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Abstract

The hand endows us with unparalleled precision and versatility in our interactions with objects, 

from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The 

complex anatomy of the human hand combined with expansive and specialized neuronal control 

circuits allows a wide range of precise manual behaviours. To support these behaviours, an 

exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed 

and timely information about our interactions with objects and about the objects themselves. The 

study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the 

nervous system with the ability to flexibly generate complex behaviour.

The hand is the most versatile manipulative organ in the known universe. Manual behaviour 

is epitomized by virtuoso pianism or assembling a clockwork mechanism, but everyday 

activities — such as grasping an object of arbitrary shape or opening a bottle — are 

challenging for even the most sophisticated robots1. For a long time, the study of the neural 

basis of manual behaviour was hindered by the challenges of characterizing the shape of 

the hand and the forces it exerts on objects. Recent advances in pose estimation and sensor 

technology (for examples, see REFs2,3), however, have set the stage for achieving new 

insights into manual dexterity and its neural underpinnings.

In this Review, we first discuss aspects of mundane manual behaviours, such as grasping, 

and of expert ones, such as playing a musical instrument. We then describe anatomical 

features of the hand that are key to its versatility and strength. Next, we explore what is 

known about the neural mechanisms that give rise to manual dexterity, both motor and 

sensory, highlighting those that appear to be specific to the hand. Finally, we identify 
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outstanding questions about the neural basis of manual behaviour, focusing on systems 

where hand-related specializations are liable to be found.

Manual dexterity

Dexterity is defined as skilled behaviour involving the hands, although the manual 

connotation is often lost. In this Review, we define dexterity as precise, diverse and flexible 

behaviour that involves the coordination of many segments and whose repertoire can be 

expanded through learning. Quantifying the dexterity of the hand is challenging given its 

myriad functions, but analysis of even simple, well-studied manual behaviours such as 

grasping reveals great sophistication. When we reach to grasp an object, we preshape the 

hand to its shape. The precision and specificity of this preshaping is such that one can 

predict which of many objects is to be grasped from the hand’s conformation, long before 

contact with the object is established4–7. Examination of this everyday manual behaviour 

reveals structure in hand postures. For example, the aperture of the hand is adjusted 

depending on the size of the object6, which involves the coordinated flexion and extension 

of joints distributed over the five digits. Similarly, the spread (abduction) of the fingers 

is adjusted semi-independently depending on the shape and size of the object. While the 

movements of the fingers tend to be coordinated, movements of the thumb tend to be more 

independent8,9.

Principal component analysis — which expresses hand kinematics in terms of correlated 

joint movements — reveals that manual behaviour during grasping can be well represented 

by a small number of principal components, called ‘synergies’5,6,10–15, which can be in 

part attributed to biomechanical constraints imposed by the musculoskeletal system16. This 

structure of prehensile hand movements has been interpreted as implying that the hand can 

only volitionally adopt a limited range of postures, confined to combinations of synergies. 

While this strategy simplifies the problem of controlling a hand, it also reduces the degrees 

of freedom of the hand — the number of (metaphorical) knobs required to control the hand.

An implication of the synergies hypothesis is that low- variance principal components 

simply reflect noise in the hand measurements or in the hand postures themselves. It turns 

out, however, that synergies fail to account for the exquisite precision of the hand. Indeed, 

the synergies hypothesis predicts that our ability to classify objects from precontact hand 

postures will break down after removal of the synergies (the first six to eight principal 

components), but this is not the case7,17. Rather, the object to be grasped can be predicted 

well above chance even after the first 20 synergies have been removed. In other words, the 

components of hand posture reflected in the low-variance principal components are under 

volitional control. If one were to control a hand with knobs, it would take more than 20 

knobs to do so with the equivalent precision, and this is for grasping, a simple unskilled 

behaviour.

Skilled manual behaviour has not been studied as systematically as has grasping, hindered 

in part by contact with objects — prevalent during most manual behaviours and critical to 

understanding these — being difficult to measure. Nonetheless, simple metrics of skilled 

manual behaviour reveal the staggering rapidity and precision of the hand. Pianists can play 
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more than 800 notes per minute with each hand18, skilled typists can type 600 characters 

per minute19 and professional gamers can execute 800 actions per minute20. Artists can 

draw submillimetre illustrations on a grain of rice or compose images of handwritten 

micrographic text21. Experienced Braille users can read more than 200 words per minute 

in Braille script, approaching the median visual rate of 250 words per minute22. Finger-

tutters can fluidly execute remarkably complex hand postures23. These manual abilities are, 

however, acquired. Even moving individual fingers while keeping others still is difficult 

and does not come naturally8,24–28, and the finger individuation required for piano playing 

requires extensive training29–31.

The inclination to use one or the other hand is strongly asymmetric in most individuals, 

and the preferred hand is the right one in 90% of adult humans32, as is implied in the 

etymology of the word ‘dexterity’: dextra is the Latin word for ‘right hand’. By contrast, 

the distribution of handedness in other primates is symmetric33–35, suggesting that the 

prevalence of right-handedness in humans might be culturally inherited36, although innate 

differences are difficult to distinguish from acquired ones37. In adults, the differences in 

finger individuation between the dominant hand and the non-dominant hand are slight38,39 

as are the differences in the performance of simple tasks40–42. However, the performance 

gap between the dominant hand and the non-dominant hand for complex tasks such as 

writing is much wider and cannot be totally overcome, even with extensive training43–45.

Anatomical complexity of the human hand

The neural basis of dexterity cannot be understood without considering the musculoskeletal 

structure of the hand. All manual control is enabled by hand bio-mechanics, which define 

what can and cannot be done. More broadly, the neural mechanisms of control have evolved 

in tandem with the musculoskeletal features of the hand to give rise to dexterity.

Bones

The skeleton of the hand comprises 27 bones: five metacarpals of the palm, including a 

divergent thumb metacarpal, two phalanges of the thumb, three phalanges in each other digit 

and eight carpal bones that connect the hand to the forearm46. The bones of the hand and 

wrist are connected by a complex network of passive ligaments that stabilize all the elements 

and constrain their relative movements. Each bone moves in relation to neighbouring bones, 

forming numerous anatomical joints that allow at least 24 actively articulated degrees of 

freedom, including three at the wrist (with forearm-based rotation), four at each finger 

(with flexion–extension and abduction–adduction at metacarpophalangeal joints) and five 

at the thumb — three of which are at the base (flexion, abduction and rotation). Several 

other joints, including carpometacarpal joints, are also semi-independent and may contribute 

additional degrees of freedom. Development of the hand takes a long time47. Although the 

hand bones appear prenatally, ossification of the carpal bones starts several months after 

birth, with some emerging at 10 years of age, and the hand and wrist are fully developed 

only at 16–18 years of age.

The main feature of the human hand is the opposability of the thumb, which allows precise 

and versatile prehension. Although definitions of opposability differ, the main characteristic 
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is the ability for the thumb to oppose and touch each of the other fingers at the tip48,49. 

Many but not all primates are endowed with some degree of opposability, ranging from 

pseudo-opposable thumbs — common in New World monkeys and prosimians — to semi-

opposable thumbs — present in Old World monkeys and apes — to fully opposable thumbs 

— present only in humans. While pseudo-opposable thumbs can flex–extend and abduct–

adduct, semi-opposable thumbs also rotate axially during abduction, thereby bringing the 

pad of the thumb towards the pads of other fingers. The rotation is made possible by 

the specialized saddle shape of the trapezium, the carpal bone that supports the thumb 

metacarpal. Full opposability, defined by broad contact between the pads of the thumb 

and the other fingers, is made possible by a relatively long thumb50,51. Toes in most 

monkeys and apes are also opposable, and can be used for grasping, while human feet 

support bipedalism and comprise toes that are not opposable52. Non-primates also possess 

prehensile ability and even opposing fingers, but none of their digits exhibits the complexity 

of movement of the primate thumb.

Muscles and tendons

The hand is articulated by 20 muscles located in the forearm and 21 muscles located in the 

hand itself (FIG. 1; Supplementary Tables S1–S3)53. Some muscles — especially muscles 

that drive the digits — comprise several semi-independently controlled heads on the distal 

side26,54–56, increasing the number of controlled actuaors to 30 in the forearm and 22 in the 

hand, for a total of 52. Of these, 13 actuators articulate mainly the wrist, 11 the thumb and 

28 the fingers.

Attachment of muscles to finger segments is different for flexors and extensors. Finger 

flexors attach their tendons directly to finger phalanges, with the deep flexor tendon 

threading through the superficial tendon to attach on the distal phalanx, allowing 

differentiated control of the distal joints and high strength. In addition to flexion, flexor 

muscles also adduct the fingers, bringing them together for a tight grasp. By contrast, 

extensors feed into the joined extensor sheath, which covers the dorsal aspect of each 

digit57. Pulling on one side of the sheath or the other deviates the finger into abduction or 

adduction58,59. Pulling both sides allows simultaneous flexion of the metacarpophalangeal 

joint and extension of interphalangeal joints. Moreover, the distal tendons of the extensors 

are interconnected, which limits finger individuation during extension60.

The small internal hand muscles (lumbricals and interossei) are located mostly between 

metacarpals and distally attach to phalanges and to the extensor sheath. Lumbricals originate 

not from bones but from the tendons of the large deep finger flexors of the forearm. 

Although these muscles can transfer the tension caused by flexion to the extensor hood, 

their weakness and dense sensory innervation suggest that their primary role may be to act 

as high-precision sensors of hand posture61. The stronger palmar interosseus muscles also 

induce rotation of the fingers, which is critical for grasping.

The complexity of the musculature and of its attachments to the bones leads to a complex 

relationship between joint movement and muscle activation62–67. Many, if not all, hand 

muscles act across multiple joints, so torques produced around each joint must be counter-

balanced to achieve desired joint postures. For example, finger flexion needs to be balanced 
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by wrist extension torque. Antagonistic muscles are commonly activated together during 

hand movements to stiffen a joint against unwanted perturbations62,68–73. Furthermore, the 

torque-generating properties of muscles crossing a joint depend on the posture of that joint 

and that of all other joints the muscle crosses, further complicating the control problem74–80. 

Even simple hand postures or end point forces thus require the coordination of many 

muscles with articulations distributed over the entire hand.

In humans, a power grip entails a total maximum force of around 550 N, concentrated at 

the proximal metacarpophalangeal joints81,82. Digits 1, 2 and 3 can produce more force 

on average (120–137 N) than can digits 4 and 5 (57–96 N). Extrinsic finger flexors 

and extensors generally produce much higher forces (up to 20-fold) than intrinsic hand 

muscles74,83, although this difference is more pronounced for some hand postures than 

others.

Hand variations

Sex differences in human hand anatomy and manual abilities are restricted mostly to 

variation in size84–87. Index fingers in males are more commonly shorter than ring 

fingers88,89, and carpal bones differ subtly in shape and relative size, which may slightly 

affect the range of motion and dynamics of the digits90–94. Beyond sex, variability of 

the hand musculature between humans is not restricted to the volume, but commonly 

includes full separation of muscle compartments, additional heads, shifts in attachment 

points, disappearance of common muscles and reappearance of atavistic muscles95–100.

Although the human hand is often described as unique in the animal kingdom for its 

complexity and versatility (BOX 1), many of its special muscular features are also found 

in the hands of apes and monkeys53,101,102 (but see REF.103). For example, two thumb 

muscles that were thought to be unique to humans were later identified in gibbons and 

bonobos104,105. Similarly, humans share the anatomy of muscles that allow independent 

extension of index and little fingers with gorillas and chimpanzees106. Humans have fewer 

intrinsic hand muscles and, in some ways, possess a simplified primate hand. The increased 

complexity of non-human primate hands stems from the use of hands in locomotion — in 

trees or on the ground48 — a function that human hands lack. The feats of human hands — 

such as playing the piano or assembling a clockwork mechanism — are enabled by superior 

neural control but also benefit from the narrower scope of manual behaviour in humans.

Cortical control of the hand

Cortical magnification

Given the sophistication of the hand and of manual behaviours, it should come as no surprise 

that large swaths of the nervous system are devoted to controlling it107–113. The primary 

motor cortex (M1) — the region of the neocortex that sends signals to the muscles via the 

spinal cord to drive movement — is coarsely organized in a somatotopic fashion, in which 

different parts of the brain contribute to movement of different parts of the body. The hand 

occupies an outsized proportion of the motor homunculus — the map of the body in M1. 

While the hand accounts for 0.6% of the body by weight and 2% by surface area, more 
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than 20% of M1 is devoted to it as gauged by the tendency to evoke finger movements via 

electrical stimulation112,114–117, and this phenomenon is even more pronounced on the side 

contralateral to the dominant hand118–120. In primates, and in particular higher primates, 

electrical stimulation of large swaths of the cortex outside M1 also evokes hand movement, 

implying widespread neuronal circuitry to support manual control111,121.

Hand control signals in the cortex

M1 plays a critical role in dexterous manual behaviour as evidenced by the fact that lesions 

of M1 produce severe motor deficits, as do lesions of the descending pyramidal tract, the 

principal relay of motor signals from the cortex to muscles122–128 (reviewed in REF.129). 

Over time, monkeys and humans recover the ability to grasp objects, but dexterous control 

and individuated finger movements never return, as precise spatio-temporal patterns of 

muscle activation remain disturbed130 and overly synchronized131. In humans, extensive 

rehabilitation in patients with pure motor hemiparesis can lead to partial recovery of 

thumb and index finger independence, but the selectivity of muscle recruitment never fully 

recovers132,133.

The principles that underlie the coding structure in the M1 hand representation are unclear. 

Individual neurons in M1 drive movement across multiple joints distributed over the entire 

hand, often including digits and the wrist110,134,135. The tendency of individual neurons 

to drive combinations of joints cannot be explained solely by the proximity of the joints, 

their tendency to move together or their muscular articulation110,135,136. These response 

properties reflect both the aforementioned complexity of the muscular articulation of the 

hand and the fact that individual pyramidal neurons in M1 project to multiple spinal 

motor neuron nuclei137. As might be expected given the prevalence of multi-joint response 

fields, the somatotopic organization in the M1 hand representation — and across the motor 

homunculus — is coarse. The hand representation in M1 overlaps with that of the proximal 

limb, and representations of digits and the wrist are inextricably intertwined138,139.

Proximal limb-related neurons in M1 produce a strong phasic response during movement 

and a much weaker tonic response during maintained posture. By contrast, hand-related 

neurons encode the time-varying posture and do not exhibit a preference for movement135. 

Another difference lies in the dynamics of the responses at the population level. When 

monkeys perform reaching movements, population responses in M1 exhibit smooth 

dynamics; that is, the present neural state predicts the future neural state140. This population-

level behaviour is consistent with a role for M1 as a pattern generator that ultimately drives 

muscles to give rise to movement. However, M1 does not exhibit smooth dynamics during 

grasping movements when the reach component is eliminated, for example when catching 

or grasping an object that is handed to you141. Population dynamics during reach to grasp 

seem to be intermediate between those of reach and those of grasp142,143. The population-

level response, then, is very different for manual behaviour than it is for its proximal 

limb counterpart. One possible explanation for this observation is that these differences 

in neuronal activity — at the single-cell and population levels — reflect fundamentally 

different control strategies for arms versus hands. Another possibility is that they reflect 

differences in the biomechanics of the effectors: arms are much heavier than fingers, so arm 
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movements may require characteristically different muscle activations, which in turn involve 

different neuronal dynamics in M1.

M1 participates not only in controlling hand movements but also in controlling the manual 

application of forces. During reach, corticospinal input is strongest for forearm muscles, but 

as fingers close around the object, the focus shifts to intrinsic hand muscles144. Neurons in 

M1 exhibit a transient burst of activity that encodes grasp force145–151 followed by a tonic 

response that is much weaker but nonetheless carries grasp force information152.

M1 also has a role in modulating spinal reflexes and gating sensory inputs153–157. Indeed, 

while spinal reflexes are often thought to contribute to only stereotyped and unattended 

behaviours, such as locomotion, the modulation of these reflexes also plays a role in 

prehensile behaviours158–163. For example, reflexes can stabilize the hand and wrist and 

facilitate object interactions during grasp, so the suppression of these reflexes is relieved 

in anticipation of a grasp163–166. Although M1 and auxiliary structures, including the 

supplementary motor area, are implicated in this modulation, dense efferent projections 

from the ventral cingulate motor area onto spinal interneurons might also play an important 

role113,167–170. The modulation of reflexes is an integral part of motor control, and hand 

control is no exception.

Bypassing spinal circuitry

The hand representation in M1 not only is large but also has privileged access to the 

muscles. While most signals from M1 are sent to the muscles via spinal interneurons, 

a subpopulation of pyramidal neurons — the so-called corticomotoneuronal (CM) cells 

(FIG. 2), located mostly in the caudal aspect of M1 — synapse directly onto spinal 

motor neurons, thereby bypassing spinal interneurons171–176. Individual CM cells drive 

multiple downstream muscles139,177–179, are active throughout movement and posture 

phases148,180,181, recruit muscles selectively for specific functions181,182 and are involved 

in transcortical reflex loops183–185 (for a review, see REF.186). Although still only sparsely 

characterized, the behaviour of CM cells is consistent with the hypothesis that they each 

enable activation of a combination of muscles that contributes to a specific movement (see, 

however, REF.187 for an alternative hypothesis). According to this view, populations of CM 

cells allow a more direct access to a wider repertoire of movements than can be achieved 

solely through polysynaptic projections to the muscles. Such a broad repertoire of control 

signals could, in principle, allow the generation of movements that bypass the polysynaptic 

pathways or the refinement of movements generated through polysynaptic pathways154.

While CM cells synapse onto motor neurons innervating most if not all muscles and are 

active during both complex and simple movements188–192, two lines of circumstantial 

evidence suggest that these neurons are critical for dexterous manual behaviours such as 

precision grasp and individuated finger movements173,174,193–199. First, lesions that target 

the CM pathway impair dexterity, resulting in reductions in the speed of hand movements, 

the magnitude of manually applied forces and the degree of finger individuation, as 

well as permanent deficits in the ability to preshape the hand during grasp153,200. These 

deficits are exacerbated when lesions extend to other corticospinal projections201. Second, 

primates with CM cells tend to exhibit greater dexterity than those without them. While 
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fair comparison of dexterity between species is challenging because of differences in the 

musculoskeletal structure of the hand50,196,202,203, comparison of species with similar hand 

anatomy implicates the CM pathway. For example, capuchins and squirrel monkeys both 

have pseudo-opposable thumbs and very similar hand structures, but the projections from 

M1 to the ventral spinal cord are dense in capuchins and sparse in squirrel monkeys204,205 

(FIG. 2). Correspondingly, capuchins use individual fingers for grasping, while squirrel 

monkeys do not. The search for an involvement of the CM pathway in dexterity outside the 

primate order has also come up empty. Notably, some carnivores anecdotally known for their 

manipulative ability — raccoons206–208 and kinkajous209 — have been suspected of having 

CM connections, but the electrophysiological evidence does not support the existence of a 

monosynaptic pathway210 and, upon closer examination, their grasps are not as varied as are 

those of primates211.

In one study, causal evidence was provided for the role of CM cells in dexterity by 

exploitation of the fact that early postnatal mice have CM cells that are eliminated 

later in life212. Preservation of CM cells through genetic manipulation led to increased 

dexterity, as indexed by a higher success rate in grasping and manipulation tasks, although 

still much lower than in primates. One interpretation of this finding is that the cortex 

sculpts the input–output relationship of the spinal cord circuits in newborn mice via CM 

connections to produce a desired set of behaviours. After the behaviour has been established 

and consolidated via spinal interneurons, the now redundant CM pathway is eliminated, 

presumably because it requires energy to be maintained and adds unnecessary complexity 

to the neural circuits of motor control. In this view, humans and many primates retain 

the ability to learn complex new movement patterns in adulthood in part because CM 

connections are preserved.

While the relationship between CM cells and manual dexterity is debated, no organism 

capable of highly individuated finger movements has been reported to lack CM connections.

Visual guidance of hand movements

Successful interactions with the environment typically entail forming appropriate motor 

plans to interact with objects on the basis of visual information about the objects’ location 

and shape. The primate brain comprises specialized circuits — located in the posterior 

parietal cortex (PPC) — to achieve this visuomotor transformation213–220 (FIG. 3). Indeed, 

damage to the PPC in humans leads to varied deficits in manual behaviour, including 

constructional apraxia — the inability to copy an image or mimic a movement with the 

affected hand221. The PPC contains many regions that can be separated on the basis 

of architectonic, connective and functional differences221–223, two of which have been 

implicated in dexterity, namely the parietal reach region (PRR) and the anterior intraparietal 

area (AIP).

The PRR has a role in planning reaches to visually guided locations in peripersonal 

space213,216,224–229. Neuronal activity in the PRR correlates with movement direction 

during planning, and its disruption shortly before movement onset leads to reaches that 

start out in the wrong direction230,231. Neurons in the PRR encode limb movement in 

eye-centred coordinates, as evidenced by a systematic dependence of neuronal responses 
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on gaze direction. The PRR not only is involved in planning specific reaches but also 

may simultaneously encode multiple reaches and contribute to the decision about which 

movement to execute232–236. Beyond mediating visuomotor transformations, the PRR is 

implicated in converting other sensory reference frames (for example, auditory) to eye-

centred ones226,237,238.

The AIP has a crucial role in visually guided hand control; for example, in preshaping the 

hand to grasp an object220,239–247. Neurons in the AIP exhibit visual responses that are 

dependent on the shape of the object and its position in eye-centred coordinates241,248–250. 

At the population level, AIP neurons encode not only object shape but also planned grip 

type220. Reversible inactivation of the AIP leads to an inability to preshape the hand to the 

object but it does not interfere with the reach251–253 (for a review, see REF.254). The AIP 

projects to the ventral premotor area, where neurons also exhibit selective tuning to the 

object shape and grasp but encode more motor-related information255–258.

The PPC thus has a role in planning reaching and grasping movements, whereas M1 is 

involved with the execution of these movements259,260. Both the PRR and the AIP are 

involved in converting a visual representation of an object — initially in an eye-centred 

coordinate frame — into a motor representation of the object to give rise to appropriate 

arm and hand movements to grasp or manipulate it. Both cortical fields project to the 

premotor cortex, where the motor plan is further refined before it is conveyed to M1 

(REFs170,261–268). The role of the PPC in prehension is further supported by the observation 

of a direct connection to spinal hand premotor interneurons in primates269 and by reports 

that intracortical microstimulation of the PPC evokes hand movements111,270,271 (but see 

REF.272). Although they are important for primates, visuomotor transformations are less 

important for mice and rats, and these rodent species have no well-established homologues 

to the PPC of primates273.

Sensory mechanisms of dexterity

Manual dexterity depends not only on an elaborate end effector and sophisticated neural 

mechanisms of control but also on two exquisite sensory systems. Proprioception tracks the 

movements of the hand and the muscular effort exerted by hand muscles. Touch conveys 

information about the objects with which we interact and about our interactions with 

them. Individuals who have lost their senses of touch and proprioception — as a result 

of peripheral neuropathies, genetic mutations, vitamin and mineral deficiencies, immune 

diseases, cancer or posterior spinal cord lesions — develop severe movement disorders, 

which are particularly pronounced for hand use274–285. Indeed, visual guidance of behaviour 

— and in particular manual behaviour — is a poor substitute for its somatosensory 

counterparts. The somatosensory and motor systems are tightly coupled, and manual 

dexterity is predicated upon their interplay286,287.

Tactile and proprioceptive sensitivity

Our sense of touch is exquisitely sensitive, particularly to dynamic stimuli. We can detect 

skin vibrations on the order of a tenth of a micrometre (at 250 Hz, where sensitivity 

peaks)288, a 50th of the average diameter of a human hair. When we run our hand across 
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a surface, we can discern a textural element on a scale of tens of nanometres289. However, 

when the skin is indented by an object or surface, without tangential movement, tactile 

sensitivity to spatial features drops dramatically. Two pinpoint touches need to be 1 mm 

apart to be discerned as separate290, a groove needs to be 1-mm wide before we are able 

to make out its orientation291 and textures with elements in the submillimetre range feel 

smooth292. Even our ability to detect a touch is severely compromised if the indentation 

happens very slowly293. Angular acuity — the change in the orientation that can be detected 

— is around 10–20° for edges indented into or scanned across the skin, almost four times 

that for visually presented edges after differences in innervation density have been accounted 

for294,295. However, the tactile angular acuity is equivalent to its visual counterpart — on the 

order of 5° — when tested in the context of object manipulation296.

Neural basis of somatosensation

The exceptional sensitivity of the palmar surface of the hand is conferred by the 

approximately 17,000 nerve fibres that carry tactile signals to the CNS297. Each fibre 

innervates one of four types of mechanoreceptors that tile the glabrous skin (hairless skin) 

of the hand, each of which responds to different aspects of a skin deformation298–300. Two 

types of nerve fibres — rapidly adapting and Pacinian corpuscle-associated fibres, which 

innervate Meissner and Pacinian corpuscles, respectively — are sensitive to skin vibrations 

and respond robustly when the fingers move across a textured surface. A third type of nerve 

fibre, slowly adapting type 1 fibre, which innervates Merkel receptors, produces a graded 

response to pressure exerted on the skin and is especially sensitive to local discontinuities 

in surfaces. At a first approximation, slowly adapting type 1 fibres respond to the depth of 

skin indentation, rapidly adapting fibres respond to the rate of skin indentation and Pacinian 

corpuscle-associated fibres respond to the acceleration of the skin301. The fourth type of 

nerve fibre, slowly adapting type 2 fibre, is thought to innervate Ruffini-like endings, which 

are located deep under the skin and respond to skin stretch. The responses of nerve fibres are 

highly precise and repeatable and are well captured by simple models that incorporate skin 

biomechanics and basic neuronal dynamics301–303.

Proprioceptive signals originate primarily from mechanoreceptors embedded in the muscles 

and tendons, although cutaneous mechanoreceptors may also contribute300. Muscle spindles, 

which run parallel to muscle fibres, are the primary source of information about the 

conformation and movements of the body, whereas Golgi tendon organs, which run in 

series with the muscles (given their location in the tendons), are primarily responsible for 

conveying information about forces exerted by the muscles. Signals from both types of nerve 

fibre are integrated to achieve veridical representations of limb conformation and applied 

forces304. Nerve fibres that innervate the joints tend to respond only at the joint extrema, 

when the joint risks damage305–308, and are therefore poorly suited to convey postural 

information. However, a small proportion of hand joint afferents signal joint angle across 

the range of motion309,310, although their role in proprioception has yet to be conclusively 

established.

Around 3,900 spindles populate hand-associated muscles (56 on average in intrinsic muscles 

and 184 in forearm-based muscles, estimated from REFs311,312) and approximately half 
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as many Golgi tendon organs populate hand-associated tendons313,314. The idea that hand 

muscles are more densely innervated by spindles than are other muscles is appealing but not 

supported by the evidence315. Similarly, the density of motor units innervating hand muscles 

is comparable to its proximal limb counterpart316–318. However, because hand muscles tend 

to be smaller, and so their motor units less numerous, fluctuations in manually applied forces 

are relatively higher than for their proximal limb counterparts319–322.

Signals from tactile and proprioceptive fibres that innervate the skin and muscles of the hand 

project to the cuneate nucleus in the brainstem, in some cases via spinal interneurons323. 

Cuneate neurons then project to the ventroposterolateral nucleus of the thalamus, which 

in turn projects to the primary somatosensory cortex, located on the postcentral gyrus, 

just posterior to M1. The somatosensory cortex is organized somatotopically, with adjacent 

neurons responding to stimulation of adjacent and well-defined body regions (FIG. 4). The 

somatosensory homunculus comprises four body maps, one each in Brodmann areas 3a, 3b, 

1 and 2, which exhibit proprioceptive responses (area 3a), cutaneous responses (areas 3b 

and 1) or both (area 2). As is the case in M1, the sensory representation of the hand is 

magnified in the somatosensory cortex, accounting for more than 20% of its total surface 

area223,324–326. The hand representation comprises clearly delineated representations of each 

digit, separated by cell-poor septa327, with the thumb located laterally (abutting the face 

representation) and the little finger medially (near the forearm representation). The thumb 

and index finger representations in area 3b are slightly enlarged relative to those of the other 

digits, particularly in adults327.

Tactile coding of object interactions

Touch conveys precise information about contacts with objects to guide manipulation328. 

First, during reach and grasp, object contact gives rise to a strong phasic transient response 

throughout the somatosensory neuraxis329, inherited from rapidly adapting nerve fibres 

and Pacinian corpuscle-associated nerve fibres, which triggers the end of the reach and 

the beginning of the grasp330. Abolition of touch, via digital anaesthesia for example, 

leads to slower movements, longer movement paths and a larger maximum finger aperture 

during reach to grasp331. Loss of touch also leads to decreased accuracy in reach-and-point 

tasks332. Second, when we transport an object, the forces we apply depend on the shape, 

frictional properties and mass of the object to prevent slip, typically exerting between 10% 

and 40% more force than is necessary, the ‘safety margin’333–336. When touch is abolished, 

our ability to adequately grade applied force is eliminated, leading to our dropping objects 

or exerting unnecessarily high forces331,337. Third, when a grasped object is subjected to 

an unexpected perturbation, tactile signals — particularly from rapidly adapting fibres — 

trigger an automatic grip adjustment before the perturbation reaches conscious access299,338. 

Fourth, touch conveys information about a change in the dynamics of a grasped object; for 

example, when it makes contact with another object339. When a grasped rod makes contact 

with an object, we can even sense the location of object contact along the rod on the basis of 

tactile signals340.

The importance of touch in guiding manual behaviour is attested by the fact that caudal 

M1 — which predominantly drives hand movements — receives more tactile input and 
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rostral M1 — which predominantly drives proximal limb movements — receives more 

proprioceptive input341,342. However, even for basic object interactions, proprioceptive 

information and tactile information are tightly coupled, as evidenced by the fact that 

reflexive grip adjustments triggered by cutaneous signals about object slip depend on the 

posture of the arm (reviewed in REF.343).

Tactile coding of object features

Object manipulation relies not only on tactile signals about contact events and applied forces 

but also on somatosensory signals about the objects themselves. When we grasp an object, 

we sense its texture and local geometry (edges, corners and surface curvature) by touch 

alone. If the object moves across our skin, the sense of touch conveys information about 

its movement direction and speed. These object-related signals support the manipulation 

of objects. For example, on the basis of the sensed edges of a mobile phone, we can 

operate it via the touchscreen without looking. Similarly, the sensed motion of a manipulated 

object can trigger an update of its position, which is critical for further manipulation. 

The transmission of this object information via the somatosensory system enables object 

interactions when vision is unavailable. Indeed, the absence of vision often has little impact 

on the ability to manipulate objects, as epitomized by the act of buttoning a shirt344. 

Even in the presence of vision, however, object manipulation benefits from somatosensory 

representations, which convey information about objects beyond that available visually. As 

alluded to earlier, tactile texture signals guide the application of grip force appropriate to the 

frictional properties of the texture333–336. Sensory signals related to other object features, 

such as edges and corners, also play a critical role in guiding hand–object interactions, but 

the behavioural role of these signals has not been investigated in a laboratory setting.

Sensory information about objects grasped in the hand is multiplexed in patterns of 

activation in tactile nerve fibres, where all classes of nerve fibres convey information 

about most object features345. Some features are encoded in the strength of the response, 

whereas others are encoded in its spatial and/or temporal patterns. These different neural 

codes allow a relatively small population of nerve fibres (~17,000) to simultaneously 

convey information about a variety of features — shape, motion and texture. Downstream 

neurons respond selectively to spatio-temporal features in the afferent input, and successive 

stages of processing — from the cuneate nucleus through to the cortex — culminate in 

explicit representations of behaviourally relevant features of contacted objects, including 

their shape, material, identity and motion across the skin. Accordingly, damage to cortical 

fields associated with somatosensation can lead to tactile agnosia, an inability to identify an 

object or recognize its shape or size346–349.

Shape and coarse texture.—At each point of contact with an object, we sense its 

local geometric features — the presence of an edge, the curvature of a surface or millimetre-

scale textural elements. These features are encoded in the spatial pattern of activation of 

tactile nerve fibres: the spatial configuration of the object’s local features is reflected in 

the spatial pattern of activation it evokes in a subpopulation of nerve fibres350–352 (FIG. 

5a). Information about object features is extracted from this neural image by elementary 

feature detectors in the somatosensory cortex353. For example, a subpopulation of neurons in 
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the somatosensory cortex exhibits a preference for edges at a specific orientation354. Higher-

order tactile representations exhibit increasingly complex and invariant feature selectivity — 

for curved edges355–357 or consistent orientation tuning over large swaths of skin358, which 

is well suited to support object manipulation and recognition.

Motion.—When an object moves across the skin, we can sense both the direction in which 

it is moving and the speed at which it is moving359–361. In the somatosensory cortex, 

a subpopulation of neurons is tuned for the direction in which objects move across the 

skin362–365. While we can also sense the speed at which objects move across our skin, tactile 

speed perception is unreliable and strongly dependent on other properties of the moving 

object361,442.

Texture.—As mentioned already, we can sense textures on submicron-level spatial scales, 

far beyond the spatial resolution of the skin, which is on the order of a millimetre given 

its innervation density289. To discern finely textured surfaces requires movement between 

skin and the surface292,366, which leads to the elicitation of small, high-frequency, texture-

specific vibrations in the skin367–370. In turn, these vibrations are transduced by Pacinian 

corpuscle-associated fibres, which are exquisitely sensitive to such skin vibrations and 

carry texture information in exquisitely precise temporal spiking patterns371 (FIG. 5b). This 

temporal code is deciphered by downstream neurons that exhibit an idiosyncratic preference 

for a specific temporal feature in the afferent input372,373. The combination of the spatial and 

temporal coding mechanisms endows us with a sensitivity to texture over a wide range of 

spatial scales, ranging from tens of nanometres to tens of millimetres. As mentioned earlier, 

texture signals inform the grip forces deployed to grasp an object.

Proprioceptive coding

Hand use relies not only on a rich sense of touch — which conveys information about 

contact events and about object features at each point of contact — but also on a 

proprioceptive sense — which conveys information about the state of the hand, including 

its conformation, its movement and the forces it exerts on objects. Individuals deprived of 

proprioception rely heavily on vision to keep track of the current state of their hand and lose 

the ability to use their hands in the absence of vision374.

Brodmann areas 3a and 2 of the somatosensory cortex contain neurons that respond 

to hand postures. In both areas, individual neurons track the time-varying angle of 

multiple joints — on average eight – distributed over the entire hand135. This postural 

representation of the hand stands in contrast with movement representations of the 

proximal limb in the somatosensory cortex, characterized by phasic responses during 

movement and weaker responses during maintained posture375,376. One possibility is that 

the postural representation of the hand reflects greater innervation of hand-related muscles 

by secondary spindle afferents, which preferentially encode muscle length, while movement 

representations of the arm reflect a preferential innervation of primary spindle afferents, 

which respond strongly to changes in muscle length377,378. Consistent with this hypothesis, 

sensitivity to changes in joint angle is greater than sensitivity to changes in joint angular 

velocity for the hand, but the reverse is true for the arm379. Another possibility is that the 
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differences between postural representations of the hand and movement representation of the 

arm reflect differences in the biomechanics — the hand being much lighter than the arm — 

as mentioned in the context of M1 coding. Regardless, the proprioceptive representation 

of the hand is well suited to encode hand conformation, whereas the proprioceptive 

representation of the arm is better suited to encode speed380.

Open questions

Although some of the specialized neural circuits for control and sensing that mediate 

dexterity have been identified, several major aspects of manual behaviour are poorly 

understood. First, we are endowed with the ability to precisely regulate the force we exert 

on objects with our hands, an ability that relies on dozens of muscles in the hand and 

forearm. The precision of force regulation has been documented only for simple behaviours 

— grasping or pushing27,381 — but many manual behaviours require regulating forces 

across fingers in a more individuated fashion. Virtually nothing is known about how manual 

forces are encoded in the responses of neurons in the motor cortex or the somatosensory 

cortex152,376,382,383.

Second, when we grasp an object, we experience a vivid sense of its three-dimensional 

structure based solely on signals stemming from the hand, an ability, termed ‘stereognosis’, 

that involves the integration of tactile and proprioceptive signals: at each point of contact 

with the object, cutaneous signals convey information about the object’s local geometry 

(for example, the presence and orientation of an edge or the curvature of a surface). These 

cutaneous signals about local geometric features are then integrated with proprioceptive 

signals about the locations of the contact points relative to one another in space. Cutaneous 

signals from the glabrous skin, a uniquely deformable sensory sheet, must be interpreted 

in the context of its conformation, conveyed by proprioceptive signals. Very little is known 

about how tactile signals are integrated with proprioceptive ones, except that this integration 

begins to take place in Brodmann area 2 (REF.384), or about how this integrated neural 

representation gives rise to stereognosis. The ability to sense the three-dimensional structure 

of an object is probably critical to our ability to manipulate objects dexterously. Indeed, 

our ability to deftly manipulate objects without the guidance of vision implies an object 

representation that can be updated via somatosensory signals alone.

Third, large swaths of the sensorimotor apparatus are only beginning to receive experimental 

attention in the context of dexterous manual behaviour, including the cerebellum385–389, 

the reticulospinal pathway390–393 and the spinal cord186,394–396, even though damage to 

any of these structures and pathways leads to severe motor deficits that permanently affect 

manual dexterity. These structures and pathways are liable to have developed hand-related 

specializations that parallel the various specializations described above.

Fourth, the mechanisms of motor learning have been extensively studied in the context 

of simple behaviours397–405, but learning a highly dexterous behaviour — playing a 

musical instrument, writing or drawing — may entail additional and heretofore unknown 

mechanisms of learning.

Sobinov and Bensmaia Page 14

Nat Rev Neurosci. Author manuscript; available in PMC 2022 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

Manual dexterity reflects the confluence of many physiological factors, which we are 

only beginning to uncover. The many bones of the hand confer on it a wide space of 

achievable postures, and the numerous muscles that articulate the joints allow constrained 

individuation and remarkable strength. In the peripheral nervous system and CNS, 

sensorimotor representations of the hand are outsized to support the hand’s versatility 

and precision. On the motor side, a monosynaptic pathway between the motor cortex and 

motor neurons provides the CNS with a privileged access to the muscles. On the sensory 

side, a multitude of nerve fibres innervate the skin and muscles of the hand to convey 

high-resolution feedback not only about manual interactions with objects but also about the 

objects themselves. These sensory signals are critical to hand use and cannot be replaced 

with other senses. The relative contributions of the different sensorimotor pathways to 

dexterity remain to be disentangled, and the integration of somatosensory signals remains 

poorly understood. However, the evidence suggests that the versatility and precision of 

the hand is mediated by distinct biomechanical and neural mechanisms supplementing the 

systems controlling non-dexterous behaviour.

With recent technological developments in hand tracking and sensor technology, we are 

poised to address these and other gaps in our understanding of hand control. Manual 

behaviour epitomizes the ability of the nervous system to produce complex outputs. 

Glimpses into the neural mechanisms of dexterity will yield insights into the unique ability 

of nervous systems to give rise to flexible, intelligent behaviour and guide the development 

of ever more dexterous bionic hands (BOX 2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Degrees of freedom

In the context of limbs, the axes of rotation of one segment around another segment. A 

single joint can have multiple degrees of freedom, each corresponding to a different axis 

of rotation.

Metacarpals

Bones that underlie the primate palm, one for each digit.

Metacarpophalangeal joints

Joints that connect metacarpal bones of the palm with the first phalanx.

Prehension

The act of seizing or grasping.

Interphalangeal joints

Joints that connect two phalanges of a digit.

Torques

In the context of limbs, the rotational forces around a joint.

Contralateral

Located on the opposite side of the body.

Hemiparesis

Weakness of voluntary movement in one side of the body.

Pyramidal neurons

Large excitatory neurons in the cortex.

Motor neuron

A neuron that directly synapses onto muscles.

Spinal reflexes

Semi-automatic neural circuits connecting peripheral sensors to motor neurons via one 

synapse or several synapses in the spinal cord.

Mechanoreceptors

Sensory receptors that convert mechanical deformations into electrochemical neural 

signals.

Glabrous skin

Hairless skin, such as that on the palmar side of the hand.

Brodmann areas

Areas of the cerebral cortex defined by their cell composition, structure and organization.
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Somatosensation

The sense of one’s own body, including the sense of touch, the sense of the posture and 

movements of the body (proprioception), the sense of temperature (thermosensation) and 

the perception of pain (nociception).

Tetraplegia

Paralysis of all four limbs.
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BOX 1 |

Rodent hands

Rodents are a popular model to study motor control406–410. Although the hand and arm 

musculature of rodents is grossly similar to that of primates, it differs in a number 

of ways98. First, superficial and deep finger flexors are not as well separated. Second, 

intrinsic hand muscles have vastly different anatomy. Third, rats have fewer muscles 

to articulate their (diminutive) thumbs. The rodent wrist also has fewer degrees of 

articulation because of fused bones46. By contrast, rats have as many little finger muscles 

as primates, reflecting the importance of this digit for grasping small objects407.

Rodents adjust hand aperture on the basis of the size of an object and can perform one-

handed grasps, but object manipulations typically involve both hands and the mouth and 

are often performed without visual guidance406,410,411. Some level of finger individuation 

(mostly of the little finger) is observed when the hand approaches a food pellet408 

but much less so than is measured in primates24,135. Furthermore, the success rate 

of prehension is usually much lower for rodents (~40–50%) than primates, even after 

extensive training.
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BOX 2 |

Bionic hands

one of the great achievements of the twenty-first century is the development of devices 

that allow humans not only to volitionally control extracorporeal devices such as robotic 

limbs by thought alone but also to actually feel through them. These feats are made 

possible by chronic electrical interfaces with the nervous system. For individuals with 

amputations, intended movements are inferred from patterns of activation of residual 

muscles and sensory feedback is delivered by electrically stimulating the residual 

nerves that innervated the amputated limb before the injury412–418. For individuals with 

tetraplegia, movement intent is inferred from patterns of activation across populations of 

cortical neurons, typically in the primary motor cortex but sometimes in the posterior 

parietal cortex, and sensory feedback is delivered by electrically stimulating neurons in 

the somatosensory cortex419–427.

Given the staggering complexity of the human hand, it should come as no surprise 

that robotic hands are far simpler in their actuation and sensitization than their 

biological counterparts. The most sophisticated bionic hands feature around 20 degrees 

of freedom428,429 and a handful of sensors on the fingertips, which convey only coarse 

information about contact with objects. Although better sensorization is just around 

the corner430–432, the main bottleneck is not the impoverished sensory feedback but 

the inadequacy of the control signals. Indeed, myoelectrically controlled bionic hands 

suffer from the fact that many of the muscles relevant to hand use (including all the 

intrinsic hand muscles) are missing in people with amputations, which severely limits 

the reliability of the resulting control418. Brain-controlled bionic hands are limited by 

an insufficient understanding of the neural mechanisms underlying manual control. 

Successful brain control, which has focused on proximal limb movements designed to 

place the hand in peripersonal space, has achieved limited manual control — often 

including only hand opening and closing — and relies completely on kinematic decoding 

from the motor cortex423. That is, the individual closes the hand into the object rather 

than volitionally exerting a force on it, as we naturally do. Nonetheless, state-of-the-art 

brain–machine interfaces have achieved control of an anthropomorphic robotic limb 

across ten degrees of freedom433 and conveyed intracortical microstimulation-based 

tactile feedback that conferred additional dexterity on the device434.

Next-generation brain-controlled bionic hands will allow manual control of forces over 

many degrees of freedom. For individuals with amputations, improved control may 

have to rely on a combination of myoelectric and efferent neural signals monitored in 

the residual nerves418,435. For individuals with tetraplegia, hybrid kinematic and force 

control for the hand will require a more detailed understanding of hand representations in 

the primary motor cortex. Work with myoelectrically controlled bionic hands has shown 

that biomimetic sensory feedback — designed to mimic natural signals in the nerve 

through electrical stimulation436,437 — leads to improved performance compared with 

standard sensory feedback, which simply tracks the output of force sensors on the bionic 

fingers438,439. Intracortical microstimulation-based biomimetic sensory feedback is also 
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likely to lead to improved performance over standard algorithms, but this has yet to be 

tested440,441.
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Fig. 1 |. Hand musculature.
Digits 2–5 are articulated mainly by two flexors — note how the deep one (blue) threads 

through the superficial one (green) at the proximal phalanx — and one extensor, which 

feeds into the extensor sheath. Intrinsic hand muscles also feed into the sheath, flexing the 

proximal finger joint and extending the other. Extensor indicis and extensor digiti minimi 

contribute further independence to index finger and little finger extension. Flexor pollicis 

longus and extensor pollicis brevis are two thumb muscles that are found only in humans 

and two other primate species. Palmaris longus lies outside the carpal tunnel and is absent 

in many people. Each muscle path is complex, especially around the wrist and thumb, 

wrapping around other moving muscles and bones, so estimating the action of these muscles 

is difficult. Some hand muscles and other tissues are omitted for clarity. In addition, the 

extensor sheath is omitted on the dorsal view of digit 4 and the connective tissue is omitted 

on the palmar view of digit 2 to reveal the underlying tendon paths. Image courtesy of 

Kenzie Green.
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Fig. 2 |. Direct and indirect pathways from the cortex to the muscles.
Traced axons (dots) from the primary motor cortex at the C8 level of the spinal cord. a | 

Such tracing has revealed that, in squirrel monkeys, neurons from the primary motor cortex 

(M1) project via the pyramidal tracts (blue region) to spinal interneurons (located in the 

yellow region), which in turn project to motor neurons (located in the red region). b | In 

capuchins, M1 sends direct projections to motor neurons in addition to indirect projections 

through spinal interneurons. Presumably owing in part to this direct pathway, capuchins are 

more dexterous than squirrel monkeys. CM, corticomotoneuronal. Adapted with permission 

from REF.204, Copyright 1993 Society for Neuroscience.
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Fig. 3 |. Main cortical regions and pathways involved in visuomotor control of the hand.
Visual information from the primary visual cortex (V1) is transformed in the parietal reach 

region (PRR) to guide reaching movements via the dorsal premotor area (PMd). Similarly, 

the anterior interparietal area (AIP) processes visual information about object shape to guide 

grasping movements via the ventral premotor area (PMv). The PMv and the PMd both 

project to the primary motor cortex (M1).
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Fig. 4 |. Body maps in the somatosensory cortex of a monkey.
Touch applied to a location on the body activates a spatially restricted population of neurons 

in the somatosensory cortex. Nearby neurons are activated by nearby patches of skin, 

leading to highly structured maps of the body, termed the ‘somatosensory homunculus’. In 

primates, the volume of the cortex devoted to the hand is very large. Within this volume, the 

neural representations of individual digits are spatially distinct. CS, central sulcus; D, digit; 

PCS, postcentral sulcus. Adapted with permission from REF.326, Wiley.
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Fig. 5 |. Neural coding of touch.
a | Reconstructed response of a population of slowly adapting type 1 (SA1) fibres and 

rapidly adapting (RA) fibres when embossed letters are scanned across the fingertip. The 

spatial pattern of activation in SA1 fibres and to a lesser extent in RA fibres carries a 

faithful representation of the stimulus. b | Responses of a Pacinian corpuscle-associated 

fibre (middle) to 40 repeated presentations of two textures (left) scanned across the skin. 

As shown in the spectrogram of the response (right), Pacinian corpuscle-associated fibres 

produce highly repeatable spiking patterns that differ across textures. This temporal code 

conveys information about fine texture. Part a adapted with permission from REF.350, 

PNAS. Part b adapted with permission from REF.371, PNAS.
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