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Abstract
Background: Solute carrier family 2 member 3 (SLC2A3), is a member of a superfamily 
of transport protein genes. SLC2A3 played an important role in embryonic develop-
ment. Previous research reported SLC2A3 duplication was reportedly associated with 
congenital syndromic heart defects. However, it is not clear whether the gene is as-
sociated with non-syndromic congenital heart disease. Our study aimed to elucidate 
the relationship between its variation and congenital heart disease.
Methods: Genomic DNA extracted from the peripheral blood leukocytes of two fami-
lies with CHD were sequenced with whole-exome sequencing to identify variations, 
used Sanger sequencing to investigate SLC2A3 variants in 494 Chinese patients with 
CHD and 576 healthy unrelated individuals.
Results: In members from the two families, three with CHD had the SLC2A3 
(rs3931701) C  >  T variant. Of the 494 patients with CHD, 394  had gene variants 
(86 had the TT type and 308 had the CT type). Of the 576 healthy controls, 272 par-
ticipants had gene variants (36 had the TT type and 236 had the CT type). The TT type 
[p  <  0.0001, odds ratio (OR) =7.262, 95% confidence interval (CI) =4.631–11.388] 
and CT type (p < 0.0001, OR =3.967, 95% CI =2.991–5.263) of SLC2A3 (rs3931701) 
significantly increased the risk of sporadic ASD in a Chinese Yunnan population.
Conclusions: Single nucleotide variations of SLC2A3, particularly, the SLC2A3 
(rs3931701) C > T variant increased the risk of CHD among the studied population.
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1  |  INTRODUC TION

Congenital heart disease (CHD) is the most prevalent type of human 
birth defect. It occurs in approximately 16% and 14.7% of neonates 
in east China1 and west of Iran,2 respectively. CHD is a result of a 
complex interaction between genetic  and environmental factors. 
This is the so-called polygenic model.3

Numerous genetic mutations are reportedly associated with 
CHD. For example, GATA4, NKX2.5, and TBX5 are associated with 
atrial septal defect (ASD), ventral septal defect (VSD), and tetralogy 
of Fallot. GATA4  mutations cause human congenital heart defects 
and demonstrate an interaction with TBX5.4,5 Other than these tran-
scription factors, numerous genes are implicated in various roles in 
the development of CHD. Among these is a loss-of-function muta-
tion in HYDIN, which inhibits GATA4 expression, thereby increasing 
the risk for ASD.6 ASXL3 is important in cardiac development and 
can affect the expression of mRNAs associated with cell apoptosis 
and cell proliferation.7 Research on environmental factors has fo-
cused on folate deficiency, suggesting that normal folic acid levels 
reduce the risk for CHD.8,9 Other environmental factors associated 
with CHD include pregestational diabetes, hypothyroidism, infec-
tion/influenza during early pregnancy, alcohol consumption, ciga-
rette smoking, and maternal occupational exposure to mineral and 
organic dust as well as metal dust and fumes.10–15

With the development of the whole-exome/genome sequencing, 
more genes associated with CHD have been identified. This has in-
creased our knowledge of the genetic causes of CHD. Based on the 
results of targeted deletion studies in mice, it has been suggested 
that there are more than 500 genes involved in CHD.16 Numerous 
epidemiological studies based on twin studies and familial cluster-
ing have suggested that CHD is heritable.17–19 Screening of sus-
pected pathologic genes from the genealogy of CHD can improve 
the screening for susceptibility genes in CHD. SLC2A3 encodes 
glucose transporter 3 (GLUT3) and is expressed in the brain, pha-
ryngeal arches, and the left ventricular outflow tract during develop-
ment.20–22 A recent study showed that variants of the SLC2A3 gene 
were associated with the risk of CHD.23 GLUT3 facilitates the dif-
fusion of glucose across the plasm so as to mediate glucose uptake 
for organogenesis.20 Therefore, in the present study, we conducted 
whole-exon sequencing (WES) in two families with CHD. We further 
verified the gene mutations in the population with sporadic CHD 
and investigated whether Solute carrier family 2 member 3 (SLC2A3) 
was a susceptibility factor for CHD.

2  |  SUBJEC TS AND METHODS

2.1  |  Participants

The study protocol was approved by the local medical ethics com-
mittee of the First People's Hospital of the Yunnan Province, China. 
Written informed consent was obtained from all participants. The 
patients’ clinical information and medical histories were collected at 

the hospital. A total of 14 members from two families with a his-
tory of CHD were enrolled in our study (Table  1). To further ver-
ify the involvement of SLC2A3 in patients with sporadic CHD, 494 
patients with CHD (233  males and 261 females) and 576  healthy 
unrelated individuals (284 males and 292 females) were recruited. 
There was no significant difference in age and sex between patients 
and healthy controls (Table 2). All participants underwent detailed 
physical examination, including auscultation of precordial murmurs 
and inspection for the presence of cyanosis of the lips and tongue 
and other physical abnormalities. B-ultrasound examination was also 
performed to obtain the diagnosis of CHD.

2.2  |  DNA extraction

Genomic DNA was isolated from the peripheral blood of the partici-
pants using the ReliaPrep Blood gDNA Miniprep System, No. A5082 
(Promega). DNA concentration was measured using the Nanodrop 
2000 (Thermo Fisher Scientific).

2.3  |  WES study

A 1% agarose gel was used to analyze the degree of degradation of 
DNA and the contamination of RNAs and proteins. DNA concentra-
tion was measured using the Qubit® DNA Assay Kit in Qubit® 3.0 
Fluorometer (Invitrogen). DNA samples with a content of more than 
1.5  g were used to build the database. DNA samples with a con-
centration of at least 20 ng/μl and a total of more than 0.4 g were 
used for library construction. Clustering of the index-coded sam-
ples was performed on a cBot Cluster Generation System using the 
Illumina PE Cluster Kit (Illumina), according to the manufacturer's in-
structions. After cluster generation, DNA libraries were sequenced 
on an Illumina platform, and 150-base pair paired-end reads were 
generated.

2.4  |  Mutation selection process and method

Qualified sequencing files were compared with the reference ge-
nome to obtain the mutation sites of each individual through bioin-
formatics processing. There were several to dozens of mutations in 
each of the two families that showed co-segregation with the dis-
ease. To identify potential harmful mutations in each individual, the 
SNP/InDel information detected by basic analysis was screened for 
mutation sites, and the specific screening process was as follows:

(1) The 1000  genome database was filtered, and the mutation 
loci with frequency lower than 0.005 and frequency lower than 0.01 
in the NHLBI (national lung, heart and blood database) in 1000G 
were reserved. The aim is to remove the diversity of loci between 
individuals and get the rare mutations (rare) that can actually cause 
disease. (2) Variation of exonic or splicing sites (upper and lower 
10 bp). (3) Remove synonymous mutations (mutations that do not 
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lead to changes in amino acid coding), and obtain mutations that 
affect gene expression products. (4) Mutation sites were screened 
according to the rating prediction of SIFT, Polyphen, MutationTaster 
and CADD. It was required that at least half of the four software 
with scores supported that the site might be harmful before it was 
reserved. In order to better predict the harmfulness of variation, the 
classification system of the American College of Medical Genetics 
and Genomics (ACMG) was used. The variations are classified into 
pathogenic, likely pathogenic, uncertain significance, likely benign 
and benign. And finally, we identified 1,471 Deleterious. From these 
suspected deleterious mutations, we searched for mutations that fit 
certain genetic patterns and those that were co-isolated with CHD 
states. Among the co-segregation of potentially deleterious muta-
tions, we did not identified the known pathogenic genes of CHD. If 
the mutations were not located in a known CHD pathogenic gene, 
we wanted by looking for common variants in different families to 
better identify susceptibility genes  in this study.  So the following 
considerations were taken into account: (1) Whether the gene was 
mutated in another family, (2) whether the gene was expressed in the 
heart, (3) whether the gene was abnormally expressed in patients, 
and (4) whether the gene was verified in an independent popula-
tion. Through these steps, we found that SLC2A3 (rs3931701) C > T 
coexist in the two CHD families we studied and the gene SLC2A3 
was expressed in the heart. The function of variations was uncertain 
significance classified by ACMG (https://github.com/maryi​cecre​am/
SLC2A3.git).

2.5  |  Primers and Sanger sequencing

According to the detection information, the reference sequence 
was searched and Primer Premier 5  software was used to design 
the primers. The primer information of SLC2A3 was as follows: 
F:ATGTTGGTCAGGCTGGTCTT, R:CTTCCTCTAGGGTGTGGGGC. 
The specificity and efficiency of the primers were validated using pol-
ymerase chain reaction (PCR). The amplification system and experi-
mental procedure for PCR are described in Table 3. Approximately 
3 μl of PCR products were tested with 1.0% agarose gel to observe 
the band traits. DNA fragments with ligated adapter molecules on 
both ends were selectively enriched in a PCR reaction. After the PCR 
reaction, DNA libraries were prepared with liquid phase hybridized 
biotin-labeled probes. Magnetic beads with streptomycin were used 
to capture the exons of genes. Captured libraries were enriched in a 

PCR reaction to add index tags to prepare for sequencing. Products 
were purified using AMPure XP system (Beckman Coulter). Purified 
PCR products were detected on a computer. When the data were 
downloaded from the system, the software phred\phrap was used 
for single nucleotide polymorphism (SNP) analysis. Finally, the analy-
sis results were derived.

2.6  |  Statistical analysis

Comparisons of genotype and allele frequencies were evaluated 
using the χ2 test. The association of SLC2A3 (rs3931701) polymor-
phisms with CHD risk was estimated by computing the odds ratios 
(ORs) and 95% confidence intervals (CIs) using the multivariate logis-
tic regression analysis. All statistical analyses were performed using 
the SPSS software, version 17.0 (SPSS Inc.).

3  |  RESULTS

3.1  |  Clinical features

We identified four patients, one female and three males, from two 
Chinese families (Figure 1). Two elderly patients in the two families 
died due to heart disease, which was heart failure. In family A, one 
patient had an ASD and another had a VSD. In family B, two patients 
had ASDs. Table 1 shows the characteristics of the family members 
and their SLC2A3  genotypes (four affected, eight unaffected, and 
two uncertain).

3.2  |  Genetic features

3.2.1  |  Family members

We speculated that the pedigrees represented autosomal dominant 
inheritance. To elucidate  the underlying genetic causes, genomic 
DNA of patients and healthy individuals from these two families was 
investigated using WES. We analyzed the sequencing data and found 
that the SLC2A3 (rs3931701) C > T gene variant was present in both 
families. The SLC2A3 gene was identified using Sanger sequencing in 
the two families. The Ⅱ-1 and Ⅲ-1 samples from family A and Ⅲ-1 sam-
ple from family B with CHD demonstrated the SLC2A3 (rs3931701) 
C > T variant and TT type mutation. The Ⅱ-1 sample of family B with 

TA B L E  2 Characteristics of patients and controls

Parameters CHD Control
p 
Value

Total subjects 494 576

Age (years) 11.57 ± 6.51 10.86 ± 5.55 0.055

Sex

Female 233 (47.17%) 284 (49.31%) 0.485

Male 261 (52.83%) 292 (50.69%)

TA B L E  3 Amplification system for polymerase chain reaction

Reagent component Volume

Super Mix 15 µl

Primer F 1 µl

Primer R 1 µl

Template DNA 1 µl

ddH2O 12 µl

https://github.com/maryicecream/SLC2A3.git
https://github.com/maryicecream/SLC2A3.git


    |  5 of 8MA et al.

CHD; Ⅱ-2  sample of family B with no evident phenotype; and Ⅱ-2, 
Ⅱ-3, and Ⅲ-2 samples of family A with no evident phenotype demon-
strated the SLC2A3 (rs3931701) C > T variant and CT type mutation 
(Figure 2, Table 1, https://github.com/maryi​cecre​am/SLC2A3.git.)

3.2.2  |  Sporadic CHD samples verification

To investigate the possible association between SLC2A3 
(rs3931701) polymorphisms and susceptibility to the development 

of CHD, we compared the distribution genotypes among healthy 
controls and patients with CHD. As shown in Table 4, among the 
494 cases of CHD, 86 cases had the TT type, 308  had the CT 
type, and 100 had the CC type. Among the 576 cases of healthy 
controls, 36 had the TT type, 236 had the CT type, and 304 had 
the CC type. Heterozygous (CT) and homozygous (TT) mutants 
for the SLC2A3 polymorphism were more frequent in patients 
with CHD than in healthy controls (CT: p < 0.0001, OR =3.967, 
95% CI =2.991–5.263; TT: p  <  0.0001, OR =7.262, 95% CI 
=4.631–11.388).

F I G U R E  1 Family tree of the patients 
with congenital heart disease. Black 
symbols represent patients with CHD, 
white symbols represent healthy people. 
In family A, Ⅱ-1 with ASD and Ⅲ-1 with 
VSD. Ⅰ-2 died due to heart disease. In 
family B, Ⅱ-1 and Ⅲ-1 all with ASD. Ⅰ-1 died 
due to heart disease. ASD, atrial septal 
defect; VSD, ventricular septal defect

F I G U R E  2 Gene sequencing map

https://github.com/maryicecream/SLC2A3.git
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4  |  DISCUSSION

Epidemiological data showed that environmental factors increased 
the risk for CHD; genetic causes were also associated with CHD.24 
Several studies on families with patients who have CHD high-
lighted the fact that screening high-risk patients with multiple 
affected family members resulted in the discovery of novel patho-
genic gene variants.25–30 Here, we used WES for patients with CHD 
from two families. We found that these families shared the SLC2A3 
(rs3931701) C > T mutation. We further investigated sporadic cases 
of CHD and found that the SLC2A3 (rs3931701) C > T variant in-
creased the susceptibility for CHD.

The results showed that the frequency of the SLC2A3 (rs3931701) 
C > T variant was increased in patients with CHD, which provides 
new information for the study of the pathogenic genes of CHD and a 
new basis for the prevention and diagnosis of CHD.

SLC2A3, encoding GLUT3, is located on chromosome 12p13.3 and 
has 10 exons.31 SLC2A3 is not only expressed in the brain and pha-
ryngeal arches but also in the left ventricular outflow tract during de-
velopment. Its knockdown in mouse and zebrafish orthologs caused 
early embryonic death.20–22 More recently, the GLUT3 expression in 
human placental tissue was reportedly present throughout gestation, 
with a predominance in the placenta during the first trimester.32 In 
rodents, changes in GLUT3 expression occurred concurrently with 
organ maturation of the central nervous system33 and heart.34

In the human heart, GLUT3 expression increased from the tenth 
to fifteenth week in fetal cardiomyocytes and subsequently de-
creased until the twenty-first week of gestation.34 This suggested 
that GLUT3 plays an important role in cardiogenesis. A recent study 
found that SLC2A3 mRNA expression in fetal myocardium was 15.6-
fold higher than those in the myocardium of newborns.35 GLUT3 fa-
cilitates diffusion of glucose across the plasma membranes. Glucose, 
the primary nutrient of cells, is a critical regulator of growth in rap-
idly developing embryos.36 As one of the highest energy consuming 
organs in mammals, the heart has to be provided with a high amount 
of energy as soon as it is functional in utero; during perinatal devel-
opment, cellular energy metabolism of the cardiac tissue, including 
progenitors, switched from prenatal anaerobic glycolysis to postna-
tal fatty acid oxidation, which contributed to cardiac maturation.37 
SLC2A3 knockout mouse models were developed by several work-
ing groups.38,39 Heterozygosity resulted in early pregnancy loss in 
approximately 25% of affected mouse embryos, whereas a bi-allelic 
deletion of SLC2A3 was deleterious, leading to abortion on the 

twelfth day. It was, therefore, suggested that GLUT3-mediated glu-
cose uptake was pivotal for organogenesis.20 Recent studies showed 
that variants of the SLC2A3 gene were associated with the risk of 
various clinical diseases, such as attention-deficit/hyperactivity 
disorder,40,41 rheumatoid arthritis,42 cancer,23 and CHD.43,44 In the 
human heart, GLUT4, GLUT1, and GLUT3 are expressed.35 SLC2A3 
variants were reportedly associated with congenital syndromic 
heart defects, including Turner syndrome45 and 22q11.2 deletion 
syndrome.43 Cardiogenesis requires strict regulation of energy for 
normal cell guidance and proliferation,46 and SLC2A3, encoding the 
high-affinity glucose transporter GLUT3, plays an essential role in 
providing energetic fuel for cardiac consumption; therefore, it was 
suggested that impaired glucose metabolism may contribute to car-
diac developmental abnormalities. An alternative hypothesis for the 
markedly increased frequency of the SLC2A3 variation was the CHD 
variant ion as a functional compensation due to improved energy 
supply that may have promoted survival in fatal cardiac dysgenesis.

To the best of our knowledge, we were the first to show that the 
SLC2A3 variant was associated with an increased susceptibility for 
CHD. This variation located in the eighth intron of the SLC2A3 and 
its function is not yet clear. From our research, we speculate it has 
the potential and ability to cause CHD for the following reasons: 
First, compared with healthy people, patients with CHD had a higher 
frequency and odds for the SLC2A3 (rs3931701) C  >  T mutation; 
second, as a crucial glucose transporter, the regulatory functions of 
SLC2A3 depend on its quality and abundance. Single nucleotide vari-
ants (SNVs) might influence the gene at the RNA level, giving rise to 
changes in the abundance and distribution of SLC2A3 transcription, 
which subsequently disrupts the downstream targets of SLC2A3. The 
population in our study is limited to Yunnan, China, which may lead to 
biased results. In order to better explain the relationship between this 
gene variation and congenital heart disease, it is necessary to further 
expand the study population. And how the SLC2A3 (rs3931701) C > T 
mutation leads to CHD requires further study in future.

5  |  CONCLUSIONS

In conclusion, the novel SNV of the SLC2A3  gene may contrib-
ute to the increased risk for CHD in a Chinese Yunnan population. 
Therefore, future studies with a larger sample size are needed to de-
termine the association between SLC2A3 and CHD and to determine 
the pathogenic mechanism of the SLC2A3 (rs3931701) C > T variant.

TA B L E  4 The type of SLC2A3 (rs3931701) variants in the family with congenital heart disease (CHD) versus healthy controls

Gene type

CHD Control

OR

95% CI

p ValueNumber (%) Frequency (%) Number (%) Frequency (%) Lower limit Upper limit

CC 100 20.24 304 52.78 1 _ _ _

TT 86 17.41 36 6.25 7.262 4.631 11.388 <0.001

CT 308 62.35 236 40.97 3.967 2.991 5.263 <0.001

CT + TT 394 79.76 272 47.22 4.404 3.349 5.790 <0.001
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