oxidative stress, calcium 

imbalance, compromised axonal transport, and increased neuroinflammation (Poewe et al., 

2017; Grünewald et al, 2019). Currently, there are no effective treatments for PD except for 

providing relief of symptoms and slowing down the disease progression (Raza and Anjum, 

2019). The initial PD managements, which increased the dopamine levels, like deep brain 

stimulation and dopamine receptor agonist treatments, also increased both adult SVZ and 

SGZ neurogenesis in humans and animal models of PD, which might further facilitate 

learning and memory and coping with mood disorders in PD (Chiu et al., 2015; O’Sullivan 

et al., 2011; Vedam-Mai et al., 2014). Also, the non-motor symptoms in PD may partly 

related to impaired olfactory and hippocampal function, raising the potential to slow down 

the neurodegenerative progression in PD through inducing neurogenesis in these areas (Le 

Grand et al., 2015; Marxreiter et al., 2013).

2.2.1. Neurogenesis in PD patients—PD patients exhibit hippocampal and olfactory 

dysfunction (Braak et al., 2003; Regensburger et al., 2014). The hippocampal LB density 

is correlated with the degree of dementia in PD patients, suggesting that alternations of 
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hippocampal connectivity could contribute to the emergence of memory deficits (Carlesimo 

et al., 2012; Churchyard and Lees, 1997). Memory-related hippocampal atrophy and 

olfactory defects are exhibited in PD patients (Bohnen et al., 2010; Brück et al., 2004). 

Dopaminergic neural fibers from substantia nigra and ventral tegmental area could innervate 

the prefrontal cortex and limbic system including hippocampus, suggesting a functional and 

an anatomical link between nigrostriatal dopaminergic neurons and hippocampal dependent 

functions (Deniau et al., 1994; Kahn and Shohamy, 2013). In addition, dopaminergic 

signaling promoted the proliferation and the survival of newborn cells in hippocampus 

(Winner et al., 2009). Thus, the decreased neural precursors observed in the OB and DG 

of PD adults may be associated with impaired dopaminergic innervation in these regions 

(Höglinger et al., 2004). A reduction in the number of Musashi1-positive cells in the 

SVZ was observed in PD cases, and the expression of Musashi1 proteins had an inverse 

relationship with the disease duration (O’Sullivan et al., 2011; Ziabreva et al., 2007). 

Similarly, SOX2-positive cells declined in the hippocampus of PD patients (Winner et al., 

2012). Non-motor symptoms, like olfactory dysfunction, depression, and impaired spatial 

memory are frequently observed in individuals with PD and often occur before the onset of 

motor symptoms (Berendse et al., 2001; Lim et al., 2018; Pillon et al., 1997). Importantly, 

a decline of adult neurogenesis in olfactory structures was noted in the early stages of PD 

(stage 1) (Braak et al., 2003), which corresponded to the olfactory dysfunction observed 

in PD patients (Regensburger et al., 2014). A recent study on anosmia (loss of smell) in 

COVID-19 patients also revealed that SARS CoV-2 infection is a risk factor for PD, and 

that a potential cause of smelling loss could be the impairment of neurogenesis in the 

olfactory system (Rethinavel et al., 2021). Overall, these findings strengthen the hypothesis 

that impairments in neurogenesis may contribute to the non-motor pathogenesis of PD.

2.2.2. Neurogenesis in PD animal models—Genes involved in PD (like SNCA, 

PINK1, LRRK2, VPS35…) play important roles in the generation and maintenance of the 

NSC pool as well as the differentiation and survival of NPCs (Le Grand et al., 2015; Lee 

et al., 2013; Winner et al., 2011, 2008). Interestingly, the deregulated neurogenesis observed 

in PD animal models appears to regulate various functions related to non-motor symptoms 

(including hyposmia, depression and anxiety…) observed in PD, strongly suggesting there 

is a link between neurogenesis deficits and the progression of PD (Bang et al., 2021; Le 

Grand et al., 2015). Reduced adult neurogenesis has been reported in different PD animal 

models. For instance, overexpression of α-synuclein (SNCA) compromised neurogenesis 

in both hippocampus and OB among rats (Kohl et al., 2016), C. elegans (Lakso et al., 

2003) and mice (Winner et al., 2004). Another study also found a lower adult neurogenesis 

and abnormal dendrites of the newborn neurons in SGZ and SVZ areas of an LRRK2-

G2019S transgenic mouse model, and the reduction could be partially reversed by enhanced 

physical activity (Winner et al., 2011). Similar observations were obtained from the 

neurotoxin-induced PD mouse models, with a significantly declined number of newborn 

neurons in the rodents’ hippocampus (Singh et al., 2017; Sung, 2015). Regarding cognitive 

dysfunctions observed in PD animal models, it is often coupled with reduced hippocampal 

neurogenesis. For example, mice lacking Dorfin, a RING finger E3 ubiquitin ligase 

implicated in PD, showed reduced AHN and impaired contextual fear conditioning, which 

is highly hippocampal-dependent (Park et al., 2015). Similarly, impairment of hippocampal 
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neurogenesis-dependent pattern separation was observed after overexpression of a-synuclein 

in rats, which could be rescued by voluntary running, implicating activating AHN may serve 

as a neuroprotective treatment to non-motor symptoms in PD (Crowley et al., 2018). There 

is a strong correlation between dopaminergic degeneration and Parkinsonism (Bernheimer 

et al., 1973). A promising study to reprogram astrocytes to functional neurons found a 

therapeutic effect on dopamine levels and motor phenotypes in a PD mouse model (Qian et 

al., 2020). Dopamine promotes the proliferation and survival of newborn cells in the embryo 

and adulthood of rodents (Ohtani et al., 2003; Takamura et al., 2014). Depleting dopamine 

inhibited NPC generation in PD mice (Höglinger et al., 2004). These observations suggested 

that impaired neurogenesis in PD might be a consequence of dopaminergic denervation. 

In conclusion, hippocampal neurogenesis associated dysfunctions are common in PD, and 

likely contribute to cognitive impairment and emotional disorders, which can be relieved 

by increasing AHN conversely. The profound alterations of neurogenesis in PD have raised 

attention and may provide a novel strategy for effective therapeutics for it.

2.3. Other neurodegenerative diseases

Next, we will briefly introduce other neurodegenerative diseases, including HD, Ataxia 

telangiectasia (A-T) and Cockayne syndrome (CS). HD is known as a progressive 

neurodegenerative brain disease (Ruzo et al., 2018). A-T and CS are the premature aging 

diseases, and studies of these diseases will contribute to our knowledge of DNA metabolism, 

cellular senescence, and stem-cell differentiation during aging (Dyer and Sinclair, 1998).

2.3.1. Huntington’s disease—HD is an autosomal dominant neurodegenerative 

disorder caused by an expansion of the polyglutamine (poly Q) tract in the Huntingtin (HTT) 

protein (Ruzo et al., 2018). The polyQ repeat length is associated with disease severity, e.g., 

a person with more than 36 repeats is more likely to develop HD (Rego and de Almeida, 

2005). Neuronal loss in the striatum, cortex, and hippocampus, which results in cognitive 

dysfunction and severe motor impairments, is one typical feature of HD (Ruzo et al., 2018).

The neurons differentiated from iPSCs of HD patients exhibited alterations of growth, 

metabolism, survival, and death (Lim et al., 2017). In light of this, the mutant HTT gene 

has been reported to induce the cell cycle re-entry of neurons and impaired neuronal 

differentiation and further reduce the survival of newborn neurons in rodent striatum and 

hippocampus (Manickam et al., 2020). In addition, deficits in AHN have been reported in 

the R6/2 (Gil et al., 2005), the R6/1 (Lazic et al., 2006), and the YAC128 transgenic mouse 

model (Simpson et al., 2011) of HD, which might underlie the cognitive deficits associated 

with HD (Gil-Mohapel et al., 2011).

To date, there is no cure for HD, and the treatments available are limited to symptomatic 

clinical management (Tabrizi et al., 2019). Therapies using stem cell technology have been 

proposed as a promising treatment of HD (Bachoud-Lévi et al., 2021). Cell therapies aiming 

to enhance endogenous neurogenesis have shown promising results in HD animal models 

(Lee et al., 2009; Pollock et al., 2016; Snyder et al., 2010). It was also shown that a 

combination of stem cell and gene therapy could improve motor functions and extend the 

lifespan of HD mice (Cho et al., 2019). A recent review also summarizes the preclinical 
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studies using stem cells in HD animal models, highlighting the benefits and promises of 

stem cells used as a promisor therapeutic strategy for HD (Colpo et al., 2019). Thus, 

neurogenesis-based cell treatments still offer hope for the future therapies of HD.

2.3.2. Ataxia telangiectasia—A-T is a rare and complex genetic neurodegenerative 

disorder (affecting ~ 1/40 000–1/100 000 people), caused by mutations in the ATM gene 

(Taylor et al., 2015). ATM is a sensor of DSBs that is involved in cell cycle checkpoints 

(Savitsky et al., 1995), and oxidative stress response (Liu et al., 2005). Both A-T patients 

and ATM-deficient mice exhibit enhanced oxidative damage (Reichenbach et al., 2002; 

Stern et al., 2002).

ATM is essential in early brain development and adult neurogenesis (Allen et al., 2001; 

Enriquez-Rios et al., 2017). It is critical for cell proliferation, DNA repair, and apoptosis 

after DNA damage in both non-cycling and proliferative cells in mice (Enriquez-Rios et 

al., 2017). Lacking ATM was found to provide resistance to irradiation induced apoptosis 

and proliferation arrest in mice SVZ, indicating that a failure to activate DNA damage 

responses disturbs the homeostasis of NSC between quiescence and activation (Barazzuol 

et al., 2017). NSCs in the hippocampus of ATM−/− mice displayed an abnormally high rate 

of proliferation and decreased cell survival in vivo, and a weakened ability to differentiate 

to neurons and oligodendrocyte in vitro (Allen et al., 2001). However, other researchers 

noted that ATM deficiency did not impair cell proliferation and differentiation, using an 

immortalized human neural stem cell line (ihNSC) (Carlessi et al., 2009). Conversely, ATM 

depletion could attenuate the short-term apoptotic response to irradiation-induced DNA 

damage (Carlessi et al., 2013). Possible explanations of these inconsistent results are that 

i) the NSCs obtained from different brain regions may have distinct characteristics and 

developmental patterns; ii) ATM may impact brain functions through distinct mechanisms in 

different brain regions and diverse cell populations. Indeed, a reduced yield of GABAergic 

neurons in the ATM-deficient ihNSCs was found, implicating that ATM may not be required 

for overall neurogenesis, but specific to a GABAergic neuronal differentiation (Carlessi et 

al., 2013). Notably, GABA signaling regulated NSC proliferation and growth through the 

ATM/ATR-related phosphorylation of γ-H2AX in mouse ES and NCS cells (Andäng et al., 

2008), which is consistent with human clinical findings. Specifically, a lower GABA level 

has been found in the cerebellum of an A-T patient when compared with control (Perry 

et al., 1984), and a GABA analog could ameliorate the ataxia manifestation (Gazulla and 

Benavente, 2006).

2.3.3. Cockayne syndrome—Cockayne syndrome (CS) is a progressive developmental 

and neurodegenerative disorder resulting in premature death in childhood (Karikkineth et al., 

2017). CS patients show severe photosensitivity, growth retardation, accelerated aging, DNA 

repair and transcription defects, and CNS abnormalities (Ciaffardini et al., 2014). Mutations 

in CSA (ERCC8) and CSB (ERCC6) cause CS (Laugel et al., 2010; Okur et al., 2020). 

About 80% of CS cases are caused by mutations in CSB (Vessoni et al., 2016). The CSB 

protein is essential in various DNA repair processes, including BER, nucleotide excision 

repair (NER) and double-strand break repair (DSBR) (Tiwari et al., 2021).
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Neuronal differentiation and neurogenesis are compromised in human CSB-deficient NSCs 

and iPSCs (Ciaffardini et al., 2014; Vessoni et al., 2016). Likewise, genes related to 

neurogenesis were also down-regulated in the fibroblasts of CS patients (Wang et al., 2014). 

In contrast, this process was not affected in the CSB-deficient mouse model (Sacco et al., 

2013). CSA and CSB proteins possess an essential role in the turnover of p53 transcription 

factors by promoting their ubiquitination and degradation (Latini et al., 2011). Altered 

p53 activity disrupts the proliferation and differentiation of NPCs in adult neurogenesis 

(Armesilla-Díaz et al., 2009; Medrano and Scrable, 2005). Accordingly, dysfunction of CSA 

and CSB may result in defective neurogenesis, further contributing to the dramatic and 

complex phenotypes in CS patients.

3. The role of the key aggregation-prone proteins in neurogenesis

Two hallmarks of AD brains are the aggregation of Aβ in extracellular plaques 

and intraneuronal neurofibrillary tangles formation by hyperphosphorylated tau proteins 

(Alzheimer’s Association, 2019). APP, PS1, PS2 and APOE are identified as the high-

penetrant genetic factors contributing to AD (Van Cauwenberghe et al., 2016). The 

aggregation of α-synuclein in LBs and Lewy neurites is a characteristic feature of PD 

pathology (Xu and Pu, 2016). Nuclear accumulation, misfolding and abnormal aggregation 

of the mutant HTT results in selective neuronal neuronal loss predominantly in the 

striatum and the cortex (McColgan and Tabrizi, 2018). In this section, we will discuss the 

relationships of those key aggregation-prone proteins with neurogenesis, and an overview on 

the roles of these proteins in AHN is illustrated in Figure 1.

3.1. Tau

Tau protein is involved in microtubule assembly and stabilization, and commonly found 

in the cytosol and axons of neurons (Barbier et al., 2019). Hyperphosphorylated tau 

proteins, which lead to neuritic plaques and neurofibrillary tangles, represent one of the 

hallmarks of AD (Alzheimer’s Association, 2019). Prominent clinical heterogeneity in the 

hyperphosphorylated species of soluble, oligomeric, seed-competent tau was found in AD 

patients, implying that targeting tau is a potential personalized therapeutic approach to slow 

AD progression (Dujardin et al., 2020).

The relationship between tau and adult neurogenesis has been reviewed elsewhere (Fuster-

Matanzo et al., 2012; Houben et al., 2021; Pristera et al., 2013). Tau is able to induce AHN-

related deficits, including suppression of proliferation, neuronal atrophy and malfunction, 

impaired learning and memory, and downregulated GABA signaling, in an age-dependent 

manner (Dioli et al., 2017). Depletion of tau enhanced neurogenesis and rescued the 

stress-induced reduction of proliferation in both DG and SVZ of mice (Criado-Marrero 

et al., 2020a; Dioli et al., 2021, 2017). A recent study revealed that tau impaired 

AHN by suppressing GABAergic transmission in the hippocampus (Zheng et al., 2020). 

Strengthening the GABAergic transmission in 3xTg AD mice could efficiently rescue 

AHN deficits caused by tau accumulation and improve AHN-dependent cognitive functions 

(Zheng et al., 2020). Tau participates in a variety of cellular cascades regulating cell 

survival and proliferation. For example, the glycogen synthase kinase-3β (GSK-3β), a 
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crucial tau kinase that plays a role in its hyperphosphorylation, was suggested to be 

related to the cause of AD and could modulate adult neurogenesis (Liu et al., 2021). 

The p21-activated kinase 3 (Pak3), regulating synaptic plasticity and neurogenesis, was 

significantly reduced in the hippocampus and frontal cortex of postmortem brains from AD 

patients (Fuchsova et al., 2016), but was increased in mice when the tau gene MAPT 
was deleted (Criado-Marrero et al., 2020a). Activation of the Wnt/β-catenin signaling 

pathway could also restore neurogenesis reduced by the aggregate tau mutant (Joseph 

et al., 2017). Finally, neurogenesis requires dynamic control over the cytoskeleton and 

microtubules, and tau proteins facilitate this process (Morris et al., 2011). Together, targeting 

tau related pathways (like GSK-3β-PI3K signaling and Wnt/β-catenin signaling) to increase 

neurogenesis might be a valuable approach against AD. However, the potential molecular 

mechanisms underlying the relationship between tau and adult neurogenesis still need to be 

further explored.

3.2. Aβ and APP

Aβ peptides are 36–43 amino acids derived from APP by proteolytic cleavage (Tarasoff-

Conway et al., 2015). Aβ accumulation and toxicity can cause neuronal loss and trigger AD 

pathology (Tillement et al., 2011). Elevated concentrations of Aβ42 and tau in cerebrospinal 

fluid are biomarkers of AD diagnosis (Fagan and Perrin, 2012), and Aβ42/Aβ40 ratio could 

further help the separation of AD dementia from other dementia disorders (Hansson et al., 

2019). Anti-Aβ drugs had been developed, but many failed in clinical trials, leading to 

heated debates on the plausibility of the amyloid hypothesis. Recently, FDA approved the 

first drug, Aduhelm (aducanumab), targeting Aβ plaques removal, but has not been fully 

clinically demonstrated to be effective for cognition improvement (Mahase, 2021). It is 

reported that Aβ plaques begin accumulating before AD symptom appears, as early as in 

20s (Gonneaud et al., 2017). Cleaning amyloid in AD patients who already have dementia 

would be too late since the brain has already been severely damaged. Therefore, discovering 

appropriate early clinical biomarkers of AD should be a future effort to help prevent AD.

APP proteins have a complex relationship with neurogenesis. The soluble APPα (sAPPα) 

cleaved by α-secretase is neuroprotective, showing the capability to induce NPC 

proliferation (Chen and Tang, 2006). In contrast, Aβ deposits cleaved by β-secretase or 

γ-secretase are more toxic to neurogenesis. Depletion of Aβ peptide reduced tau inclusions 

and induced AHN in the rat hippocampus (Morrone et al., 2020). Furthermore, reducing 

the accumulation of Aβ plaques after disease progression was accompanied by increased 

adult neurogenesis in a 2xAD mouse model (Calió et al., 2021). Interestingly, researchers 

found that the formation and accumulation of intracellular Aβ oligomers could affect the 

OB neurogenesis in Tg2576 transgenic mice prior to the neurodegenerative progress(Scopa 

et al., 2020). It is further suggested that impaired neurogenesis is an early marker of AD 

progression (Price et al., 1991; Unger et al., 2016), emphasizing that targeting the early 

stages of neurogenesis deficits could be an excellent approach against AD. Combination of 

drugs targeting Aβ deposits clearance and neurogenesis replenishing may be a promising 

treatment in AD therapy.
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3.3. PS1 and PS2

Presenilins are essential components of the γ-secretase complex, which cleave APP to 

soluble Aβ peptides (De Strooper et al., 1998). A diminished neural progenitor population 

was reported in the PS1−/− mouse brain (Yang et al., 2000), resulting in a perinatal lethality 

(Donoviel et al., 1999; Shen et al., 1997). PS1 mutations produced premature neurogenesis 

and reduced the number of newborn neurons from iPSCs derived from familial AD patients 

(Arber et al., 2021). Furthermore, downregulation of PS1 in hippocampal NPCs leads 

to progressive cognition deficits (Bonds et al., 2015). On the contrary, lacking PS1 or 

PS2 did not influence cell-intrinsic AHN in mice (Dhaliwal et al., 2018). However, some 

studies confirmed the critical role of PS1 in neurogenesis related to differentiation and 

dendritic morphogenesis of NPCs (Hernandez-Sapiens et al., 2022). Thus, presenilins have 

different roles regarding embryonic development and adult neurogenesis. The premature 

and abnormal features of newborn neurons mediated by presenilins might contribute to 

neurodegeneration in AD.

3.4. APOE

Humans have three major APOE alleles: ε2, ε3, and ε4 (van der Lee et al., 2018). APOE ε4 
is associated with an increased risk of AD, and approximately 40% of LOAD patients carry 

this allele (Corder et al., 1993; Liu et al., 2013). APOE ε4 carriers showed high levels of 

Aβ deposition in the brains of elderly and AD subjects (Serrano-Pozo et al., 2021). APOE 
variants have also been reported to contribute to the pathogenesis of dementia in PD patients 

(Brockmann et al., 2017).

APOE is necessary to maintain the DG neural progenitor pool (Yang et al., 2011). Lack 

of it may temporarily increase the proliferation of early NPCs in the DG, but eventually 

lead to the depletion of type I NPC pool over time in vitro (Yang et al., 2011). Similarly, 

lower NPCs and fewer dendritic branches were observed in the hippocampus of APOE KO 

mice, while cell survival and differentiation were intact (Tensaouti et al., 2018). In addition, 

an increase in AHN was observed in young adult female APOE2 mice, aged female 

APOE KO mice, and aged female APOE3 mice compared with control mice (Koutseff 

et al., 2014; Rijpma et al., 2013). In contrast, both sexes of young adult APOE4 mice 

and aged female APOE4 mice displayed reduced neurogenesis, highlighting the age- and 

sex-dependent APOE polymorphisms in adult neurogenesis (Koutseff et al., 2014; Rijpma et 

al., 2013). APOE4 transgenic mice also exhibited impaired working memory and abnormal 

neuronal development in the DG (Hartman et al., 2001; Li et al., 2009; Tensaouti et al., 

2020). Interestingly, the decreased survival of GABAergic interneurons in APOE4 mice was 

accompanied by diminished presynaptic GABAergic input-mediated maturation of newborn 

neurons and elevated tau phosphorylation, suggesting the causable regulation of APOE in 

neurogenesis (Li et al., 2009). In summary, these data may help to explain the emergence 

of cognitive decline in humans carrying the APOE ε4 allele and provide a link between the 

APOE ε4 allele and neurodegenerative diseases.

Whether inducing neurogenesis can ameliorate the deteriorations caused by APOE is 

still uncertain. Few studies have addressed this question. It seems that some physical 

manipulations inducing neurogenesis, like environment enrichment (EE) and brain injury, 
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didn’t work on APOE4 mice (Hong et al., 2016; Levi and Michaelson, 2007). Conversely, 

physical exercise could improve hippocampal-dependent cognition and increased the levels 

of BDNF and tyrosine kinase B (TrkB) in the APOE4 mice (Nichol et al., 2009). However, 

the researchers haven’t checked the status of AHN in these mice, which makes it difficult to 

confirm whether it is caused by enhancement of neurogenesis or not (Nichol et al., 2009). 

Further studies are needed to explore the effects of other interventions which could increase 

AHN (e.g., caloric restriction or pharmacological approaches) on APOE4 dysfunction.

3.5. α-synuclein

SNCA/PARK1, the gene that encodes α-synuclein, was the first gene identified to be 

associated with PD (Polymeropoulos et al., 1997). Evidence showed that α-synuclein 

regulates the production of dopamine (Yu et al., 2004). It also interacts with tau and 

drives the formation of pathological inclusions both in vivo and in vitro (Badiola et al., 

2011; Giasson et al., 2003; Uemura et al., 2020). A decline of AHN is exhibited in an 

α-synuclein overexpression rat model (Kohl et al., 2016) and after intranasal administration 

of α-synuclein in mice (Sherstnev et al., 2021). Moreover, mutant α-synuclein aggravated 

age-related reduction of neurogenesis in the mouse SVZ and OB (Winner et al., 2008). 

Conversely, depleting α-synuclein resulted in enhanced neurogenesis in mice DG (Winner 

et al., 2012). In conclusion, α–synuclein aggregates interfere with the proper regulation 

of AHN, which mediates PD pathology, highlighting the necessity to further investigate 

whether stimulation of neurogenesis could mitigate the symptoms caused by α-synuclein in 

PD patients.

4. Interventions to increase neurogenesis

Here, we group the neurogenesis interventions into distinct categories: (1) non-specific 

physical/metabolic manipulations, (2) pharmacological approaches and, lastly, (3) genetic 

and reprogramming strategies. Special emphasis will be given to aging-related interventions 

and compounds that influence known metabolic pathways in aging, such as AMPK, mTOR 

and sirtuins. Genetic strategies will be skipped due to space constraints and because they 

have been only used in animal models so far. Cellular reprogramming approaches have 

been reviewed elsewhere recently (Rando and Jones, 2021). The summary of how the 

manipulations affect neurogenesis are shown in Figure 2.

4.1. Non-specific physical/metabolic manipulations

There are several non-specific physical/metabolic positive regulators of neurogenesis, such 

as physical exercise (PE), environmental enrichment (EE) and caloric restriction (CR). 

Interestingly, most of these manipulations have also been associated with increased lifespan 

and/or healthspan in model organisms. For example, some studies have shown that EE either 

increases lifespan in mice (Arranz et al., 2010; Thanos et al., 2016; Yamashita et al., 2018) 

or results in a trend of mean lifespan extension (McMurphy et al., 2018). The effects of 

EE on healthspan have been reviewed elsewhere (Queen et al., 2020), and the intervention, 

if translatable, holds promise for extending human healthspan. PE induces similar effects 

on healthspan in mice (Garcia-Valles et al., 2013), but the effects on lifespan extension 

have not been clearly established. Some studies showed lifespan extension in rats (Ji et al., 
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2018), no effect on lifespan in mice (Garcia-Valles et al., 2013) or even reduced lifespan in 

female rats (Karvinen et al., 2015). While further research is needed to establish a causal 

relationship between PE and lifespan, current observations point to a beneficial effect on 

humans, reducing the mortality risk (Lee et al., 2014) and improving multiple health indices 

(Pasanen et al., 2017), recently summarized elsewhere (Carapeto and Aguayo-Mazzucato, 

2021). Lastly, CR is the most robust intervention to increase lifespan and healthspan in 

species ranging from the budding yeast (Jiang et al., 2000) to rhesus monkeys (Colman et 

al., 2014). However, some researchers warn that since it is still not completely clear if these 

benefits result from slowing the aging process or merely avoiding obesity, further studies 

are needed to ascertain if CR and related interventions (such as intermittent fasting and 

ketogenic diets) should be recommended for healthy (non-obese) people (Lee et al., 2021).

Environmental enrichment—EE is a somewhat vague concept, commonly defined as 

“an animal husbandry principle that seeks to enhance the quality of captive animal care by 

providing the environmental stimuli necessary for optimal psychological and physiological 

well-being” (Shepherdson et al., 1998). In the case of rodents, it usually means housing 

them in larger cages that contain a variety of objects that they can interact with, such as 

plastic tubing, igloos with saucer type wheels, and other various plastic hutch-like toys 

(Slater and Cao, 2015).

In mice and rats, exposure to EE has long term positive effects on memory and learning 

(Hymovitch, 1952; Yau et al., 2015), albeit inconsistently (Singhal et al., 2019a, 2019b), 

and is associated with significantly more new neurons in the DG (Clemenson et al., 2015a). 

EE is a robust manipulation that is able to induce an increase in AHN across the lifespan 

of mice, with minor differences between strains (Kempermann et al., 2002, 1998b, 1998a; 

Leal-Galicia et al., 2008). Housing female 5xFAD transgenic mice in an EE (toys and a 

running wheel) reduced the Aβ plaque load and vivified AHN (Ziegler-Waldkirch et al., 

2018). Similarly, exposure to EE (with toys and a tilted running wheel) restored AHN in a 

3xTg-AD mice (J. Rodriguez et al., 2011). EE may also slow the onset and progression of 

HD (Mo et al., 2015) and restore the deficits in AHN in R6/1 mice (Lazic et al., 2006). A 

causal link between AHN and EE has been established in a study that exposed GFAP-TK 

mice to repeated social defeat (a type of psychosocial stress), followed by exposure with EE. 

The same study showed that repeated social defeat led to a submissive and depressive-like 

phenotype that was rescued by subsequent exposure to EE, but only if AHN was not 

disrupted through valganciclovir administration (Schloesser et al., 2010). However, this 

study (along with many others) suffers from lack of a precise definition of EE. Namely, 

the cages were enriched not just with variously sized tubes, but running wheels as well. 

This is important because physical exercise (usually in the form of voluntary running on 

the wheel) and cognitive stimulation (in the form of EE in the strict sense) have different 

effects on the neurogenic process. Specifically, EE exerts a survival-promoting effect on 

newborn cells, while running induces proliferation of precursor cells (Fabel et al., 2009; 

Olson et al., 2006). It is thought that voluntary running “primes” the DG by increasing the 

number of progenitors available for selection, which leads to an increase in AHN only if 

there is a need for these cells. This could have implications for potential therapeutic effects 

of EE or voluntary running, as it is possible that some neurodegenerative changes might 
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be ameliorated by an increase in NSC proliferation (running), and not through an increased 

survival of newborn neurons (EE) (or vice versa). For a more thorough discussion about the 

differences between EE and PE, we point the reader to Rogers et al., 2019.

Physical exercise—PE is usually considered as an “activity and training that causes a 

substantial increase in heart rate that differs significantly from resting heart rate” (Svensson 

et al., 2015). In animal studies, voluntary running on a running wheel or a treadmill is 

usually used, like in some models of EE. Despite this similarity, studies show that they 

should be treated as distinct interventions and that they, in fact, have additive effects (Fabel 

et al., 2009; Olson et al., 2006).

It has been shown that PE has profound effects on both learning and memory, shown by 

studies where late exercise (free access to running wheels) after traumatic brain injury 

reduced working and retention memory impairments in mice (Piao et al., 2013) and 

where voluntary wheel running was able to counteract cognitive deficits after chronic 

corticosterone administration in rats (Yau et al., 2012). It is thought that these positive 

effects of PE are related to increased levels of neurotrophic factors, elevated expression 

of anti-inflammatory cytokines, and reduced levels of pro-inflammatory cytokines and 

activated microglia (Svensson et al., 2015). In regard to neurogenesis itself, running was 

able to increase cell proliferation in the mouse DG (van Praag et al., 1999), restore 

hippocampal cell proliferation following chronic administration of corticosterone in rats 

(Yau et al., 2012) and peripheral administration of lipopolysaccharide in mice (Wu et al., 

2007). Aged transgenic mice that exercised on a treadmill displayed improved cognitive 

function, which was associated with suppressed neuronal cell death in the hippocampus 

(Um et al., 2011). Similar to EE, PE in the form of voluntary running was able to restore 

hippocampal neurogenesis in a mouse model of AD (J. Rodriguez et al., 2011). Interestingly, 

despite the fact that both PE and EE are non-specific manipulations with many other effects, 

their effect on neurogenesis is highly specific, targeting only the hippocampus and not other 

neurogenic areas of the brain, such as the OB (Brown et al., 2003). While spatially specific, 

it has been hypothesized that PE influences AHN in a non-specific way: by activating 

progenitor cell proliferation and thus increasing the potential for neurogenesis, in a time- 

and dose-dependent fashion (Holmes et al., 2004). Furthermore, newborn neurons induced 

by prolonged PE seem to integrate rapidly in the aging brain, elevating the complexity of 

the network and resulting in a rejuvenated hippocampus of mice (Trinchero et al., 2019). 

Incidentally, plasma transfer from exercised aged mice to sedentary aged mice ameliorated 

impaired neurogenesis and cognition in the aged hippocampus, showing that the beneficial 

effects of exercise on the aged brain can be transferred through administration of blood 

components (Horowitz et al., 2020). This is supported by a recent cellular parabiosis study 

that used an in vitro model of neurogenesis where a human hippocampal progenitor cell 

line was treated with human serum, showing that reduced physical activity can increase 

hippocampal cell death and the risk for future cognitive decline and dementia (Du Preez et 

al., 2021).

Caloric restriction—CR is usually defined as a “reduction of caloric intake - typically 

by 20 – 40% of ad libitum consumption - while maintaining adequate nutrient intake” 
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(Trepanowski et al., 2011). This term is sometimes used interchangeably with dietary 

restriction, which is an intervention in which specific macro/micronutrients (e.g., proteins, 

carbohydrates and amino acids) are restricted, with no reduction in total energy intake 

(Selman, 2014).

CR overall has positive effects on learning and memory. A study carried out in rats showed 

that their spatial and nonspatial abilities and reference and working memory deteriorate 

with age – an effect that is antagonized with life-long CR (Pitsikas and Algeri, 1992). 

Similar studies in mice revealed that chronic CR enhances their learning ability and memory 

(Hashimoto and Watanabe, 2005; Komatsu et al., 2008; Kuhla et al., 2013; Wahl et al., 

2018). One of the mechanisms proposed to explain the beneficial effects of CR on cognitive 

aging is through changes in neurogenesis. Studies in rodents (reviewed in Arslan-Ergul 

et al., 2013 and Stangl and Thuret, 2009) found that CR increases AHN (Hornsby et al., 

2016). However, it still is not established if this occurs through an increase in cell survival 

(Lee et al., 2002, 2000), through an increase in NSC proliferation (Kaptan et al., 2015; 

Park et al., 2013) or both. Furthermore, CR not only enhances proliferation of NSCs in 

young mice, but also prevents the age-related loss of neurogenesis in the SVZ – an effect 

associated with an improvement in olfactory memory (Apple et al., 2019).High-fat diet 

(HFD) has an opposite effect in both mice and rats, impairing hippocampal neurogenesis 

and proliferation of NSCs (Lindqvist et al., 2006; Park et al., 2010). Interestingly, this 

effect might be transgenerational, as it was shown that HFD-induced maternal obesity 

could impair AHN during postnatal development of the offspring (Tozuka et al., 2009). 

In humans, a randomized clinical trial with long-term CR (25% reduction during 2 years) 

found positive effects on working memory in healthy individuals (Leclerc et al., 2019). 

An interventional trial in elderly subjects found that 3 months of CR (reduction of 30% 

relative to previous habits) had beneficial effects on memory performance (Witte et al., 

2009). The same group carried out a study in healthy obese postmenopausal women and 

found that a CR intervention (12-week low-caloric diet) was able to improve recognition 

memory, an effect that was specific for the weight loss phase that could not be detected in 

the subsequent weight maintenance phase (Prehn et al., 2016). This effect was associated 

with an increase in gray matter volume in the hippocampus (as well as the inferior frontal 

gyrus) and augmented hippocampal resting-state functional connectivity to parietal areas 

(Prehn et al., 2016). While these studies suffer from certain limitations (self-reporting being 

one), their findings support the data from experimental animal studies (mentioned above) 

and epidemiological studies in humans (Mattson, 1999; Parrott and Greenwood, 2007). It 

is known that CR can enhance neurogenesis in the animal DG, and a recent study in obese 

adults has shown that CR may influence memory function through modulating AHN (Kim 

et al., 2020). Further clinical research is needed to determine if CR has a direct effect on 

the aging DG, and in which groups of people it has the highest efficiency. For example, CR 

could work well in overweight people, but have limited benefits, or even adverse effects such 

as dysmenorrhea (Romashkan et al., 2016), in healthy young people.

4.2. Pharmacological approaches

There are different pharmacological compounds that have been shown to stimulate 

neurogenesis (set A), to protect against neurodegeneration (set B) and to extend lifespan (set 
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C). In this review, we will focus on those found at the intersection of all three sets. We have 

further narrowed our criteria to compounds that (1) have been extensively researched and 

that (2) target different metabolic pathways. With that in mind, the compounds whose effects 

we will describe in this section are: NAD+ (nicotinamide adenine dinucleotide)-boosting 

molecules (NBMs), resveratrol, rapamycin and metformin.

The effect of these compounds on lifespan and healthspan is heterogenous, and will be 

briefly summarized here. NBMs extended the lifespan of mice in some studies (Fang 

et al., 2016; Zhang et al., 2016), had no effect on it in others (Harrison et al., 2021; 

Mitchell et al., 2018), and seem to have a positive effect on healthspan (Mitchell et al., 

2018), The therapeutic potential of some NBMs has been thoroughly reviewed elsewhere 

(Yoshino et al., 2018), but long-term clinical studies are needed to establish their safety 

and physiological outcomes. Resveratrol was able to extend the lifespan of some simpler 

organisms such as nematodes or fruit flies (Bauer et al., 2004; Wood et al., 2004), but not 

in mice or rats. While the effects on lifespan are unclear, we decided to include resveratrol 

in the review because of its beneficial effects on mammal healthspan and because of an 

excellent safety profile (Bhullar and Hubbard, 2015; Pezzuto, 2019), making it a lower-risk 

intervention that might have positive effects on certain health indices. The data is much 

clearer with rapamycin, which can extend lifespan in organisms ranging from yeast and flies 

to mice, recently summarized in (Selvarani et al., 2021). Additionally, it can also improve 

healthspan in mice (Bitto et al., 2016; Zhang et al., 2014) and has low toxicity in humans 

(Ceschi et al., 2015), making it overall a good candidate for geroscience-focused clinical 

trials. Lastly, the effects of metformin on lifespan are inconclusive and depend on the 

model organism, sex and dose used. While some studies show a positive effect on lifespan 

extension (recently reviewed in (Hu et al., 2021)), a study from the Interventions Testing 

Program found no effect on median or maximum lifespan (Strong et al., 2016). However, 

it does seem to improve healthspan (recently reviewed in (Mohammed et al., 2021), and 

clinical trials such as MILES and TAME will help answer questions about the potential 

prophylactic usage of metformin to counteract certain effects of aging itself.

NAD+-boosting molecules—NBMs that we will focus on are nicotinamide 

mononucleotide (NMN) and nicotinamide riboside (NR). NR is the precursor to NMN, 

which is in turn one of the precursors to NAD+ - a molecule that is essential for a myriad 

of enzymatic processes whose levels decline with aging (Imai and Guarente, 2014). There 

is a profound connection between NAD+ and sirtuins, which are deacetylase enzymes 

that regulate numerous fundamental biological processes implicated in both lifespan and 

neurodegenerative diseases (Alcaín and Villalba, 2009; Fang et al., 2017; Imai and Guarente, 

2016).

It has been shown that NMN supplementation improves cognitive function in aged mice 

(Tarantini et al., 2019) and alleviates aging-induced cognitive impairment in rats while 

reducing apoptosis in the prefrontal cortex and hippocampus (Hosseini et al., 2019). 

Systemic NMN administration was able to rescue the aging-associated decline of the NSC 

pool in mice, but not to drive the proliferation of these aged NSCs (Stein and Imai, 2014). 

Similarly, in a mouse model of cerebral ischemia, delayed administration of NMN improved 

regenerative neurogenesis in both the SVZ and DG (Zhao et al., 2015). Similar results were 
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observed with NR: its administration was able to increase neurogenesis in the SVZ and DG 

in aged mice, while at the same time slightly increasing lifespan (Zhang et al., 2016). The 

same effect on lifespan wasn’t observed in a transgenic mouse model of amyotrophic lateral 

sclerosis (ALS) (SOD1G93A mice), but improvements in neurogenesis were observed: NR 

was able to attenuate the ALS-induced loss of NSCs in the SVZ, SGZ and OB, as well 

as to enhance the proliferation and migration of NSCs (Zhou et al., 2020). In a model of 

AD (3xTgAD/Polβ+/− mice), 3 months of NR treatment (in animals that were 16 to 18 

months old) was able to reduce neuroinflammation, increase NSC proliferation, decrease 

tau phosphorylation in the hippocampus as well as improve learning, memory and motor 

function (Hou et al., 2018). Similar effects were found in the APP/PS1 mouse model of 

AD, where the same length of NR treatment improved memory and learning in mice 7 

to 12 months old, but the effects on neurogenesis were not assessed (Hou et al., 2021). 

Interestingly, some of these effects seem to be transgenerational, as rats nursed by NR-fed 

mothers display enhanced hippocampal neurogenesis as adults, as well as advantages in 

spatial memory and physical performance (Ear et al., 2019).

Resveratrol—Resveratrol (3,5,4′-trihydroxy-trans-stilbene; RSV) is a polyphenolic 

phytoalexin that is generated in response to stress in specific plants such as grapevines (Bhat 

et al., 2001). RSV has been classified by some as a sirtuin-activating compound (STAC) 

and has been suggested to be a caloric restriction mimetic (CRM) (Nikolai et al., 2015). 

However, we note that some studies suggested that resveratrol does not directly activate 

SIRT1, a protein which was suggested to be its primary target (Pezzuto, 2019).

RSV administration improves performance in behavioral tests related to memory formation 

and promotes the survival of newborn hippocampal cells in BALB/c mice at 6 months of 

age (Torres-Pérez et al., 2015). Similarly, adding RSV to HFD-fed mice positively affected 

adult hypothalamic neurogenesis, both by its anti-apoptotic effect and through enhancing 

production of newborn cells in the arcuate nucleus of the hypothalamus (Safahani et al., 

2019). In mice exposed to neonatal hypoxic ischemia, RSV could prevent cognitive deficits 

by promoting AHN (Li et al., 2020). In rats exposed to unpredictable chronic mild stress 

(UCMS), RSV was able to reverse UCMS-induced impaired cognition function and improve 

hippocampal expression of BDNF, a key molecule in regulating hippocampal plasticity 

(Yazir et al., 2015). In late middle-age (21 months) male F344 rats, RSV administration 

improved learning, memory and mood function, as well as increased neurogenesis in the 

DG (Kodali et al., 2015). Lastly, RSV administration enhanced AHN in rats exposed to lead 

early in life, which had a protective effect against learning and memory impairments induced 

by lead neurotoxicity (Wang et al., 2021).

In humans, a double-blind placebo-controlled study with chronic RSV supplementation 

(200 mg per day for 6 months; in a formula with quercetin) found positive effects on 

memory performance in healthy overweight older adults, a finding associated with increased 

hippocampal functional connectivity (Witte et al., 2014). Moreover, a similar study carried 

out in patients with mild cognitive impairment (MCI) found that the same dose and 

duration of RSV supplementation had no significant effects on memory performance, but 

could preserve hippocampal volume and improve hippocampus resting-state functional 

connectivity (Köbe et al., 2017). Another study utilizing the same dose and duration of 
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RSV supplementation in healthy elderly individuals failed to find improvements in verbal 

memory, finding only a trend for positive effects on pattern recognition memory (Huhn et 

al., 2018). In a shorter study utilizing a lower dose of RSV (150 mg per day for 14 weeks) 

in postmenopausal women, it improved verbal memory and overall cognitive performance 

(Evans et al., 2017). In healthy young adults (18–30 years), chronic administration of RSV 

(500 mg per day for 28 days) was not able to improve cognitive function (Wightman et 

al., 2015). Finally, a meta-analysis exploring the effect of RSV on cognitive and memory 

performance concluded that chronic RSV supplementation has no significant impact on 

those indices (Farzaei et al., 2018). In summary, despite promising effects on neurogenesis 

in animals, it is difficult to firmly conclude if supplementing humans with RSV increases 

AHN or if it confers advantages in cognitive and memory performance. Further studies with 

a longer intervention period and larger sample sizes are needed.

Rapamycin—Rapamycin is a macrolide that directly and specifically inhibits the 

mechanistic target of rapamycin (mTOR), a nutrient-responsive kinase that is the catalytic 

subunit of two complexes known as mTOR complex 1 (mTORC1) and as mTOR complex 

2 (mTORC2). It has been established that while rapamycin directly inhibits mTORC1, 

mTORC2 is not sensitive to acute rapamycin treatment and chronic exposure is required to 

indirectly inhibit mTORC2 (Arriola Apelo and Lamming, 2016). Many of the side effects 

of prolonged rapamycin treatment, such as immunosuppression and glucose intolerance, are 

considered due to the inhibition of mTORC2, so inhibitors that are specific to mTORC1 

might confer beneficial effects while avoiding the side effects (Saxton and Sabatini, 

2017). Rapamycin has been proposed as a CRM (Hughes and Kennedy, 2012), but some 

researchers believe that it is likely that rapamycin and CR exert their effects through 

different pathways (Unnikrishnan et al., 2020).

Treatment with rapamycin has been associated with improvements in learning and memory 

in both young and old animals. In 8-month-old male mice, chronic rapamycin treatment 

(16 weeks) was able to enhance spatial learning and memory, as well as reduce anxiety- 

and depression-like behaviors (Halloran et al., 2012). The same study observed that 40 

weeks of treatment improved recall of an aversive event in older mice (25 months of age), 

suggesting that even when started late in life, chronic rapamycin treatment was able to 

delay cognitive decline associated with aging (Halloran et al., 2012). Similarly, lifelong 

rapamycin administration in mice (started at 2 months of age) was able to improve learning 

and memory when tested at 18 months of age, but shorter rapamycin administration in 

adult mice (12 weeks; started at 15 months of age) wasn’t able to improve cognition in 

animals with pre-existing, age-dependent learning and memory deficit (Majumder et al., 

2012). Finally, chronic treatment (15 months) with rapamycin was able to ameliorate deficits 

in learning and memory in aged (34-month old) rats (Van Skike et al., 2020). Hence, it 

is yet to be determined which dosing and duration at which age are optimal for exerting 

improvements in cognitive function. Interestingly, 12 weeks of rapamycin administration in 

22-month old mice resulted in increased abundance of activated NSCs in the SVZ (Leeman 

et al., 2018). However, different results were obtained in a study where rapamycin (i.p.) 

significantly reduced the number of proliferating cells in the adult hippocampus of 3-month 

old mice (Romine et al., 2015). It is difficult to compare these results as (1) the experiments 
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were carried out in different age groups, (2) the method and duration of rapamycin 

administration was different and (3) as they focus on different neurogenic niches. Hence, 

further experiments are necessary to determine the effects of rapamycin on neurogenesis - 

especially in the DG of healthy mice after prolonged administration. In humans, a small 

study in heart transplant recipients found that short-term (4 weeks) immunosuppression 

with a rapamycin analogue everolimus was associated with improvements in memory 

performance and mood (Lang et al., 2009). However, a randomized controlled trial in 

healthy older adults (25 subjects) revealed no improvements in cognition after 8 weeks of 

rapamycin treatment, noting that longer trials with larger sample sizes may be warranted 

(Kraig et al., 2018). A clinical trial exploring the effects of rapamycin in older adults with 

MCI on cognition is currently active (NCT04200911).

Metformin—Metformin (N,N-dimethylbiguanide) is an anti-diabetic drug that inhibits the 

mitochondrial respiratory chain complex I, leading to multiple downstream effects such as 

changing the AMP:ATP and ADP:ATP ratios, which activates AMP-activated protein kinase 

(AMPK) (Barzilai et al., 2016; Rena et al., 2017). Metformin also inhibits hepatic mTORC1 

in a biphasic manner: low dose of metformin requires AMPK and the TSC complex for 

the inhibition, whereas a high dose inhibits mTORC1 through alternative mechanisms, 

independently of AMPK and TSC complex (Howell et al., 2017). While it has been argued 

that metformin acts as a CRM (Kezic et al., 2018), results from other model organisms such 

as Drosophila and mammals call that into question (Lee and Min, 2013; Slack et al., 2012).

Most (but not all) studies have found a positive effect of metformin on cognitive functions 

and neurogenesis, both in metabolically compromised and in aged animals. In a mouse 

model of diabetes induced by streptozotocin, metformin treatment produced an improvement 

in spatial memory and a decreased loss of neurons in the DG of diabetic mice (De Oliveira 

et al., 2016). Similar effects were observed in a study by Wang et al. in 2012, who 

reported that metformin administration enhanced spatial memory formation and promoted 

neurogenesis in both the SVZ and the SGZ of mice, without depleting the endogenous 

NPC pool. In a transgenic mouse model of AD (APP/PS1 female mice), 14 days of daily 

metformin treatment rescued spatial memory deficits, reduced brain Aβ deposition and Aβ 
levels, prevented neuronal cell death in the hippocampus as well as increased AHN (Ou et 

al., 2018). Similarly, in 3xTg-AD mice, the same length of metformin treatment rescued 

impairments in AHN and spatial memory (Syal et al., 2020). It was observed that metformin 

enhances the proliferation, self-renewal, and neuronal differentiation of adult NPCs through 

two distinct molecular pathways: a TAp73 pathway mediating self-renewal and proliferation, 

and an AMPK-aPKC-CBP pathway that is required for metformin-induced neuronal 

differentiation (Fatt et al., 2015). In HFD-induced insulin resistant rats, metformin restored 

the learning and memory behaviors that were impaired by long-term HFD consumption 

(Pintana et al., 2012). Similarly, in HFD-fed obese mice, metformin had a beneficial effect 

on learning and memory, and also restored impairments in AHN, through the regulation 

of gut microbiota (Ma et al., 2021). 36 days of metformin administration enhanced the 

spatial memory of aged rats in the Morris Water Maze (Ashrostaghi et al., 2015). In a 

D-galactose-induced aging model in mice, metformin administration improved learning and 

memory ability, assessed by the novel object recognition task (Fatemi et al., 2018). However, 
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one study found no beneficial effect of metformin supplementation on learning in old male 

mice – in fact, metformin exhibited a deleterious effect on memory retention (Thangthaeng 

et al., 2017). Metformin use was also associated with impaired cognitive performance in 

patients with diabetes (Moore et al., 2013), but another study in diabetic individuals showed 

that metformin treatment was inversely related to cognitive impairment (Ng et al., 2014). 

In summary, many studies show that metformin improves neurogenesis in various animal 

models, and is a promising candidate against cognitive impairments in humans. Hence, 

future research should address the interaction of effects of metformin on cognitive functions 

with age, sex, dosage, and duration of treatment.

5. Conclusions

We have discussed some alterations of adult neurogenesis in aging and neurodegenerative 

diseases in this review. The dysfunction of AHN appears to be an early marker of the 

development of these aging-related diseases and it seems that the regulation of neurogenesis 

could be an effective intervention against them.

The iPSC technology is widely used to screen anti-neurodegenerative drugs and understand 

the mechanisms of mutations involved, which could recapitulate the dynamic processes of 

neurogenesis in vitro (Chen et al., 2020). In addition, iPSCs can be used as the autologous 

source for stem cell therapy. Transplantation of NSCs is regarded as a prospective 

therapeutic intervention (De Gioia et al., 2020). In the past few decades, many promising 

preclinical and early clinical findings of stem cell therapy were obtained from animal 

models (Ford et al., 2020). However, the risk of teratoma formation and mutations, as well 

as the optimization of stem cell sources and procedures, continue to be the major issues for 

further feasible and safe applications, which must be solved (Itakura et al., 2017; Merkle 

et al., 2017). Therefore, a more in-depth knowledge of the characteristics of NSCs and the 

related neurotrophic factors and differential stimulations, as well as how to combine genetic 

engineering like CRISPR/Cas9 and RNAi to modify patient-derived iPSCs for autologous 

transplantation, will help us tackle the obstacles.

It should also be noted that increasing AHN beyond physiological levels might have harmful 

effects. While deficits in plasticity are associated with certain disorders and could leave the 

brain unable to adjust to changing demands, so could a supraphysiological increase in AHN 

result in maladaptive effects, with structural connections becoming unstable, resulting in 

compromised cognition and behavior (Pascual-Leone et al., 2011). For example, increasing 

the number of adult-born cells by blocking cell death in the OB impairs performance 

in odor discrimination tasks (Mouret et al., 2009). Furthermore, it was shown that adult 

neurogenesis transiently generates oxidative stress, which has been implicated in a wide 

variety of CNS disorders (Walton et al., 2012). There is likely a point where the balance 

between plasticity and stability (neuronal turnover) is at its optimal value for cognition and 

overall brain health, and further research is needed to determine if there is a threshold 

at which point too many new neurons become deleterious. Similarly, since AHN can 

be divided into stages of proliferation, migration and differentiation, strategies targeting 

different components could be utilized in different conditions. It has been suggested that 

for MDD and some other conditions that involve the hippocampus, neurogenesis could be 
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induced, while for PD and HD, the optimal strategy would be to induce the local dividing 

cells to proliferate and then differentiate into small spine neurons (for HD) or dopaminergic 

neurons (PD) (Gage, 2004).

A similar cost-benefit analysis should be carried out for other manipulations mentioned 

in the review. For example, NAD+ is a ubiquitous biological molecule that is central to 

several cellular bioenergetic functions and is used as a cofactor or substrate by hundreds 

of enzymes (Covarrubias et al., 2021; Lautrup et al., 2019) and, as such, levels of caution 

should be used in employing system-wide manipulations. Potential risks and benefits of 

NBMs have been reviewed comprehensively elsewhere (Braidy and Liu, 2020), so we will 

only briefly mention some of the potential negative consequences. For instance, cancer 

cells, being highly replicative, have a high energy demand and thus NAD+ supplementation 

could promote the growth of specific cancers by fueling cell proliferation (Demarest 

et al., 2019; Lautrup et al., 2019). It has been shown that NMN supplementation can 

promote the proinflammatory senescence-associated secretory phenotype (SASP), which 

has tumorigenic properties (Nacarelli et al., 2019). The authors suggest that NAD+ should 

be supplemented with precision to balance the advantageous “anti-aging” effects with 

potential detrimental pro-tumorigenic side-effects (Nacarelli et al., 2019). We suggest that 

the potential negative effects of the SASP might also be offset by combinational therapy 

– for example, administering NBMs after clearing senescent cells with senolytics has the 

potential to synergize. More recently, a study which utilized an NR washout phase in its 

experimental design showed that the beneficial effects of NR are not sustained after its 

removal in aged animals, and that removing NR might have undesirable consequences 

(Zong et al., 2021). The authors conclude that the supplementation regimen may need to be 

sustained long-term to maintain its benefits, and we argue that further studies with washout 

periods in aged animals are necessary to ascertain organism-wide effects of cessation of NR 

supplementation.

The potential shortcomings of utilizing system-wide (mTOR, AMPK, sirtuins) 

manipulations should be explored in detail. Optimal levels of these manipulations should 

be determined, their interactions in a form of combinatorial therapy, as well as methods 

to precisely target dysfunctional systems. Despite potential shortcomings, the currently 

available data suggests that modulating neurogenesis represents an important target for 

manipulations that could help in the fight against neurodegenerative disorders and cognitive 

decline, ultimately leading to improvements in both lifespan and healthspan.

Abbreviations

Aβ amyloid beta

AD Alzheimer’s disease

AHN adult hippocampal neurogenesis

APOE apolipoprotein E

A-T Ataxia Telangiectasia
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ATM Ataxia Telangiectasia mutated

BDNF brain-derived neurotrophic factor

BER Base excision repair

BrdU Bromodeoxyuridine

CDC42 Cell division control protein 42 homolog

CNS central nervous system

CR caloric restriction

CS Cockayne syndrome

DCX Doublecortin

DG dentate gyrus

DNAJC6 DnaJ Heat Shock Protein Family (Hsp40) Member C6

DSB DNA double-strand break

EE Environmental enrichment

EOAD early-onset Alzheimer's disease

FBXO7, F-Box Protein 7

GABA gamma-aminobutyric acid

γH2AX gamma H2A histone family member X

HD Huntington’s disease

ihNSC immortalized human neural stem cell line

LB Lewy body

LOAD late-onset Alzheimer's disease

LRRK2 Leucine Rich Repeat Kinase 2

MCI mild cognitive impairment

NAD+ nicotinamide adenine dinucleotide

NEIL1 Nei Like DNA Glycosylase 1

NEIL3 Nei Like DNA Glycosylase 3

NER Nucleotide excision repair

NPC Neural progenitor cell

NSC neural stem cell
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OB olfactory bulb

PCNA proliferating cell nuclear antigen

PD Parkinson’s disease

PE Physical exercise

PINK1 PTEN Induced Kinase 1

Polβ DNA polymerase β

poly Q polyglutamine

PRKN parkin RBR E3 ubiquitin protein ligase

PS1 presenilin 1

PS2 presenilin 2

RMS rostral migratory stream

RSV Resveratrol

SGZ subgranular zone

SNCA synuclein alpha

SOX2 sex determining region Y-box 2

SVZ subventricular zone

VEGFA vascular Endothelial Growth Factor A

VPS35 VPS35 Retromer Complex Component
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Highlights

• Formation of new neurons (neurogenesis) plays a significant role throughout 

lifespan

• The incidence of neurodegeneration increases with aging, while neurogenesis 

decreases

• Age-associated decline in brain function may be caused by neural stem cell 

defects

• Geroscience interventions that target the aging process mostly enhance 

neurogenesis

• Enhancement of neurogenesis is beneficial in aging and neurodegeneration

• Optimal levels of neurogenesis induction and adverse effects should be 

determined
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Figure 1. Key aggregation-prone proteins involved in neurodegenerative diseases and adult 
hippocampal neurogenesis during aging
Adult hippocampal neurogenesis decreases with aging. Aggregation-prone proteins, like 

Aβ, tau and APOE in AD, α-syn in PD and HTTs in HD accumulate during the aging 

process and induce neurodegeneration as well as impair hippocampal neurogenesis, resulting 

in the imbalance between these two processes. Various factors that are tightly connected 

with neurogenesis are involved in the pathologies of aging and neurodegenerative diseases 

and are discussed in this review. In the hippocampus, the process of neurogenesis starts 

with radial glia-like (RGL) cells (type 1 cells). The RGL cells keep self-renewing and 

give rise to astrocytes (1) and intermediate progenitor cells (IPCs or type 2 cells) (2). 

IPCs proliferate and differentiate into bipolar neuroblasts (3). Those neuroblasts differentiate 

into immature neurons (4). Then these immature neurons undergo a dynamic maturation 

process, with some of them dying, and some surviving to become mature neurons and form 

functional connections to existing neural networks (5). Several studies have demonstrated 

that markers of senescence, like p16, p19, p53 and HMGB1, are increased in some neurons 

and neural stem cells (6 &7) (Molofsky et al., 2006; Negredo et al., 2020; Nicaise et 

al., 2019). This age-associated NSC senescence could result in the depletion of NSCs, 

ultimately decreasing adult hippocampal neurogenesis and impairing brain function. At the 

bottom is the schematic of specific markers expressed during hippocampal neurogenesis and 

senescence.
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Figure 2. The effects of certain life/healthspan interventions on adult neurogenesis in rodents.
This illustration encapsulates the effects of several common life/healthspan manipulations 

on adult neurogenesis in rodents, which are described in this review. Environmental 

enrichment, physical exercise, calorie restriction, NAD-boosting molecules (NMN/NR), 

resveratrol and metformin all increase neurogenesis in animal models, while the effects of 

rapamycin have not yet been comprehensively established in that regard.
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Table 1-
Summary of studies on the changes of neurogenesis in animal models of 
neurodegenerative diseases.

Here we summarized previous studies on the changes of neurogenesis in both SGZ and SVZ in animal models 

of neurodegenerative disorders, including the type of animal model, investigated area and markers used in 

studies, as well as the details of phenotypes related to neurogenesis. Altered neurogenesis was found in most 

of these animal models, which may contribute to the etiology involved in neurodegenerative diseases.

Disease Organism gene Area Change in 
neurogenesis Markers Age(month) Features related to 

neurogenesis Refs

AD Mouse

APPS w,Ind SGZ

↑

BrdU, Ki67, 
PSA-NCAM, 
β-tubulin III

3

Increased BrdU+, 
Ki67+ cells by 
increased neuronal 
differentiation 
labeled by PSA-
NCAM+, β-tubulin 
III+ cells;

(López-
Toledano 

and 
Shelanski, 

2007)

↓ 5, 9, 11

Reduced 
neurogenesis started 
at 5-month-old and 
persisted at 9- and 11 
month-old.

APP SGZ N.C.

DCX, 
MCM2, 
NF68

8–9,
18–24

No change in DCX+ 

cells

(Zhang et 
al., 2007)

PS1 SGZ ↓ A small decrease in 
DCX+ cells

APP, PS-1 SGZ ↓
Reduced by 60% and 
in an age dependent 
way

APPswe, PS1-
dE9 SGZ ↑ BrdU, DCX 3, 9

The memory 
and hippocampal 
proliferation were 
not affected 
at 3-month-old; 
Memory impairment, 
increased Aβ 
deposits, and

(Yu et al., 
2009)

Disease Organism gene Area Change in 
neurogenesis markers Age (month) Features related to 

neurogenesis Refs

AD Mouse

APP, PS1, 
nestin-GFP

SGZ ↓
nestin-GFP 
DCX BrdU 

GFAP
7d, 1, 3, 7

BrdU+-, DCX+- 
and GFAP+- Nestin-
GFP+ cells decreased 
started from 3 
month-old. Abnormal 
morphologies of 
dendrites in SGZ;

(Zeng et 
al., 2016)

SVZ N.C.
The number of 
nestin-GFP+ cells 
decrease

PS1HWT SGZ and 
SVZ N.C. BrdU 2 No change in BrdU+ 

and DCX+ cells

(Demars et 
al., 2010)APPs we, 

PS1ΔE9

SGZ ↓

BrdU DCX 2

Reduced as early as 2 
month-old; impaired 
proliferation and tau 
hyperphosphorylation 
exhibited in 
neurospheres 
isolated from 

SVZ ↓
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APPswe/PS1ΔE9 
mice

AD Mouse 
and NPCs

APPswe, 
PS1ΔE9 SGZ - EdU 4

Transplantation of 
human NPC reduced 
Aβ load and 
increased microglia 
within hippocampal 
and cortical 
regions; Improve 
hippocampal 
dependent cognition

(McGinley 
et al., 
2018)

Disease Organism gene Area Change in 
neurogenesis markers Age (month) Features related to 

neurogenesis Refs

AD

Mouse 
and NPCs

APPKM670/671NL SVZ ↓ BrdU, DCX, 
SOX2, GFAP 1.5

Decreased OB 
neurogenesis and 
fewer Calretinin+ 

interneurons in OB; 
Smaller neuron 
size; More DCX+ 

neuroblasts and fewer 
Sox2+ progenitors

(Scopa et 
al., 2020)

Aβ SGZ ↓
GFAP, Ki67, 
CD44, CD90, 
CD34, CD45

1.5

Aβ-treated NPCs 
decreased the 
expression of Ki67, 
GFAP, SOX2, 
and Nestin by 
suppressing the Wnt 
signaling pathway

(Oh et al., 
2015)

Rat Aβ SGZ - - P5,P7,P15,P25
Aβ trigger spine loss 
by partially inhibiting 
NMDARs

(Shankar et 
al., 2007)

Mouse MAPT

SGZ ↓

DCX, Ki67 2, 6, 12

Decreased Dcx-
NeuN+ cells as early 
as 2 months of 
age in both SGZ 
and SVZ; Decreased 
Ki67+ cells in SVZ 
with aging

(Komuro et 
al., 2015)SVZ ↓

- - - 6

Aging-dependent 
short-term memory 
deficits, hyperactivity 
and synaptic 
plasticity defects

(Biundo et 
al., 2018)

Disease Organism gene Area Change in 
neurogenesis Markers Age (month) Features related to 

neurogenesis Refs

AD Mouse

Tau Tg30

SGZ ↓ DCX, Ki67, 
GFAP 12

DCX+ and Ki67+ 

cells decreased in 
Tg30 mice but not 
in Tg30/tau KO 
mice; GFAP+ cells 
showed no difference 
between Tg30 and 
Tg30/tau KO mice

(Houben et 
al., 2019)Tg30/TauKO

APPswe, 
PS1M146V, 

MAPTP301L

SGZ ↓ HH3 2–4, 6, 9, 12

The age-associated 
reduction was more 
significant in female 
mice; More related 
to dorsal than ventral 
hippocampus

(Rodríguez 
et al., 
2008)

APPswe, 
PS1M146, 

MAPTP301L, 
Polβ

SGZ ↓ BrdU 6, 14

No change 
in hippocampal 
volume and adult 
neurogenesis at 
6 months, but 
reduced at 14 
months; Impaired 

(Sykora et 
al., 2015)
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memory and synaptic 
plasticity in 3xTg/Pol 
β+/− mice

5xFAD SGZ ↓ DCX, HH3, 
calretinin 2–4, 7

The number of 
DCX+, HH3+, and 
calretinin + cells 
decreased in 5xFAD 
hippocampus;

(Moon et 
al., 2014)

Disease Organism gene Area Change in 
neurogenesis label Age (month) Features related to 

neurogenesis Refs

AD Mouse

5xFAD SGZ ↓

Ki67, DCX, 
SOX1, 
SOX2, 
SOX21

2

SOX1+ and SOX21+ 

cells decreased in 
AD mice; DCX+ 

cells decreased only 
in male AD 
mice; SOX2+ cells 
decreased only in 
female AD mice; 
No change in the 
Ki67+ cells in both 
gender; The protein 
levels of BDNF were 
not affected in the 
5xFAD mice

(Zalet el et 
al., 2018)

5xFAD SGZ ↓ DCX 10

Reduced neuron 
numbers and 
neurogenesis both 
in males and 
females; Restored 
by overexpression of 
VGF, a nerve growth 
factor

(Beckmann 
et al., 
2020)

PS1 ventricular 
zone ↓ BrdU E11.5

Premature 
differentiation of 
NPCs, which leading 
to early depletion of 
the neural progenitor 
population

(Yang et 
al., 2000)

PS2 N.C. DCX, Ki67 1.5–2

Deletion of PS2 
does not affect 
hippocampal adult 
neurogenesis

(Dhaliwal 
et al., 
2018)

Disease Organism gene Area Change in 
neurogenesis label Age (month) Features related to 

neurogenesis Refs

AD mouse

APOE ε3/
APOE ε4

SGZ ↓

Nestin, 
SOX2, BrdU, 

GFA P
3, 6–7, 12–13

Neurogenesis 
reduced but 
astrogenesis 
increased in 
APOE-KO Mice; 
Increased BMP 
signaling promoted 
glial differentiation 
at the expense 
of neurogenesis 
in APOE ε4 
mice, Presynaptic 
GABAergic input-
mediated maturation 
of newborn neurons 
was diminished in 
APOE ε4 mice

(Li et al., 
2009)SVZ ↓

GFAP-APOE SGZ ↓ BrdU, GFAP 2

Reduced APOE 
after injury; 
The injury-induced 
proliferation of 
hippocampal neural 
progenitors is absent 

(Hong et 
al., 2016)
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in APOE-deficient 
mice; GFAP-ApoE4 
mice decreased 
neurogenesis after 
injury.

nestin-APOE SGZ ↓ DCX 1, 2, 9

An overall decrease 
in type 1 Nestin- 
and GFAP-expressing 
neural stem cells

(Yang et 
al., 2011)

GFAP-APOE SGZ N.C. synaptophsin, 
NSE, GFAP 6, 10, 14

Impaired learning 
and working 
memory; Increased 
activity and anxiety; 
no alterations of 
the expression 
synaptophysin, NSE, 
GFAP

(Hartman 
et al., 
2001)

Disease Organism gene Area Change in 
neurogenesis label Age (month) Features related to 

neurogenesis Refs

A-T

Mouse 
and NPCs

ATM

- - Ki67, GFAP 3

No change in 
the number of 
proliferating cells; 
Resistance to 
apoptosis after 
irradiation

(Barazzuol 
et al., 
2017)

Mouse

SGZ ↑
Ki67, EdU, 
cyclin A, 

PCNA
2, 3

Neurons loss in 
hippocampus and 
frontal cortex; Cyclin 
A+ and PCNA+ cells 
were significantly 
elevated

(Shen et 
al., 2016)

SGZ ↓ BrdU 1, 2

ATM down 
regulated during 
cells differentiate; 
Decreased 
proliferation and 
survival of NPCs and 
genomic instability

(Allen et 
al., 2001)

PD

C. elegans

SNCA

- ↓ - -

Neuronal and 
dendritic loss 
in dopaminergic 
neurons but not 
with a motor neuron 
promoter

(Lakso et 
al., 2003)

Mouse

SVZ ↓ PCNA, 
DCX+ BrdU 5, 15

Decreased number 
of PCNA+, DCX+ 

and BrdU+ cells and 
increase in TUNEL+ 

cells in OB

(Winner et 
al., 2008)

Lrrk2

SGZ ↓

DCX, BrdU 4

Decreased 
proliferation both 
in SGZ and SVZ 
Neurite outgrowth 
and spine numbers 
reduced in new 
neurons in DG

(Winner et 
al., 2011)SVZ ↓

Disease Organism gene Area Change in 
neurogenesis label Age(month) Features related to 

neurogenesis Refs

PD Mouse 
and NPCs

PINK1 
(PARK6) SGZ ↓ DCX, SOX2 3

Decreased 
proliferation and 
TMRE/Mi toTracker 
Green ratio; Reduced 
maximum OCR, 
spare respiratory 
capacity and growth; 
Increased apoptosis 

(Agnihotri 
et al., 
2017)
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in PINK1−/− NSCs; 
Abnorma l morpholo 
gic features of 
PINK1−/− DCX+ 

neurons

Parkin 
(PARK2) SVZ ↓ GFAP E15

Arrested neuronal 
differentiation 
and abnormal 
morphology of 
NPCs; Decreased 
GFAP+ cells

(Park et al., 
2017)

Rat SNCA SGZ ↓ BrdU 4

Reduced survival of 
BrdU+ cells in DG, 
while proliferation 
not be affected

(Kohl et 
al., 2016)

CS

Human 
iPSC CSB - ↓ PAX6, 

OCT4, SOX2 -

Reduced 
differentiation 
potential and 
proliferati on

(Vessoni et 
al., 2016)

Mouse CSB SGZ N.C. BrdU E14.5, 4

Neural progenitors 
were not affected 
but showed defective 
self-renewal

(Sacco et 
al., 2013)

Abbreviations: ↑, increase; ↓, decrease; Aβ, amyloid beta; AD, Alzheimer’s disease; APOE, apolipoprotein E; APP, amyloid precursor protein; 
A-T, Ataxia Telangiectasia; ATM, Ataxia Telangiectasia mutated; BDNF, brain-derived neurotrophic factor; BrdU, Bromodeoxyuridine; DCX, 
Doublecortin; DG, dentate gyrus; E, embryo; NSC, neural stem cell; OB, olfactory bulb; P, postnatal day; PCNA, proliferating cell nuclear antigen; 
PD, Parkinson’s disease; Polβ, DNA polymerase β; PS1, presenilin 1; PS2, presenilin 2: SGZ, subgranular zone; SNCA, synuclein alpha; SOX2, 
sex determining region Y-box 2; SVZ, subventricular zone

Ageing Res Rev. Author manuscript; available in PMC 2023 June 01.


	Abstract
	Introduction
	Neurogenesis
	Does adult neurogenesis exist in humans?
	Where does adult neurogenesis occur?
	Age- and neurodegeneration-dependent dynamics of neurogenesis

	Functional relevance of newborn hippocampal neurons
	Stress
	Pattern separation
	Learning and memory

	Neural stem cells
	Types of stem cells
	Regulation of proliferation


	Neurogenesis in neurodegenerative diseases
	Alzheimer’s disease
	Neurogenesis in AD patients
	Neurogenesis in AD animal models
	The effects of DNA damage on neurogenesis in AD

	Parkinson’s disease
	Neurogenesis in PD patients
	Neurogenesis in PD animal models

	Other neurodegenerative diseases
	Huntington’s disease
	Ataxia telangiectasia
	Cockayne syndrome


	The role of the key aggregation-prone proteins in neurogenesis
	Tau
	Aβ and APP
	PS1 and PS2
	APOE
	α-synuclein

	Interventions to increase neurogenesis
	Non-specific physical/metabolic manipulations
	Environmental enrichment
	Physical exercise
	Caloric restriction

	Pharmacological approaches
	NAD+-boosting molecules
	Resveratrol
	Rapamycin
	Metformin


	Conclusions
	References
	Figure 1.
	Figure 2.
	Table 1-

