
Aperiodic Electrophysiological Activity in Preterm Infants is 
Linked to Subsequent Autism Risk

Lauren C. Shuffrey1,2, Nicolò Pini1,2, Mandy Potter3, Priscilla Springer4, Maristella 
Lucchini1,2, Yael Rayport1, Ayesha Sania1,2, Morgan Firestein1,2, Lucy Brink3, Joseph R. 
Isler5, Hein Odendaal3, William P. Fifer1,2,5

1Columbia University Irving Medical Center, Department of Psychiatry, New York, NY, USA

2New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 
USA

3Stellenbosch University, Department of Obstetrics and Gynaecology, Tygerberg, Western Cape, 
ZA

4Stellenbosch University, Paediatrics and Child Health, Tygerberg, Western Cape, ZA

5Columbia University Irving Medical Center, Department of Pediatrics, New York, NY, USA

Abstract

Approximately 7% of preterm infants receive an ASD diagnosis. Yet, there is a significant 

gap in the literature in identifying prospective markers of neurodevelopmental risk in preterm 

infants. The present study examined two electroencephalography (EEG) parameters during 

infancy, absolute EEG power and aperiodic activity of the power spectral density (PSD) slope 

in association with subsequent autism risk and cognitive ability in a diverse cohort of children 

born preterm in South Africa. Participants were 71 preterm infants born between 25 and 36 

weeks gestation (34.60 ± 2.34 weeks). EEG was collected during sleep between 39 and 41 weeks 

postmenstrual age adjusted (40.00 ± 0.42 weeks). The Bayley Scales of Infant Development and 

Brief Infant Toddler Social Emotional Assessment (BITSEA) were administered at approximately 

three years of age adjusted (34 ± 2.7 months). Aperiodic activity, but not the rhythmic oscillatory 

activity, at multiple electrode sites was associated with subsequent increased autism risk on the 

BITSEA at three years of age. No associations were found between the PSD slope or absolute 

EEG power and cognitive development. Our findings highlight the need to examine potential 

markers of subsequent autism risk in high-risk populations other than infants at familial risk.
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Introduction

Autism Spectrum Disorder (ASD) is a heterogenous neurodevelopmental condition 

characterized by core difficulties in social communication and the presence of stereotypic 

behaviors or restricted interests. In the United States (US), approximately 1 in every 54 

children meets diagnostic criteria for ASD with the median age of diagnosis ranging 

from 50 – 56 months (Baio et al., 2018). In low and middle income countries (LMICs) 

such as South Africa, there are significant infrastructure barriers and racial disparities that 

affect ASD screening and diagnosis (Franz et al., 2018; Springer, van Toorn, Laughton, 

& Kidd, 2013). Given that early intervention can improve long-term outcomes across 

multiple domains including symptom severity, academics, and quality of life, identifying 

objective early life markers of emerging neurodevelopmental risk is a significant public 

health priority (Anderson, Liang, & Lord, 2014; Clark, Vinen, Barbaro, & Dissanayake, 

2018; Fuller & Kaiser, 2020; Pickles et al., 2016). Prospective studies of early life markers 

have predominately focused on infants at familial risk of ASD in high-resource samples 

(McDonald & Jeste, 2021). Preterm birth is also associated with increased risk of ASD with 

a recent meta-analysis reporting a prevalence rate of 7% across 18 studies (95% CI: 4% to 

9%) (Agrawal, Rao, Bulsara, & Patole, 2018). Globally, approximately 11% of infants are 

born preterm (< 37 weeks’ gestation) with higher rates in LMICs (Walani, 2020). Yet, there 

is a significant gap in the literature in identifying prospective neural markers of ASD risk in 

preterm infants and within LMIC samples.

Both preterm birth and low birth weight are associated with increased risk of ASD, with 

decreasing gestational age and lower birth weight accounting for the greatest increases 

in risk (Agrawal et al., 2018; Jois, 2019; Talmi, Mankuta, & Raz, 2020). Prior studies 

have implemented developmental screening measures to examine emerging ASD risk in 

preterm infants. Infants born ≤ 30 weeks gestation are more likely to screen positive on the 

Modified Checklist for Autism in Toddlers (M-CHAT) than term-infants (Gray, Edwards, 

O’Callaghan, & Gibbons, 2015). Others studies have found moderate and late preterm 

infants born 32 – 36 weeks gestation have increased risk of delayed social competence 

on Brief Infant and Toddler Social Emotional Assessment (BITSEA) at 2 years of age 

(adjusted) compared to children born term (Johnson et al., 2015). However, the authors did 

not examine the derived BITSEA autism risk score. Premature infants are additionally at 

increased risk of cognitive and motor delays with an estimated prevalence of 16.9% (95% 

CI: 10.4% to 26.3%) and 20.6% (95% CI: 13.9% to 29.4%) respectively (Pascal et al., 

2018). To our knowledge, there are no prior studies of EEG markers of neurodevelopmental 

or ASD risk in preterm infants.

Prenatal neurodevelopment is shaped by the emergence of neuronal oscillations and their 

differentiation into distinct frequencies, which can be considered indirect markers of brain 

development (Haegens & Zion Golumbic, 2018; Samaha, Iemi, Haegens, & Busch, 2020; 

Schaworonkow & Voytek, 2021; Spitzer & Haegens, 2017). Electroencephalography (EEG) 

is a non-invasive measure of cortical function reflecting electrical activity generated by 

spatially aligned excitatory and/or inhibitory post-synaptic potentials in cortical pyramidal 

cells (Clarke, Barry, McCarthy, & Selikowitz, 2001; Dustman, Shearer, & Emmerson, 1999; 

Matousek & Petersen, 1974; Somsen, vantKlooster, vanderMolen, vanLeeuwen, & Licht, 
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1997). Absolute EEG power systematically decreases with increasing EEG frequencies (e.g. 

from delta through gamma). Developmental trajectories are not linear from infancy through 

adolescence, however as children age the general consensus points to a developmental 

decrease in low frequency neural oscillations such as delta and theta and a developmental 

increase in high frequency oscillations such as beta and gamma as the brain undergoes 

synaptic pruning (Clarke et al., 2001; Dustman et al., 1999; Matousek & Petersen, 1974; 

Saby & Marshall, 2012; Somsen et al., 1997). There is also a developmental increase in 

alpha, which emerges at 3 – 4 months postnatally (Marshall, Bar-Haim, & Fox, 2002; 

Schaworonkow & Voytek, 2021). Salient low frequency oscillations (delta and theta) during 

infancy may be optimal for early sensory learning and memory whereas developmental 

changes in high frequency activity could be reflective of changes in cognitive perceptual 

abilities such as discrimination (Haegens & Zion Golumbic, 2018; Saby & Marshall, 2012).

Several neural metrics can be derived from resting state EEG but the majority of EEG 

studies to date examining group differences between autistic individuals* and age-matched 

peers have utilized absolute or relative EEG power. Absolute power is the total neural 

activity integrated over a frequency band of interest independent of neural activity in other 

bands whereas relative power is neural activity within a frequency band of interest divided 

by the activity in all other frequency bands (Wang et al., 2013). A review article determined 

that despite significant heterogeneity in sample demographics such as age of participants and 

the presence or absence of comorbid intellectual disability, autistic individuals demonstrate 

a “U shaped” electrophysiological profile of increased absolute or relative low-frequency 

EEG power (delta and theta), reduced absolute or relative alpha EEG power, and increased 

absolute or relative high-frequency EEG power (beta and gamma) (Wang et al., 2013). This 

electrophysiological profile may be linked to increased GABAergic activity underlying a 

shift in the excitatory/inhibitory (E/I) balance (Nelson & Valakh, 2015; Wang et al., 2013).

Significant evidence supports the notion that developmental differences in neural oscillations 

measured via resting state EEG during infancy may be both predictive of subsequent 

cognitive development and a suitable biomarker of subsequent ASD diagnosis (Bhat, 

McDonald, Eilbott, & Pelphrey, 2019; W. Bosl, Tierney, Tager-Flusberg, & Nelson, 2011; 

W. J. Bosl, Tager-Flusberg, & Nelson, 2018; Brito et al., 2019; Dickinson et al., 2021; 

Dickinson, Varcin, Sahin, Nelson, & Jeste, 2019; L. Gabard-Durnam, Tierney, Vogel-Farley, 

Tager-Flusberg, & Nelson, 2015; L. J. Gabard-Durnam et al., 2019; Haartsen et al., 2019; 

Levin, Varcin, O’Leary, Tager-Flusberg, & Nelson, 2017; Orekhova et al., 2014; Righi, 

Tierney, Tager-Flusberg, & Nelson, 2014; Riva et al., 2019; Wilkinson et al., 2020). Given 

that ASD heritability is approximately 50% with sibling recurrence risk ranging between 5% 

and 20% (Sandin et al., 2014), the majority of prior studies in this domain have examined 

prognostic EEG markers in infant’s at familial risk of ASD on the basis of having a 

first-degree sibling with ASD. Although several prior studies have demonstrated differences 

in measures of neural development between low-risk controls and high-risk siblings with 

or without an ASD diagnosis, some evidence suggests children at familial risk of ASD 

may represent a distinct phenotype (Dalton, Nacewicz, Alexander, & Davidson, 2007). The 

*We have opted for identity-first language in the manuscript based on recent surveys from self-advocacy groups.
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largest and most recent study of EEG power in infants at familial risk of ASD utilized 432 

unique participants (n=222 at familial risk of ASD). Results revealed familial risk status, but 

not subsequent ASD diagnosis, was associated with reduced absolute power at 3-months of 

age and a steeper increase in absolute power from 3 to 36 months (Huberty et al., 2021). 

This finding emphasizes the need to examine quantitative neural markers of autism risk in 

the context of simplex ASD and other prenatal risk factors including preterm birth.

Another EEG parameter of interest is the log-frequency log-PSD (power spectral density) 

slope. The PSD slope is an index of the entire EEG power spectrum (PSD(f) ~1/fα). 

EEG data has a negative slope which is affected by behavioral state, age, and level 

of consciousness (sleep versus wakefulness) (Gao, Peterson, & Voytek, 2017; Robertson 

et al., 2019; Voytek et al., 2015). As the absolute value of the PSD slope decreases, 

the amplitude of higher frequencies is smaller relative to lower frequencies (Colombo 

et al., 2019). Preclinical and clinical data from electrocorticography (ECoG), intracranial 

electroencephalography (iEEG) local field potential studies, and computational models 

suggests the PSD slope reflects both the neural signal-to-noise ratio and the E/I ratio in 

neural circuitry (Freeman & Zhai, 2009; Gao et al., 2017; Robertson et al., 2019; Voytek et 

al., 2015). Although to our knowledge prior studies have not examined the PSD slope during 

infancy in association with subsequent ASD risk, a recent longitudinal study examined 

the development of the EEG power spectrum over the first year of life and found a 

progressive flattening of PSD slopes between 1 – 7 months postnatally (Schaworonkow & 

Voytek, 2021). Other studies have found associations between the PSD slope and stimulant 

treatment (Ostlund, Alperin, Drew, & Karalunas, 2021; Robertson et al., 2019) and response 

inhibition (Pertermann, Bluschke, Roessner, & Beste, 2019) in attention deficit hyperactivity 

disorder (ADHD) (Robertson et al., 2019). Two studies have also examined the PSD 

slope in association with symptom severity in neurodevelopmental genetic conditions, Rett 

Syndrome (Roche et al., 2019) and Fragile-X syndrome (Wilkinson & Nelson, 2021). Both 

studies found a steeper PSD slope in Rett Syndrome (Roche et al., 2019) and Fragile-X 

syndrome respectively compared to controls (Wilkinson & Nelson, 2021).

The objective of the current analysis was to examine absolute EEG spectral power and 

the PSD slope in preterm infants in association with subsequent ASD risk and cognitive 

development at three years of age. Based on previous findings, we hypothesized increased 

oscillatory activity (EEG power) in the lower frequencies (delta and theta) and a steeper 

low-frequency PSD slope would be associated with increased autism risk scores. We also 

hypothesized increased high-frequency oscillatory activity (beta and gamma) would be 

associated with increased cognitive ability scores.

Methods

Participants.

Participants include preterm infants from a low socioeconomic status residential area in the 

Western Cape Province of South Africa with available neonatal EEG data who participated 

in a follow-up study to examine ASD risk at three years of age. This specific community has 

a preterm birth rate of 13.8% (Brink, Gebhardt, Mason, Groenewald, & Odendaal, 2019). 

After exclusions for equipment failure or inability to fall asleep during the resting state 
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EEG study (n=15), the final sample consisted of 71 preterm infants born between 25 and 36 

weeks gestation (35 females; gestational age at birth: 34.60 ± 2.34 weeks) (Table 1). EEG 

was acquired at corrected term age between 39 and 41 weeks postmenstrual age (40.00 ± 

0.42 weeks). Infants had no prenatal exposure to psychiatric medications (selective serotonin 

reuptake inhibitors, anti-depressants, classic antipsychotics, atypical antipsychotics, mood 

stabilizers, stimulants, anti-anxiety, or anticonvulsants). Maternal and newborn eligibility 

case report forms and abstracted maternal-infant medical charts were used to obtain maternal 

age at delivery, gestational age at birth, mode of delivery, the infant’s biological sex, and 

birthweight. Developmental follow-up assessments were administered between 31 and 36 

months of age adjusted for prematurity (34.0 ± 2.7 months).

Written informed consent to record infant brain activity using EEG and to abstract medical 

charts was part of the consent for the NIH Safe Passage Study. Separate informed consent to 

participate in the developmental follow-up assessments was obtained from a parent or legal 

guardian of each participant for follow-up studies. Ethical approval was obtained for both 

time points from Stellenbosch University and the New York State Psychiatric Institute.

Neonatal EEG Acquisition and Processing.

EEG data were acquired during natural sleep using a 32-lead high-impedance electrode net 

with 28 active electrodes (Figure 1) (Electrical Geodesics) and a miniature amplifier and 

recording device (ATES, Colognola ai Colli, Italy). EEG data collection and processing were 

previously described (Brito et al., 2019; Shuffrey et al., 2020). In brief, EEG was acquired at 

a sampling rate of 250 Hz for 10 minutes as part of a 33 minute protocol. All EEG data were 

processed in MATLAB. During recording, the EEG voltage from each lead referenced to the 

vertex electrode was recorded through a low-pass antialiasing filter (cut off frequency equal 

to 96 Hz) and digitized with 16 bits per sample at a rate of 250 samples per second. Prior 

to screening data for artifact for each second using the thresholds described below, raw data 

for the entire minute were filtered for line noise and any ECG artifact was subtracted from 

each channel. A 16,000 point finite-impulse response 4 Hz wide notch filter was applied at 

the line noise frequency and its first harmonic (50 and 100 Hz) with 36 to 100 dB power 

reduction within the notches. ECG artifact was removed from each channel using a recently 

developed method that mimics the procedure for ballistocardiogram removal from EEG 

recorded during MRI (Allen, Polizzi, Krakow, Fish, & Lemieux, 1998). Ballistocardiogram 

artifact is removed by using a simultaneously recorded ECG signal to precisely identify 

the times of each R wave peak, and then to signal average the EEG over small windows 

centered on those times, deriving a channel-specific template that is then subtracted from 

each channel. EEG power spectra were then computed for 60-second epochs using the 

Welch method, averaging over fast Fourier transforms (FFTs) taken each second (Bendat, 

1982). Data were demeaned and a Hanning window was applied prior to computing the FFT 

for each second. To determine the leads and times contaminated by movement-related or 

other sources of electrical artifact, we applied multiple criteria on a second by second basis 

to data from each lead. Criteria were as follows: standard deviation of voltage less than 50 

μV and greater than 0.001 μV; sample-to-sample change less than 50 μV; absolute value of 

voltage less than 300 μV; log-log spectral slope of raw data between 20 and 120 Hz less than 

−0.1 (to screen for muscle artifact). If more than 5 leads had artifact during any one second, 
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that second was excluded. Remaining data were re-referenced to the average over all leads 

at each sample. Finally, minute by minute power was the average of the squared FFT’s over 

the accepted seconds, requiring at least 30 acceptable seconds per minute for each lead as a 

minimum inclusion threshold.

Sleep State Coding.

Respiration waveforms were collected through a respiratory inductance belt and were 

digitized at 20 Hz. A previously published quantitative method to determine sleep state 

was utilized (Isler, Thai, Myers, & Fifer, 2016).

EEG Features.

Minute by minute EEG power was aligned with simultaneous sleep state codes and averaged 

over active sleep (AS) and quiet sleep (QS) minutes within each study.

EEG Power: Absolute EEG power was computed in the following frequency bins: 1 – 3 

Hz (i.e. delta), 4 – 6 Hz (i.e. theta), 7 – 9 Hz (i.e. low alpha), 10 – 12 Hz (i.e. high alpha), 

13 – 30 Hz (i.e. beta), 31 – 45 Hz (i.e. gamma) for 12 scalp regions (left frontal-polar, right 

frontal-polar, left frontal, right frontal, left parietal, right parietal, left central, right central, 

left temporal, right temporal, left occipital, and right occipital) in AS and QS (separately). 

As newborns spend less time on average in quiet sleep, QS data were only available for a 

subset of n=46 participants (64% of the total sample). Figure 1 depicts an electrode map of 

scalp regions.

PSD Slope: The rhythmic as well as the scale free components of EEG power can be 

summarized using a single index derived from the broadband power spectrum, namely the 

PSD slope. The PSD slope is a measure of the PSD background decay across all frequencies 

modelled following the power law: PSD(f) ~1/fα. The 1/f-like PSD slope was computed 

using the fitting oscillations & one over f (FOOOF) algorithm to obtain the aperiodic fit 

for low (1 – 20 Hz) and high (21 – 40 Hz) frequencies separately using the most recent 

methodology (Donoghue et al., 2020) (Figure 2). This approach allowed the computation 

of the PSD slope at each channel and for different frequency ranges, fitting the log-log least-

square line after removing peaks and background activity associated to rhythmic oscillatory 

components (such as theta, alpha, beta, and gamma). The low- and high-frequency PSD 

slopes were computed in the frequency range 1 – 20 Hz and 21 – 40 Hz (separately) based 

on the inflection point visually identified in the neural spectral parametrization implemented 

by FOOOF (Figure 2). To statistically confirm the validity of the illustrated approach, the 

differences between low- and high-frequency slopes were tested at the population level 

using a Bland–Altman plot was used to test the bias of the two estimates and assess their 

relationship. Slopes were computed for each scalp region (Figure 1) in AS and the subset of 

n=46 participants in QS (separately).

Toddler Developmental Assessments.

Brief Infant Toddler Social Emotional Assessment (BITSEA). The BITSEA is a 42-item 

parental report measure of social-emotional development, behavioral problems, and delays 

in competence (Gowan, Carter, & Carter, 2006). Domains assessed within the BITSEA 
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include: externalizing, internalizing, dysregulation, and competence (Gowan et al., 2006). 

The BITSEA demonstrated excellent test-retest reliability and good inter-rater agreement 

between parents of socioeconomically and ethnically diverse backgrounds (Gowan et al., 

2006). The BITSEA contains 10 items consistent with ASD problem behaviors (Giserman 

Kiss, Feldman, Sheldrick, & Carter, 2017). The BITSEA ASD problem scale has moderate-

to-high discriminative power, sensitivity, and specificity, to differentiate children with and 

without ASD using item level questions that directly relate to autism specific behaviors 

(Giserman Kiss, Feldman, Sheldrick, & Carter, 2017; Gowan et al., 2006; Kruizinga et al., 

2014). For this analysis, we utilized the BITSEA ASD problem scale.

Bayley Scales of Infant Development III (Bayley-III) Screening Test. The Bayley-III 

screening test was designed as a rapid assessment of cognitive, language, and motor 

functioning in infants and young children to determine if a child’s development is within 

normal limits and identify risk for developmental delay. The Bayley-III screening test 

has high test-retest reliability: Cognitive (0.85), Receptive Language (0.88), Expressive 

Language (0.88), Fine Motor (0.82), and Gross Motor (0.86) (Bayley, 2006). The Bayley-III 

has been validated and is used throughout South Africa (Ballot et al., 2017; Rademeyer & 

Jacklin, 2013). For this analysis, we utilized the Bayley-III cognitive total score.

Statistical Analyses.

All statistical analyses were conducted in R version 4.0.2. Analyses for examining the 

association between EEG parameters in newborns during active sleep and subsequent autism 

risk and cognitive development controlled for sex, gestational age at birth, postmenstrual 

age at the EEG study, and postnatal age at the follow-up assessment. BITSEA ASD risk 

total scores and Bayley-III cognitive scores were winsorized at the 5th and 95th percentiles 

using the ‘Winsorize’ function prior to running analyses. A false discovery rate correction 

(FDR) was implemented to correct for multiple comparisons within frequency bin to account 

for each scalp location using the ‘padjust’ function (12 statistical comparisons per outcome 

measure) (Benjamini & Hochberg, 1995). Analyses were repeated within the subset of 

infants with available newborn EEG data in the QS state (n=46). Secondary analyses 

examined the effect of low birth weight (<2500g) without adjustment for gestational age 

at birth.

EEG Power: Analyses consisted of individual linear regression models to examine the 

association between absolute EEG power within each frequency bin and brain region in 

predicting BITSEA ASD risk total scores and Bayley-III cognitive scores (separately). A 

total of 72 linear regression models were run with the BITSEA ASD risk score as the 

outcome measure, and 72 linear regression models were run with the Bayley-III cognitive 

total score as the outcome measure.

PSD Slope: Analyses consisted of individual linear regression models to examine the 

association between the low frequency (1 – 20 Hz) and the high frequency (21 – 40 Hz) 

PSD slope in each brain region (same as in EEG power) and the BITSEA ASD problem total 

score and the Bayley-III cognitive score (separately). A total of 24 linear regression models 

were run with the BITSEA ASD risk score as the outcome measure, and another set of 24 
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linear regression models were run with the Bayley-III cognitive total score as the outcome 

measure.

Results

EEG Power

Autism Risk.—There were modest associations between 10 – 12 Hz EEG power in the 

active sleep state and BITSEA ASD problem scores, however after the FDR correction for 

multiple comparisons, there were no significant associations between EEG power in the 

active sleep state in any frequency bin (1 – 3 Hz, 4 – 6 Hz, 7 – 9 Hz, 10 – 12 Hz, 13 – 

30 Hz, 31 – 45 Hz) within each scalp location (left frontal-polar, right frontal-polar, left 

frontal, right frontal, left parietal, right parietal, left central, right central, left temporal, 

right temporal, left occipital, and right occipital) and BITSEA ASD problem scores (p’s 

> .05). There were also no significant associations between EEG power in the quiet sleep 

state in any frequency bin (1 – 3 Hz, 4 – 6 Hz, 7 – 9 Hz, 10 – 12 Hz, 13 – 30 Hz, 31 

– 45 Hz) within each scalp location (left frontal-polar, right frontal-polar, left frontal, right 

frontal, left parietal, right parietal, left central, right central, left temporal, right temporal, 

left occipital, and right occipital) and BITSEA ASD problem scores (p’s > .05). Secondary 

analyses revealed low birth weight was not a significant predictor in any model (p’s > .05).

Cognitive Development.—After correction for multiple comparisons, there were no 

significant associations between EEG power in the active sleep state in any frequency bin 

(1 – 3 Hz, 4 – 6 Hz, 7 – 9 Hz, 10 – 12 Hz, 13 – 30 Hz, 31 – 45 Hz) within each scalp 

location (left frontal-polar, right frontal-polar, left frontal, right frontal, left parietal, right 

parietal, left central, right central, left temporal, right temporal, left occipital, and right 

occipital) and cognitive scores on the Bayley-III (p’s > .05). There were also no significant 

associations between EEG power in the quiet sleep state in any frequency bin (1 – 3 Hz, 

4 – 6 Hz, 7 – 9 Hz, 10 – 12 Hz, 13 – 30 Hz, 31 – 45 Hz) within each scalp location (left 

frontal-polar, right frontal-polar, left frontal, right frontal, left parietal, right parietal, left 

central, right central, left temporal, right temporal, left occipital, and right occipital) and 

Bayley-III cognitive scores (p’s > .05). Secondary analyses revealed low birth weight was 

not a significant predictor in any model (p’s > .05).

PSD Slope

Figure 3 illustrates the average spectrum and associated spectral fit separately for the low- 

and high-frequencies. Two independent Bland–Altman tests were run to compare the low- 

and high-frequency slope estimates. In AS, the minimum and maximum average of slope 

pairs were −2.8339 and −0.8383, respectively. The associated minimum and maximum 

differences were −3.6323 and 1.0967. The resulting bias between the two measures 

was −0.5395 ± 0.7547. This result signifies that estimates of low-frequency slope were 

significantly steeper (−2.2528 ± 0.2232) compared to the high-frequency slope (−1.7130 ± 

0.6989); p-value <0.001. Also, a significant negative relationship between the mean of low- 

and high- frequency slopes and their difference was reported, such that the more negative 

their means, the smaller their differences. Analogous trends were obtained in QS. The 

minimum and maximum average of slope pairs were −2.9280 and −0.4641, respectively. 
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The associated minimum and maximum differences were −3.870 and 1.1811. The resulting 

bias between the two measures was −0.5395 ± 0.8206. This result signifies that estimates 

of low-frequency slope were significantly steeper (−2.3163 ± 0.2647) compared to the 

high-frequency slope (−1.8092 ± 0.7487); p-value<0.001. A significant negative relationship 

between the mean of low- and high- frequency slopes and their difference was reported, such 

that the more negative their means, the smaller their differences. Based on these differences, 

we utilized the low-frequency (1 – 20 Hz) and high-frequency (21 – 40 Hz) slopes separately 

in subsequent analyses).

Autism Risk.—After correction for multiple comparisons, there was a significant 

association between the low frequency power spectral density slope (1 – 20 Hz) in active 

sleep in the left frontal (F(1, 63) = 3.37, p < .01, adj R2 = 0.12), left central (F(1, 63) = 3.37, 

p < .05, adj R2 = 0.08), right central (F(1, 63) = 2.21, p < .05, adj R2 = 0.06), right parietal 

(F(1, 63) = 3.22, p < .05, adj R2 = 0.11), and left occipital (F(1, 63) = 2.33, p < .05, adj 

R2 = 0.07) regions and BITSEA ASD problem scores (Table 2). A steeper low-frequency (1 

– 20 Hz) PSD slope in active sleep in these scalp locations was associated with increased 

BITSEA ASD problem scores (Figure 4). After correction for multiple comparisons, there 

was no significant association between the low-frequency PSD slope in active sleep in the 

left or right frontal polar, right frontal, left parietal, right occipital, and left or right parietal 

region and BITSEA ASD problem scores (p’s > .05). There were no significant associations 

between the high-frequency PSD slope (21 – 40 Hz) in active sleep in any scalp location 

(left frontal-polar, right frontal-polar, left frontal, right frontal, left parietal, right parietal, 

left central, right central, left temporal, right temporal, left occipital, and right occipital) and 

BITSEA ASD problem scores. Gestational age, sex, postmenstrual age at the EEG study, 

age at follow-up and were not significant predictors in any models (p’s > .05). There were 

also no significant associations between the low or high frequency PSD slope in the quiet 

sleep state in any scalp location (left frontal-polar, right frontal-polar, left frontal, right 

frontal, left parietal, right parietal, left central, right central, left temporal, right temporal, 

left occipital, and right occipital) and BITSEA ASD problem scores (p’s > .05). Secondary 

analyses revealed low birth weight was not a significant predictor in any model (p’s > .05).

Cognitive Development.—After correction for multiple comparisons, there were no 

significant associations between the low (1 – 20 Hz) or high (21 – 40 Hz) frequency 

PSD slope in active sleep in any scalp location (left frontal-polar, right frontal-polar, left 

frontal, right frontal, left parietal, right parietal, left central, right central, left temporal, 

right temporal, left occipital, and right occipital) and cognitive scores on the Bayley-III 

(p’s > .05). There were also no significant associations between low (1 – 20 Hz) or high 

(21 – 40 Hz) frequency PSD slope in the quiet sleep state in any scalp location (left 

frontal-polar, right frontal-polar, left frontal, right frontal, left parietal, right parietal, left 

central, right central, left temporal, right temporal, left occipital, and right occipital) and 

Bayley-III cognitive scores (p’s > .05). Secondary analyses revealed low birth weight was 

not a significant predictor in any model (p’s > .05).
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Discussion

To our knowledge, the present report is the only study to date to examine both the PSD 

slope and absolute EEG power (independently) in preterm infants as potential markers of 

subsequent autism risk and cognitive development. Further, this is the first study to examine 

early neurophysiological markers of neurodevelopmental risk in a sample of preterm infants 

born in a LMIC. To summarize, we found that aperiodic activity in multiple brain regions, 

but not oscillatory activity, was associated with subsequent autism risk at three years of 

age in a sample of preterm infants. Specifically, we found a steeper, more negative 1 – 

20 Hz PSD slope during active sleep at 40 weeks adjusted postmenstrual age in the left 

frontal, left and right central, right parietal, and left occipital regions was associated with 

increased autism risk on the BITSEA at three years of age. However, no associations were 

found between absolute EEG power and autism risk. Additionally, no associations were 

found between absolute EEG power or the PSD slope and cognitive ability. Our null findings 

specific to EEG power are in part consistent with (Huberty et al., 2021) who demonstrated 

familial risk status, but not subsequent ASD diagnosis, was associated with developmental 

changes in EEG power. Conversely, other studies have shown links between resting-state 

EEG power in neonates and subsequent autism risk in term-infants (Brito et al., 2019) and 

cognitive ability in preterm infants (Scher, Steppe, & Banks, 1996). Our null findings in 

this domain are likely due to differences in the sample population (preterm vs. term), study 

design (matched-controls), or differences in EEG frequencies computed. It is also possible 

that some of prior findings linking EEG power to autism risk (Bhat et al., 2019; W. Bosl 

et al., 2011; W. J. Bosl et al., 2018; Brito et al., 2019; Dickinson et al., 2021; Dickinson 

et al., 2019; L. Gabard-Durnam et al., 2015; L. J. Gabard-Durnam et al., 2019; Haartsen et 

al., 2019; Levin et al., 2017; Orekhova et al., 2014; Righi et al., 2014; Riva et al., 2019; 

Wilkinson et al., 2020) or cognitive development (Scher et al., 1996) are in part driven by 

aperiodic activity which is inherently present in oscillatory activity.

Prior ECoG, iEEG, local field potential and computational studies suggest the PSD slope is 

driven by the E/I ratio in neural circuitry where increasing the E/I ratio would result in a 

steeper slope (Freeman & Zhai, 2009; Gao et al., 2017; Robertson et al., 2019; Voytek et al., 

2015). Specifically, a prior study demonstrated associations between the PSD slope and the 

E/I ratio across CA1 layers and theta oscillations in the rat hippocampus (Gao et al., 2017).

Research from the ECoG literature on age-related cognitive decline has put forth the neural 

noise hypothesis, which suggests the effective signal-to-noise ratio of neural communication 

declines with increasing age (Voytek et al., 2015). In this framework, increased neural noise 

would be reflected by a flatter PSD slope associated with asynchronous neural firing at the 

local field potential level potentially driven by the E/I ratio (Katzner et al., 2009; Musall, 

von Pfostl, Rauch, Logothetis, & Whittingstall, 2014; Pertermann et al., 2019; Voytek et 

al., 2015). On the contrary, simultaneous spiking would be associated with a more negative 

PSD slope (Katzner et al., 2009; Musall et al., 2014; Pertermann et al., 2019; Voytek 

et al., 2015). Although it is difficult to draw comparisons between early developmental 

changes in the PSD slope and age-related changes in late adulthood, at least one prior study 

suggests cognitively optimal spectral slopes may vary by developmental stages (Voytek et 

al., 2015). A recent longitudinal study on the development of the EEG power spectrum 
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demonstrated a progressive flattening of PSD slopes computed from 1 – 10 Hz between 1 – 

7 months postnatally, which the authors attributed to developmental changes in the E/I ratio 

(Schaworonkow & Voytek, 2021). Given the developmental flattening of the low-frequency 

PSD slope in the first few months of life (Schaworonkow & Voytek, 2021), a steeper 

low-frequency PSD slope during early infancy may be linked to developmental changes in 

the GABAergic switch from excitatory to inhibitory.

Neuronal homeostasis of the E/I ratio consists of GABAergic inhibition being two to six 

times the strength of glutamatergic excitation (Gao et al., 2017). Shifts in the E/I ratio 

towards hyperexcitation from altered GABAergic signaling are hypothesized mechanisms 

implicated in several neurodevelopmental conditions including ASD (Kolesnik et al., 2019; 

Nelson & Valakh, 2015), genetic syndromes associated with ASD (Nelson & Valakh, 2015; 

Roche et al., 2019), and ADHD (Robertson et al., 2019).

A prior study found medication naïve 3 – 7 year old children with ADHD had steeper 

PSD slopes and increased alpha EEG power compared to age-matched peers without ADHD 

(Robertson et al., 2019). Stimulant treated children with ADHD had flatter slopes compared 

to non-stimulant treated children with ADHD and similar slopes compared to age-matched 

peers (controls) across all electrode regions, suggestive of normalization of the E/I ratio 

from stimulant treatment (Robertson et al., 2019). This study also found an association 

between the theta/beta ratio and the PSD slope. However, the PSD slope may be a superior 

metric of electrophysiological activity since it is not influenced by peak frequencies or 

narrow-band power (Levin et al., 2020; Robertson et al., 2019).

A separate study among school age children with ADHD and controls found children with 

ADHD had flatter PSD slopes in frontal electrode regions compared to their peers during a 

Go/NoGo task when engaged in response inhibition during NoGo trials (Pertermann et al., 

2019). Additionally, stimulant treatment normalized differences in the PSD slope between 

children with ADHD and controls (Pertermann et al., 2019). A large study of adolescents 

with ADHD (n=87) and controls without ADHD (n=97) found adolescents with ADHD 

had a flatter PSD slope across an average of all electrode sites (Ostlund et al., 2021), 

which is consistent with (Pertermann et al., 2019), but not with (Robertson et al., 2019). 

Divergent results from these three studies which included children from different age ranges 

further suggests optimal spectral slopes may vary by developmental stages (Voytek et al., 

2015). However, differences could also in part be driven by different methodologies used to 

compute the PSD slope (FOOOF vs. others), study design (task based vs. resting EEG), and 

electrodes included in analyses.

Although to our knowledge the PSD slope has not yet been examined during infancy in 

association with subsequent autism risk, two studies have utilized this parameter to examine 

links between the PSD slope and phenotype within specific genetic neurodevelopmental 

conditions associated with ASD. A cross-sectional study of girls with Rett syndrome, a 

progressive genetic neurodevelopmental condition caused by a mutation in the MECP2 gene, 

examined the PSD slope as a potential marker of cortical excitation and disease severity 

(Roche et al., 2019). EEG data were collected between 23 and 131 months of age. Mouse 

models of Rett syndrome have demonstrated altered GABAergic signaling from a loss of 
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MECP2 resulting in cortical hyperexcitability (Dani et al., 2005; Zhang, Peterson, Beyer, 

Frankel, & Zhang, 2014). Therefore the PSD slope could serve as a potential marker of 

an increased E/I ratio. Results revealed that participants with Rett syndrome demonstrated 

a steeper PSD slope than the control group across all brain regions, which was more 

pronounced in the developmental regression subgroup (Roche et al., 2019). Within children 

diagnosed with Rett syndrome, a flatter (less negative) PSD slope was associated with 

improved performance on visual receptive, receptive and expressive language, and fine 

motor subscales (Roche et al., 2019).

A recent study of male children with Fragile X Syndrome (FXS), a genetic 

neurodevelopmental condition caused by an expansion of the CGG triplet related FMR1 

gene on the X chromosome resulting in a FMRP protein deficiency, examined potential 

differences in aperiodic and oscillatory activity between children with FXS and controls 

(Wilkinson & Nelson, 2021). EEG data were collected between 33 and 78 months of age 

(Wilkinson & Nelson, 2021). FXS is also associated with an E/I imbalance and mouse 

models have reversed phenotypes in FMR1 knockout mice through the administration of 

GABA agonists (Wilkinson & Nelson, 2021). Similar to children or adults with ASD (Wang 

et al., 2013), children with FXS demonstrated increased oscillatory activity from 20 – 50 

Hz across multiple brain regions (Wilkinson & Nelson, 2021). Additionally, children with 

FXS demonstrated a steeper PSD slope in frontal and central regions (Wilkinson & Nelson, 

2021), potentially reflective of an altered E/I balance.

Although we cannot draw direct comparisons to the existing literature due to differences 

in sample characteristics, study design, and outcome measures, our findings are in general 

agreement with (Roche et al., 2019) and (Wilkinson & Nelson, 2021) who both reported 

a steeper PSD slope in children with genetic neurodevelopmental conditions. Additionally, 

we similarly reported associations in the frontal and central electrode sites (Wilkinson & 

Nelson, 2021). Given the existing literature in this domain and our finding that a steeper 

PSD slope was associated with subsequent autism risk at age three, the PSD slope is both 

potentially reflective of disruptions in the E/I balance and a marker of subsequent autism 

risk in preterm infants.

Limitations

Since we are the first to report an association between aperiodic activity in preterm neonates 

and subsequent autism risk outcomes and our analysis has a modest sample size, this 

association should be examined in independent cohorts to determine generalizability. Several 

children from this cohort study were referred for clinical evaluations, but ASD specific 

outcomes are not available to us. This limits our ability to examine neural activity associated 

with autism risk versus ASD diagnostic outcomes. However, given the lack of studies in 

this domain, our results are still a meaningful preliminary report. EEG has poor spatial 

resolution therefore it is difficult to draw conclusions regarding the underlying brain regions 

represented by the electrode sites in our current findings. Future studies should consider 

source localization to determine if there are regional differences in aperiodic activity. There 

are several differences in EEG processing pipelines across the developmental and adult 

literature, which is a significant limitation in the present report and across the entire field of 
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electrophysiological research. Our findings may be influenced by frequency bins computed 

or subtle differences in artifact thresholds such as muscle artifacts, which may vary by 

neurodevelopmental risk status. Lastly, EEG is sleep state dependent, therefore our sample 

is reduced in the quiet sleep state (64% of the total sample) leaving us unable to determine 

if the lack of effects in the quiet sleep are related to the diminished sample size or state 

dependent effects.

Conclusions

Acquiring resting state EEG data from neonates during natural sleep is highly feasible. Even 

in a low-resource setting 82.5% of the neonates provided usable data in active sleep. In the 

current study, we found links between aperiodic activity in preterm infants and subsequent 

ASD risk scores at three years of age. Expected associations between EEG power with 

subsequent ASD risk and cognitive ability were not found within this sample. Our findings 

highlight the need to examine markers of autism risk in high-risk populations other than 

infants at familial risk. The resulting studies would help contribute to our understanding of 

early brain development in children with simplex ASD, idiopathic ASD, or ASD linked to 

specific genetic etiologies. Most importantly, this research domain may contribute to early 

identification of ASD, which could improve long-term symptom severity and quality of life 

outcomes for autistic individuals (Anderson et al., 2014; Mason et al., 2018; Pickles et al., 

2016)
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Figure 1. 
Electrode Map. Topographic map depiction of a 32-channel EGI Geodesic Sensor Net with 

28 active channels.
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Figure 2. 
Power Spectral Density (PSD) Slope Example. Illustrative example of low and high 

frequency slope (solid black line) computation on EEG power spectral density (PSD) (solid 

blue line). Firstly, the PSD is fit with an estimated aperiodic component (dashed gray 

line). The estimated aperiodic portion of the signal is subtracted from the raw PSD. The 

residuals portion of the spectrum are assumed to be a mix of periodic oscillatory peaks 

and noise. The identified peaks (which are found above the noise threshold calculated from 

the standard deviation of the residuals), are fitted with a Gaussian distribution and remove 

via an iterative process (dotted blue line). Once these components are removed, based on 

the number of peaks above the noise threshold, multi-Gaussian fitting is performed on the 

aperiodic-adjusted signal to derive the spectral slopes.
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Figure 3. 
The average spectrum (solid lines), standard error of the mean (shaded area), and associated 

spectral fit lines (dashed lines) obtained by averaging spectra in AS across participants. 

The separation between the low- (1–20 Hz in blue) and high- (21–40 Hz in red) frequency 

portions of the average spectrum is accentuated by the gray-shadowed area.
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Figure 4. 
Association between the PSD Slope during the neonatal period during active sleep and 

subsequent autism risk at age 3. A steeper low-frequency (1 – 20 Hz) PSD slope in active 

sleep in the left frontal (Panel A), right central (Panel B), left central (Panel C), right parietal 

(Panel D), and left occipital (Panel E) regions are associated with increased BITSEA ASD 

problem scores
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Table 1.

Participant Demographic Information

Participants (n=71)

Gestational Age at Birth (weeks)

 Mean (SD) 34.6 (2.34)

 Median [Min, Max] 35.4 [25.6, 36.9]

Preterm Categories

 Extremely Preterm (< 28 weeks) 2 (3%)

 Very Preterm (≥ 28 to < 32 weeks) 5 (7%)

 Moderate Preterm (≥ 32 to < 34 weeks) 14 (20%)

 Late Preterm (≥ 34 to < 37 weeks) 50 (70%)

Sex

 Male (%) 36 (50.7%)

 Female (%) 35 (49.3%)

Race

 Mixed Ancestry (%) 71 (100%)

Birth Weight (grams)

 Mean (SD) 2160 (585)

 Median [Min, Max] 2210 [640, 4440]

Birth Weight Categories

 Very Low Birthweight (< 1500 grams) 8 (11%)

 Low Birthweight (< 2500 grams) 42 (59%)

 Normal Birthweight (≥ 2500 grams) 21 (30%)

Mode of Delivery

 Vaginal Spontaneous 52 (73%)

 Vaginal Operative 2 (3%)

 Cesarean 17 (24%)

Maternal Parity

 Mean (SD) 1.56 (1.48)

 Median [Min, Max] 1.00 [0, 6.00]

Maternal Age at Delivery

 Mean (SD) 26.7 (6.92)

 Median [Min, Max] 25.0 [16.0, 43.0]
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Table 2.

Association Between the PSD Slope and Autism Risk by Brain Region

Brain Region T-statistic p-value FDR adjusted p-value

Left Frontal −3.18 0.002 0.017

Left Central −2.66 0.009 0.039

Right Central −2.38 0.019 0.047

Right Parietal −3.09 0.002 0.017

Left Occipital −2.48 0.015 0.046
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