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Many of the unusual properties of Pluto’s orbit are widely accepted as evidence for
the orbital migration of the giant planets in early solar system history. However, some
properties remain an enigma. Pluto’s long-term orbital stability is supported by two
special properties of its orbit that limit the location of its perihelion in azimuth and in
latitude. We revisit Pluto’s orbital dynamics with a view to elucidating the individual
and collective gravitational effects of the giant planets on constraining its perihelion
location. While the resonant perturbations from Neptune account for the azimuthal
constraint on Pluto’s perihelion location, we demonstrate that the long-term and steady
persistence of the latitudinal constraint is possible only in a narrow range of additional
secular forcing which arises fortuitously from the particular orbital architecture of the
other giant planets. Our investigations also find that Jupiter has a largely stabilizing
influence whereas Uranus has a largely destabilizing influence on Pluto’s orbit. Overall,
Pluto’s orbit is rather surprisingly close to a zone of strong chaos.
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Pluto’s orbit is significantly eccentric, and its orbit plane is inclined 17◦ to the solar
system’s invariable plane. Its eccentric orbit overlaps that of Neptune’s, so much so that,
for approximately two decades of its 248-y-long orbital period, it is closer to the Sun
than is Neptune; Pluto’s most recent perihelion passage closer to the Sun than Neptune
was observed during the period 1979–1999. In general, most such planet-crossing orbits
have a very short dynamical stability time because planetary close encounters cause large,
destabilizing perturbations. Numerical propagation of Pluto’s orbit shows that Pluto
avoids close encounters with Neptune due, primarily, to two types of librations of its
perihelion (see, e.g., ref. 1). (“Libration” is a term used in celestial mechanics for the
oscillation of an angular variable or a combination of angular variables.) The first and most
consequential for Pluto’s dynamical stability is the libration of its perihelion longitude
about a center ±90◦ away from Neptune’s ecliptic longitude. (Here, “ecliptic” refers to
the standard plane of reference for orbits in the solar system.) This libration, which has
a period of about 20,000 y, is associated with Pluto’s 3/2 mean motion resonance with
Neptune (Pluto’s orbital period is 1.5 times Neptune’s orbital period), and is characterized
by the libration of the critical resonant angle,

φ= 3λ− 2λ′ −�, [1]

where λ and � denote Pluto’s mean longitude and its longitude of perihelion, and λ′

denotes Neptune’s mean longitude. The libration of φ about a center at 180◦, with an
amplitude of 80◦ to 86◦, ensures that, at the times when Pluto crosses Neptune’s orbit, its
spatial location is far removed from Neptune’s, more than 45◦ in ecliptic longitude. We
call this an azimuthal libration.

The second is the libration of its perihelion in the third dimension: At perihelion, Pluto’s
location oscillates about a high latitude, well above the plane of the other planets. We
call this a latitudinal libration. In terms of orbital elements, it is characterized by the
libration of Pluto’s argument of perihelion, ω, about a center at 90◦, an amplitude of 24◦
to 27◦ and a period of ∼ 4 My. (The argument of perihelion is the angular distance of
Pluto’s perihelion from its longitude of ascending node. The latter is usually reported in
the ecliptic plane, although the dynamically relevant reference plane is closer to Neptune’s
orbit plane or to the solar system’s invariable plane.) The libration of ω has the effect of
elevating Pluto’s minimum distance of approach to Neptune and to the other giant planets,
thereby increasing its orbital stability. A visualization of Pluto’s spatial perihelion librations
can be found in ref. 2.

After several foundational studies on Pluto’s dynamics in the 1960s and 1970s (e.g., refs.
3–5), very long numerical orbit propagations of sufficient accuracy became possible with
advanced digital computers in the late 1980s. These shed more light on Pluto’s engagement
with the giant planets in multiple resonances and its potential for chaotic orbital evolution
on very long timescales (6, 7). Pluto is one of the first examples in solar system dynamics
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whose chaotic nature was unveiled. Sussman and Wisdom (6)
propagated the orbital motion of the outer four giant planets and
Pluto for 845 million years, and found that its nearby trajectories
diverge exponentially with an e-folding time of only about 20
million years. Later, Laskar (8) numerically solved the secular
equations of motion of the eight major planets (excluding Pluto),
and claimed that the entire solar system is chaotic in the sense that
its Lyapunov index is positive. Then, Sussman and Wisdom (9)
carried out a numerical integration including the interactions of
all nine planets (including Pluto, which was considered a planet
at that time), and found that the planetary system as a whole is
chaotic, and its Lyapunov e-folding time is only about 4 million
years. However, additional long-term numerical solutions for the
solar system planets established that, within the highest-fidelity
solar system model, the orbits of the outer planets, including
Pluto’s, are practically stable on multigigayear timescales, both
in the past and in the future (10–12). The detection of positive
Lyapunov exponents notwithstanding, Pluto’s and the planets’
perihelion and aphelion distances and their latitudinal variations
remain well bounded on multigigayear timescales, indicating that
the chaos detected in the above investigations is very weak indeed.

The period of the 1990s to 2000s also saw the advancement of
the hypothesis of resonance sweeping and capture of Pluto during
an early epoch of giant planet migration (13). This hypothesis
provides a plausible account of Pluto’s eccentric resonant orbit
within the physical and dynamical processes of the early evolution
of the solar system. In turn, Pluto’s orbital properties provide
quantitative constraints on the magnitude and speed of the early
migration of the giant planets and the mass and size of the
planetesimal disk left over after planet formation (e.g., refs. 14–
16). A wide range of solar system data has been identified in
support of this hypothesis which has been developed extensively
in many recent studies; reviews can be found in refs. 17–19.

During the period 2005–2012, deep imaging with the Hub-
ble Space Telescope revealed that Pluto hosts a retinue of four
small moons, in addition to its large moon, Charon, discovered
previously in 1978 (20). In 2015, new data from the New
Horizons spacecraft’s reconnaissance of the Pluto system revealed
the surprisingly active geophysical state of Pluto (21). These new
discoveries have added to the list of puzzles presented by this
distant dwarf planet.

While its origin story is now understood in broad terms, Pluto
and its orbital dynamics in the current solar system still present
many unsolved problems. These puzzles prompt us to seek to
better understand its orbital stability. The present work is a step
toward this goal. We revisit the topic of Pluto’s orbital dynamics,
with a view to understand better the collective and individual
influence of the giant planets on the stability of Pluto’s orbit,
as manifested in the librations of its critical resonant angle, φ,
and of its argument of perihelion, ω. We use tailored numerical
experiments to identify details of both the secular and nonsecular
effects of the giant planets’ perturbations on Pluto to learn more
about the dynamical neighborhood in which Pluto orbits.

Numerical Experiments

N-Body Simulations. We carried out numerical simulations
of Pluto’s orbital evolution for up to 5 Gy with eight
different combinations of the perturbing giant planets: Neptune
only (hereafter referred to as ---NP), Uranus + Neptune
(--UNP), Saturn + Neptune (-S-NP), Jupiter + Neptune (J--NP),
Saturn + Uranus + Neptune (-SUNP), Jupiter + Uranus +
Neptune (J-UNP), Jupiter + Saturn + Neptune (JS-NP), and
the highest-fidelity model with Jupiter + Saturn + Uranus +

Neptune (JSUNP). It must be emphasized that we do not expect
these experiments to accurately identify the direct effects of each
individual giant planet on Pluto, because the perturbations of
each giant planet are not simply a sum of perturbations of
each individual perturber. The giant planets’ orbital evolution
itself depends upon their mutual interactions. For example, the
evolution of Neptune in the Jupiter + Neptune model (J--NP) is
slightly different from in the Uranus + Neptune model (--UNP).
Nevertheless, we will see that we gain useful insights with these
experiments.

We obtained the heliocentric orbital elements of the major
planets and Pluto from Jet Propulsion Laboratory (JPL) Horizons
System, and they are the values as of 2021 March 19 00:00:00
TDB (Barycentric Dynamical Time). The position and the ve-
locity of each planet are those of its barycenter (including its
satellite system). Pluto’s position and velocity are also those of the
barycenter of the Pluto system. We obtained the masses of the Sun
and planets from JPL’s DE245 (e.g., ref. 22). In the simulations,
we regard Pluto as a massless particle. For the numerical orbit
propagation, we employed the second-order regularized mixed
variable symplectic integrator based on the Wisdom–Holman
symplectic mapping (23) implemented as a part of the SWIFT
package (24). (The code and data availability are described in
SI Appendix.) We adopted a basic step size of 10 d. For computa-
tional efficiency, we set an outer cutoff distance of 100 au so as to
cease numerical propagation of Pluto-like particles that are ejected
from Neptune’s 3/2 mean motion resonance. For checking the
accuracy, we also carried out some of the same orbit propagations
with the fourth-order standard symplectic integrator that splits the
Hamiltonian just into kinetic energy and potential energy terms
(e.g., ref. 25). We confirmed that both the methods yield similar
output in terms of Pluto’s dynamical characteristics that we discuss
in this work. For illustration, we plot, in Fig. 1, the time evolution
of Pluto’s orbital elements for two models, the simplest model
with Neptune as the sole perturber (---NP) and the highest-fidelity
model with all four giant planet perturbers (JSUNP); the contrast
in some properties of Pluto’s orbital evolution between these two
models is quite stark, and we discuss these differences later on.

For each of the eight models, we examined the behavior of φ
and ω by making two plots: a time series plot of φ(t) and a polar
plot of (e cosω, e sinω). These pairs of plots are shown in Figs. 2
and 3 for each of the eight models. In Fig. 2, we plot only the first
100 My of evolution, and, in Fig. 3, we plot the evolution for up
to 5 Gy in the eight models. By examining these results closely, we
observe the following.

1) The simplest model with Neptune as the sole perturber (model
---NP) maintains the libration of φ but not of ω; the latter
does not librate, but undergoes fairly smooth rotations in this
model; these rotations persist on gigayear timescales in this
model.

2) Adding Uranus to the simplest model (--UNP) destroys the
libration of φ within a few megayears, and it also causes ω
to evolve irregularly, with intermittent librations and rota-
tions; the dynamical lifetime of Pluto is only a few hundred
megayears in this case. However, adding either Jupiter or
Saturn to the simplest model (J--NP and -S-NP, respectively)
yields longer dynamical lifetimes by stabilizing the librations of
φ (but not of ω). With the addition of Saturn, the dynamical
lifetime gain is modest, only a factor of 2 to 3, but Jupiter’s
addition increases the dynamical lifetime to at least 5 Gy.
We find that, in the latter case (J--NP), ω undergoes fairly
smooth rotations, but it is significantly slowed compared to
the simplest case (---NP).
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Fig. 1. Pluto’s orbital elements for 10 My computed with two different models: the three-body model of Sun, Neptune, and Pluto (---NP; shown in dark red
color) and the highest-fidelity model of Sun, Jupiter, Saturn, Uranus, Neptune, and Pluto (JSUNP; shown in blue). Pluto is treated as a massless object in all these
models. From Top to Bottom, Left plots the semimajor axis, eccentricity, and inclination; Right plots the longitude of perihelion, �, the longitude of ascending
node, Ω, and the argument of perihelion, ω. The output interval for the plots is 2.5 Ky.

3) Of the three models with three perturbing planets, the model
without Jupiter (-SUNP) yields chaotic evolution of both
φ and ω and a dynamical lifetime less than 100 My. But
the models with Jupiter (J-UNP and JS-NP) have dynamical
lifetimes exceeding a gigayear. These latter two models support
librations of φ and ω for at least 10 million years. We found
that, in the JS-NP model, ω slips from libration to chaotic
evolution (intermittent libration and rotation) in less than 100
My, while φ remains in steady libration for 5 Gy. In the J-UNP
model, both ω and φ slip into chaotic evolution on timescales
of a few hundred megayears, and Pluto is ejected from the 3/2
mean motion resonance in less than 2 Gy.

4) All models yield libration of φ on at least ∼ 1 My, albeit with
differences in libration amplitudes. Two models, --UNP and
-SUNP, do not support steady librations of φ on longer than
1-My and 40-My timescales, respectively. These two models
can be reasonably considered the two most unstable cases.
With different integration schemes, such as the Bulirsch–
Stoer extrapolation method (26), the trajectories of Pluto in
these two models also diverge visibly over just ∼ 1 My. The
divergence of solutions with different integrators is another
symptom of the strongly chaotic behavior in those models.

5) Notably, only the highest-fidelity model (JSUNP) yields the
steady libration of both φ and ω on gigayear timescales.

Modified Restricted Three-Body Model. As previous studies have
shown, and the numerical experiments in the previous section
have confirmed, Neptune’s resonant perturbations maintain the
libration of the resonant angle, φ. But the additional libration
of ω cannot occur with Neptune’s perturbations alone. Previous
semianalytic studies concluded that the secular effects of the

three inner giant planets, Jupiter–Saturn–Uranus, are critical to
support the libration of Pluto’s ω (5). We briefly outline this
mechanism, and then follow up with numerical experiments
with a modified three-body model to quantitatively examine this
hypothesis.

The condition for the libration of Pluto’s ω is that its time-
averaged rate must vanish; that is, 〈ω̇〉= 0. Considering that
ω =� − Ω, this requires that Pluto’s average apsidal rate, �̇,
matches its average nodal rate, Ω̇. With Neptune’s perturbations
alone, we find (from the numerical solution of the Sun–Neptune–
Pluto three-body model, i.e., the ---NP model) that Pluto’s apsidal
rate is �̇(only Neptune) �−11.3× 10−5 degrees per y, and its
nodal rate is Ω̇(only Neptune) �−3× 10−5 degrees per y (Fig. 1).
The apsidal rate forced by Neptune can be understood as being
of two parts, one part from the secular perturbations (which
contributes a precession) and another part from the mean motion
resonance (which contributes a regression); the latter is dominant
and leads to an overall net regression for Pluto in the ---NP model.
The secular forcing by the inner three giant planets (Jupiter,
Saturn, and Uranus) is qualitatively similar in effect to that of
an additional quadrupolar potential which contributes a positive
apsidal rate and a negative nodal rate. As we will see quantitatively
with the numerical analyses below, the secular effects from the
inner three giant planets are just enough that Pluto’s nodal and
apsidal rates become nearly equal, leading to the near-vanishing of
the average rate of Pluto’s ω, and thereby supporting its libration.
These effects can be discerned in Fig. 1 in which we can observe
that, in the model with all four giant planets (JSUNP), Pluto’s
apsidal regression is smaller, while its nodal regression is larger
than in the three-body model in which Neptune is the sole
perturber (---NP). The apsidal and nodal rates are nearly equal
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Fig. 2. The evolution over 100 My of Pluto’s critical resonant angle φ (Eq. 1), and argument of perihelion ω, in numerical simulations with different sets of
perturbers. Blue is for the highest-fidelity model including all four giant planets and Pluto (JSUNP); the other cases are shown in dark red, with the planets in
the model indicated in the legend above each pair of panels (for example, --UNP indicates the model with Uranus, Neptune, and Pluto). Note that, in the case of
model -SUNP, the simulation lasts only about 67 My, ending because Pluto traveled too far from the Sun (heliocentric distance r > 100 au) on a very extended
orbit no longer confined to Neptune’s 3/2 mean motion resonance. The output interval in the plots is 25 Ky.

in the JSUNP model, accounting for the near-vanishing of the
rate of ω.

In order to more directly test the above hypothesis, we carry out
simulations with a modified restricted three-body model in which
we included the secular effects of the inner three giant planets as
follows. The secular effects of the inner three giant planets can
be approximately modeled by replacing each giant planet with a
circular ring of radius equal to the planet’s semimajor axis ap and
mass equal to the planet’s mass mp. The gravitational potential of
a ring at a heliocentric distance r > ap and a distance z above the
plane of the ring is given by (e.g., ref. 27)

Vring =−Gmp

r

[
1 +

∞∑
k=1

(ap
r

)2k

P2k (0)P2k

(z

r

)]
, [2]

where G is the universal constant of gravitation, and P2k (.) is the
Legendre polynomial of degree 2k.

The spatial dependence of the ring potential is similar to the
potential exterior to an axially symmetric spheroidal mass, such as
that of a spheroidal sun in the axially symmetric approximation,

V� =−Gm�
r

[
1−

∞∑
k=1

J2k

(R�
r

)2k

P2k

(z

r

)]
, [3]

where m� is the solar mass, R� is the Sun’s equatorial radius, and
J2k are the coefficients of the zonal harmonics. Then, provided

that the ring plane is identified with the solar equator, comparing
Eq. 3 with Eq. 2, with both truncated to quadrupolar terms, we
can define an “effective J2 of a hypothetical oblate Sun” which
approximately describes the orbit-averaged potential of a planet
seen by a distant test particle,

J2,eff =
1

2

mpa
2
p

m�R2
�
. [4]

The values of J2,eff arising from the inner three giant planets
are given in Table 1. The large values are owed to the very large
ratio of the orbit radius of the planets to the solar radius. It is
perhaps worth mentioning that the value of J2,eff contributed by
the terrestrial planets (Mercury, Venus, Earth, and Mars) is only
∼ 0.1; this small value, as well as their total mass being less than

Table 1. Inner three giant planet parameters
Planet m�/mp ap (au) J2,eff

Jupiter 1, 047.3486 5.2076 592.5
Saturn 3, 497.898 9.5725 605.5
Uranus 22, 902.94 19.3038 376.1
Total 1, 574.1

Source for m�/mp is ref 22; source for ap and R� used in Eq. 4 is ref. 45.
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Fig. 3. Similar to Fig. 2, but for the evolution up to 5 Gy. The output interval in the plots is 1 My for those models in which Pluto’s stability time is at least 5 Gy;
for the cases with shorter stability times, the output interval is shorter, in the range 20 Ky to 250 Ky.

10−5 of the solar mass, justifies neglecting the terrestrial planets
in the present analysis.

Below, we report results of numerical simulations with a mod-
ified restricted three-body problem of the Sun, Neptune, and a
massless Pluto (---NP) in which we attributed an oblateness to
the Sun. We represent the solar gravitational potential with a point
mass potential plus a second zonal harmonic with coefficient J2
(that is, up to k = 1 in the series in Eq. 3). We carried out a
set of numerical simulations of this model for a time span of up
to 2 Gy, sampling 74 different values of J2 in the range 1 to
10,000. The effect of the second zonal harmonic of the central
mass is implemented in the SWIFT package that we use here.
Fig. 4 shows plots of the evolution of φ versus time and plots of
(e cosω, e sinω) for a selection of these simulations. The results
show that φ librates with a nearly steady amplitude of about 90◦
in all cases, but the libration of ω with an amplitude below 45◦

is found to persist only in a restricted range of J2 of 1,350 to
1,650. For J2 ≤ 500, we find that ω circulates smoothly in a
retrograde sense, and, for J2 ≥ 3,100, it circulates smoothly in a
prograde sense. In the boundary zones of 600 � J2 � 1,300 and
1, 700 � J2 � 3, 000, ω has chaotic behavior, with intermittent
librations and rotations; the inclination and eccentricity also have
strongly chaotic behavior, correlated with each other and with
that of ω; two examples are shown in SI Appendix. In the zone of
600 � J2 � 1, 300, the eccentricity can become large enough that
the ensuing smaller perihelion distance would, in the actual solar
system, allow closer approaches to Uranus and cause instability,

such as found in the N -body simulations of the J-UNP, -SUNP,
and --UNP models (compare Fig. 3).

These results are summarized in Fig. 5. The results support the
hypothesis that the orbit-averaged perturbations of the three inner
giant planets are the underlying physical mechanism that accounts
for the latitudinal librations of Pluto’s perihelion. They also high-
light the narrow range of the effective J2 for which librations of
Pluto’s ω are possible, and the remarkable circumstance that the
orbital arrangement of the inner giant planets yields an effective
J2 that happens to fall within this narrow range.

Quantitatively, our result is somewhat different from that of
Nacozy and Diehl (28), who adopted the modified restricted
three-body model with the “oblate Sun” to carry out semianalytic
calculations; they reported an empirical estimate of J2 = 2,005
for the best agreement with Williams and Benson’s (4) numerical
solution for Pluto’s motion on a timespan of ∼ 4.5 My. The
difference is partly due to their semianalytic approach versus our
fully numerical approach, and partly due to updates in planetary
masses and orbits that have occurred in the time since Nacozy
and Diehl’s work. Notably, their estimate for the total effective J2
lies in a range that our calculations find to be strongly chaotic for
Pluto’s argument of perihelion and its eccentricity and inclination
(compare Fig. 5).

It is also interesting to note that, in the modified restricted
three-body model, the libration of Pluto’s critical resonant angle
φ remains very stable for all the values of J2 that we investigated.
There is no indication of erratic evolution of φ of the kind found
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Fig. 4. Numerical simulations for 2 Gy of a modified three-body model of the Sun, Neptune, and (massless) Pluto in which we include an oblateness for the
Sun parameterized by a value of J2, as indicated at the top of each pair of panels. The top panel in each pair plots Pluto’s critical resonant angle φ versus time,
and the bottom panel in each pair is a plot of (e cos ω, e sin ω). Simulations were carried out for 74 values of J2 in the range 1 to 10,000; only a small selection
of eight cases is shown here. See SI Appendix for more detail. The output interval in the plots is 1 My. The color scheme follows that of Fig. 5.

for two of the N -body models in Fig. 2, -SUNP and --UNP. For
these two models, the equivalent modified three-body problem
would have total effective J2 values of 1,198.0 and 376.1, respec-
tively (Table 1), and we would expect steady librations of φ based
on the simulations of the modified three-body model shown in
Fig. 5. From this comparison, we conclude that the origin of chaos
in model -SUNP and model --UNP lies not in the orbit-averaged
secular perturbations of the three inner giant planets but in their
nonsecular effects. A possible source of such nonsecular effects of
the inner giant planets is the near-resonant perturbations from
Uranus: Pluto’s orbital period is close to 3 times as long as Uranus’
orbital period, and Neptune’s orbital period is close to twice as
long as Uranus’ orbital period. The timescale (� 1 My) of the
erratic evolution found in models -SUNP and --UNP in Fig. 2 is
somewhat shorter than Pluto’s secular apsidal and nodal precession
timescales. This also points to shorter timescale perturbations, as
would arise from the near-resonant perturbations from Uranus.

Conclusions and Future Directions

Tailored numerical simulations reported here elucidate the mech-
anisms underlying Pluto’s perihelion librations and its long term
dynamics. The results from these are summarized as follows.

1) The stability of Pluto’s perihelion librations in the azimuth
(equivalently, the libration of the critical resonant angle, φ)

and in latitude (equivalently, the argument of perihelion, ω) is
sensitive to the perturbations of not only the most proximate
planet (Neptune) but also the inner giant planets (Jupiter,
Saturn, and Uranus).

2) Neptune’s influence is dominant in the libration of φ. How-
ever, the other giant planets, particularly Uranus, influence the
modulation of its amplitude of libration.

3) Uranus is the source of the most erratic perturbations. Without
the stabilizing influence of Jupiter and Saturn, Uranus would
destabilize the librations of both φ and ω on less than 10-
My timescales. We conjecture that the reason for Uranus’
destabilizing influence is its 3/1 near-resonance with Pluto, and
possibly also, indirectly, its 2/1 near-resonance with Neptune.

4) It is rather striking that, for Pluto-like orbits, the architecture of
the solar system’s giant planets produces secular forcing of mag-
nitude within the narrow range required to maintain the steady
librations of ω (and corresponding steady variations of eccen-
tricity and inclination) on gigayear timescales. This range is
bounded by a zone in which ω undergoes strongly chaotic evo-
lution (intermittent libration and rotation) and large chaotic
variations of eccentricity and inclination on timescales much
shorter than the age of the solar system.

Pluto’s proximity to the edge of strong chaos in its latitudinal
perihelion libration invites further investigation. Better analytic
approximations to assess the dynamical landscape in which Pluto
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Fig. 5. Summary of the behavior of Pluto’s argument of perihelion ω over 2
Gy, as a function of the solar oblateness, J2, in the modified restricted three-
body model. In the dark red zone, ω rotates (in a retrograde sense in the small-
J2 regime, and in a prograde sense in the large-J2 regime). In the orange zone,
ω exhibits chaotic behavior with intermittent rotations and librations, and it
librates steadily in the green zone. The red hatched zones indicate the fuzzy
boundaries between the neighboring zones. The blue vertical line indicates
the value 1,574.1 of the total effective J2 estimated for the orbit-averaged
combined quadrupolar effect of the inner three giant planets, Jupiter, Saturn,
and Neptune (Table 1). Note that the horizontal scale in Upper is logarithmic
from J2 = 1 to 10,000, whereas, in Lower, it is linear from J2 = 600 to 3,000.

orbits, including the effects of near-resonances with Uranus, are
needed for further advancement of understanding of both Pluto’s
dynamics and the dynamics of the large population of so-called
Plutinos that orbit, alongside Pluto, in the same 3/2 resonance
with Neptune (15, 29–33). It is estimated that about 20% of
Plutinos share Pluto’s property of a librating argument of peri-
helion (34).

In the previous literature, the latitudinal libration of Pluto’s
argument of perihelion is often called the von Zeipel–Lidov–
Kozai (vZLK) oscillation, or the Lidov–Kozai oscillation, or just
the Kozai resonance (e.g., refs. 7 and 35–37). Von Zeipel, Lidov,
and Kozai each independently predicted such a libration in some
regimes of the orbit-averaged three-body problem (38–41). Ad-
ditional perturbations such as the quadrupole and higher-order
moments can significantly affect the vZLK oscillation (e.g., ref.
42). A quantitative and analytic formulation of the vZLK theory
in the regime of mean motion resonances, such as Pluto’s 3/2
mean motion resonance with Neptune, and including the secular
effects of the inner giant planets, remains to be done; this topic
is worth pursuing, and we intend to explore it in a forthcoming
publication.

Improved understanding of Pluto’s dynamics has broader im-
plications for solar system dynamics. The orbital distribution of
the Plutinos and other abundant resonant populations of minor
planets beyond Neptune retain imprints of the dynamical history
of the solar system. These imprints include the effects of resonance
sweeping and capture by an outwardly migrating Neptune, and
of the effects of gravitational scattering by the giant planets and
possibly additional planets that may have existed briefly but were
ejected from the solar system (18). Prior to large-scale migration,
the orbits of the giant planets would have been more compact, and
the effective J2 would have been smaller. For magnitudes of migra-
tion considered in the recent literature, we calculate that the total
effective J2 (arising from Jupiter, Saturn, and Uranus) would have
remained within the range for Pluto’s long-term stability in its
current orbit provided Uranus’ outward migration was not more
than about 5 au; this is discussed further in SI Appendix. We leave
it to future investigations to explore the implications of this limit

for the migration history of the giant planets. We can, however,
state the general conclusion that, as a consequence of the large-
scale migration of the giant planets, Pluto and the Plutinos were
promoted into an orbital niche where minor planets can survive in
eccentric and inclined orbits for multigigayear timescales, whereas
their nearby dynamical neighborhood is strongly unstable. In our
present state of understanding, Pluto’s long-term stability may
be regarded as both inevitable and fortuitous, being owed, in
part, to identifiable physical mechanisms and, in part, to random
processes inherent in those mechanisms.

Additional higher-order resonances (including secular reso-
nances between apsidal and nodal precession rates and so-called
“superresonances”) have also been identified in Pluto’s long-term
orbital dynamics (7, 10, 43). These have periods exceeding 107 y
and cause only very small-amplitude modulations of Pluto’s per-
ihelion (1), and are not discussed in the present work. These
weaker resonances may be relevant to explaining the weak chaos
detected in numerical simulations of Pluto’s long-term motion (9–
11). Further investigations to examine the associated phase space
regions and the role of these resonances would also help to probe
the origin of the weak chaos.

In the present work, Pluto’s proximity to the edge of strong
chaos has been determined within the specific model of the
solar system, that is, with the current orbital architecture of
the four giant planets as the only source of perturbations on
Pluto’s motion. Unmodelled perturbations could either increase or
decrease Pluto’s proximity to the edge of strong chaos. Therefore,
Pluto’s distance to the edge of strong chaos can potentially be
used to quantify constraints on unmodelled perturbations that
may have accumulated over its history, such as the collective
gravity of the population of objects beyond Neptune as well as
the effects of encounters or collisions with such objects, the effects
of undiscovered distant planets, and the perturbing effects of
occasional close stellar flybys.

Alternatively, we might question the implicit and widely held
assumption that Pluto has remained in close proximity to its
current orbit for much of the solar system’s ∼ 4.5-Gy history,
or at least since the end of the chaotic phase of formation and
migration of the giant planets. Considering the results in this
work on the proximity of Pluto to the edge of strong chaos,
we must ask, Could it be that Pluto’s past orbital history on
gigayear timescales is not as sanguine as assumed? We speculate
that, with the inclusion of some types of unmodelled effects, it is
perhaps not inconceivable that, even in geologically recent times,
Pluto has an orbital history of intermittent chaotic episodes. The
consequences of a chaotic orbital history would be significant
for understanding Pluto’s unexpected geophysical state, including
the circumstances of its formation, the peculiar state of its spin
axis, and the properties of its satellite system (e.g., ref. 44). Even
if initially speculative, investigations along these lines may also
identify geophysical evidence or dynamical arguments to either
support or rule out a chaotic orbital history.

Data Availability. All study data are included in the article and/or SI Appendix.
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