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Abstract
Background and Objectives
Both genetic and environmental factors contribute to stroke risk. We sought to identify novel
metabolites associated with incident stroke in the Reasons for Geographic and Racial Differ-
ences in Stroke (REGARDS) cohort and determine whether they reflected genetic or envi-
ronmental variation.

Methods
This was a stroke case–cohort observational study nested in REGARDS. Cases were defined as
incident stroke and metabolomic profiles were compared to a randomly selected control cohort.
In baseline plasma samples, 162 metabolites were measured using liquid chromatography–
tandemmass spectrometry. Cox proportional hazards models were adjusted for age, sex, race, and
age by race in the base model. Fully adjusted models included traditional stroke risk factors.
Mediation analyses conducted for these stroke risk factors used the metabolite as mediator.
Genome-wide associations with the leading candidate metabolites were calculated using array
data. Replication analyses in the JacksonHeart Study (JHS) were conducted using random effects
meta-analysis.

Results
There were 2,043 participants who were followed over an average period of 7.1 years, including
1,075 stroke cases and 968 random controls. Nine metabolites were associated with stroke in
the base model, 8 of which were measured and remained significant in meta-analysis with JHS.
In the fully adjusted model in REGARDS, guanosine (hazard ratio [HR] 1.34, 95% CI
1.18–1.53; p = 7.26 × 10−6) and pseudouridine (HR 1.28, 95% CI 1.13–1.45; p = 1.03 × 10−4)
were associated with incident ischemic stroke following Bonferroni adjustment. Guanosine also
partially mediated the relationship between hypertension and stroke (17.6%) and pseudour-
idine did not mediate any risk factor. Genome-wide association analysis identified loci
rs34631560 and rs34631560 associated with pseudouridine, but these did not explain the
association of pseudouridine with stroke.

Discussion
Guanosine and pseudouridine are nucleosides associated with incident ischemic stroke in-
dependently of other risk factors. Genetic and mediation analyses suggest that environmental
exposures rather than genetic variation link nucleoside levels to stroke risk.

Classification of Evidence
This study provides Class II evidence that guanosine and pseudouridine are associated with
incident stroke.

MORE ONLINE

Class of Evidence
Criteria for rating
therapeutic and diagnostic
studies

NPub.org/coe

From the Center for Genomic Medicine, Harvard Medical School (Z.A., W.T.K.), and Department of Neurology (Z.A., A.-L.G.G., W.T.K.), Massachusetts General Hospital, Boston;
Departments of Epidemiology (A.P., N.C., R.M.I.) and Biostatistics (S.E.J., L.L.), School of Public Health, University of Alabama at Birmingham; Harvard Medical School (V.M.B.), Boston,
MA; The Jackson Heart Study (Y.G., A.C.), University of Mississippi Medical Center, Jackson; Department of Medicine (R.E.G.), Beth Israel Deaconess Medical Center, Boston, MA; and
Department of Medicine (M.C.), Larner College of Medicine at the University of Vermont, Burlington.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

Copyright © 2022 American Academy of Neurology e2097

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://dx.doi.org/10.1212/WNL.0000000000200262
mailto:wtkimberly@mgh.harvard.edu
mailto:wtkimberly@mgh.harvard.edu
http://NPub.org/coe
https://n.neurology.org/lookup/doi/10.1212/WNL.0000000000200262


Stroke remains a leading cause of death and disability in the
United States,1 with significant geographic and racial disparities
in its incidence. Traditional risk factors derived from the Fra-
mingham Heart Study2 and Cardiovascular Health Study3 have
identified several core stroke risk factors, including age, sex, hy-
pertension, systolic blood pressure, diabetes, smoking, atrial fi-
brillation, and cardiovascular disease. Although these risk factors
are important for guiding stroke prevention strategies, there re-
mains unaccounted-for risk, which is amplified among Black
individuals.4 The identification of additional factors that either
directly contribute to or mediate the risk of stroke through
established risk factors is also important to improve prevention.5

The composition of circulating metabolites potentially repre-
sents the convergence of physiology, gene expression, and en-
vironmental conditions. Metabolomics can therefore capture
systems-level information andmay help in estimating stroke risk,
defining stroke diagnosis, or identifying stroke etiology.6 Al-
though stroke risk is complex, metabolite markers could repre-
sent underlying biological processes that account for some of the
excess risk not attributable to traditional stroke risk factors.
Furthermore, examining genetic variants linked to candidate
metabolites could help elucidate how levels of these metabolites
are regulated and provide insights into individual variation.

Our aimwas to look for differences between individuals with and
without incident stroke using a targeted metabolomics approach
designed to measure key components of central metabolic
pathways. Currently mapped metabolic networks suggest that
certain endogenous or exogenous stimuli (food, stress, infec-
tions, genetic susceptibility, and other environmental factors)
lead to systemic changes detectable and reflected by levels of
circulating metabolites. Second, we hypothesize that, if found to
associate with stroke occurrence, specific metabolites could be
used as early markers of disease risk. Finally, metabolites and
their associated metabolic network reflect disease phenotypes
and indicate potential routes for therapeutic interventions.

The biracial Reasons for Geographic and Racial Differences in
Stroke (REGARDS) cohort provides a unique opportunity
for metabolomic investigations related to stroke risk, and
potential differences by race, given its size and the number of
incident stroke cases. The objectives of this investigation were
to (1) identify novel metabolites associated with incident
stroke, (2) determine whether candidate stroke metabolites
were mediators of known stroke risk factors, and (3) identify
racial variation in polymorphisms linked to candidate me-
tabolites. Leading candidates were studied and meta-analyzed

with an independent population-based observational study,
the Jackson Heart Study (JHS).7

Methods
Study Populations
The REGARDS study is a prospective cohort study that en-
rolled 30,239 non-Hispanic Black and White participants ≥45
years of age between 2003 and 2007. We report data on in-
cident ischemic stroke cases that were compared to a stratified
cohort random subset of participants. Methods for enrollment
and the design of the cohort study have been described in
detail.8,9 Briefly, participants were contacted by phone and
consented individuals completed a telephone interview to ob-
tain clinical, demographic, and lifestyle information (telephone
response rate 33%; cooperation rate 49%). Exclusion criteria
were medical conditions preventing long-term participation,
past malignancies or active treatment for cancer, nursing home
placement, inability to communicate in English, and race other
than Black or White. Race classification was self-reported
during the telephone interview.10 During an in-home visit 2–3
weeks later, fasting baseline EDTA blood samples were col-
lected by venipuncture.11 Blood samples were stored on ice
until centrifuged and subsequent plasma aliquots were stored in
a central laboratory at −80°C until metabolite profiling analysis.
Participants were contacted every 6 months by telephone to
ascertain hospitalizations and health care encounters for stroke.

Medical records, including neuroimaging and other diagnostic
reports, were retrieved and centrally reviewed by physicians to
confirm the diagnosis, stroke type, and possible causes. In
instances where imaging data were unavailable or if medical
records were judged insufficient, a questionnaire was com-
pleted using a protocol developed for previous stroke clinical
trials12,13 and observational studies.14,15 At least 2 physician
adjudicators reviewed all the available information and clas-
sified events by stroke type and severity for every recorded
potential event. In cases of disagreement, additional adjudi-
cators reviewed the event. A stroke event was recorded if all
reviewers agreed on the occurrence of stroke and stroke
subtype. Further details about the study population and event
verification protocols have been published elsewhere.8

For this analysis, we included all ischemic strokes adjudicated
through April 1, 2019 (n = 1,075) without prebaseline stroke or
TIA and a cohort random sample that was stratified on age, race,
and sex, as previously described (n = 968).16 Ischemic stroke was

Glossary
AF = atrial fibrillation; ARIC = Atherosclerosis Risk in Communities; CVD = cardiovascular disease; DM = diabetes mellitus;
DMGV = dimethylguanidino valeric acid;HR = hazard ratio; JHS = Jackson Heart Study; LVH = left ventricular hypertrophy;
NMR = nuclear magnetic resonance; REGARDS = Reasons for Geographic and Racial Differences in Stroke; SBP = systolic
blood pressure; SNP = single nucleotide polymorphism.
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defined as a focal neurologic deficit lasting >24 hours or nonfocal
neurologic symptoms consistent with stroke on neuroimaging as
defined by the WHO.17 Hemorrhagic stroke (n = 122) cases
included both intracerebral hemorrhage and subarachnoid
hemorrhage, and were excluded from the study.

Covariates
We included covariates as defined in the Framingham stroke
risk score function.2,4 Age, race, and smoking status were
determined by self-report. During the in-home visits, systolic
blood pressure (SBP) was measured twice and the average of
2 measurements was used. Hypertension was defined as
SBP ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or
self-reported use of antihypertensive medications. Diabetes
mellitus (DM) was defined as either current diabetes medi-
cation use (insulin or oral glucose lowering agents) or as
blood glucose concentrations of ≥126mg/dL and ≥200mg/dL
for fasted and nonfasted states, respectively.

Cardiovascular disease (CVD) was defined as self-reported
history of myocardial infarction, coronary revascularization
procedure, or baseline evidence of a prior myocardial in-
farction on the study ECG. Left ventricular hypertrophy
(LVH) was classified by ECG and atrial fibrillation (AF) was
determined from medical history or presence on ECG.

Targeted Metabolomics
Polar metabolites were extracted using protein precipitation
from 30 μL of EDTA plasma. Sample extraction was carried
out over ice and isotopic standards, including proline (13C5,
15N), glutamine (13C5,

15N2), deuterated leucine-d10, and
phenylalanine-d8 for quality control monitoring. Standards
were purchased from Cambridge Isotope Laboratories. The

extracted metabolites from the supernatant were separated on
Xbridge Amide columns (2.1 × 100 mm 3.5 μm; Waters)
applying previously described methods using dual Infinity II
1290 high-performance liquid chromatography pumps and a
6495 QQQ tandem mass spectrometer (Agilent).6,18-20

Human pooled plasma samples were also extracted and injec-
ted after every 10 samples for quality control measurements. In
this study, 162 metabolites were detected, and all peaks were
integrated and reviewed using MassHunter QQQQuantitative
Analysis software (Agilent). Following peak integration, each
metabolite was normalized to the nearest pooled plasma
samples using standard approaches. Due to the nonparametric
distribution of metabolite levels, all values were rank-based
inverse normal transformed prior to statistical analyses.

Statistical Methods
To account for the stratified sampling of the cohort random
sample, weighted proportional hazards analysis was used to
evaluate the associations between exposures and the outcome,
as detailed in prior studies.21-24 Weightings were calculated
based on the stratification factors age, race, and sex. At the
time of analyses, the random cohort included 68 participants
who developed ischemic stroke during the observation pe-
riod. These participants were censored at the time of the
stroke onset, as described elsewhere.23,25 Weighted Cox
proportional hazard regression models were used to calculate
the hazard ratios (HRs) per unit SD of each metabolite with
incident ischemic stroke. To account for the competing risk of
death, cause-specific proportional hazard models were uti-
lized, which is recommended when etiologic questions are of
interest.26 In the base model (model 1), covariates included
age, sex, race, and age by race interaction, similar to other
reports on stroke from REGARDS.16,21,23 A fully adjusted
model further incorporated the Framingham stroke risk fac-
tors: current smoking status, SBP, hypertension, DM, car-
diovascular disease, LVH, and AF (model 2). Bonferroni
correction was used to account for multiple comparisons
based on 162 metabolites (p < 3.09 × 10−4).

The difference in coefficients mediation approach was used to
examine the underlying observed relationships between
clinical risk factors, metabolites, and ischemic stroke. The
HRs for each clinical risk factor were calculated for incident
stroke, with and without adjusting for individual metabolite
mediators. Differences in HR and p values for mediation were
determined. All metabolites associated with incident stroke at
a nominal p ≤ 0.05 were included in these analyses.27,28

Bootstrapping (n = 100) was used to determine 95% CIs of
the difference in HRs of stroke for each risk factor with and
without metabolite adjustment. Statistical analyses were
conducted using SAS version 9.4, STATA version 15, and
survey 4.0 for R version 3.6.

Replication and Meta-analyses
JHS is a prospective, community-based epidemiologic study
of cardiovascular disease in Black participants, which enrolled

Table 1 Characteristics

Cohort random samplea Ischemic stroke

Age, y 65 ± 9 70 ± 9

Female sex 55 50

Black race 39 41

Current smoker 14 16

SBP, mm Hg 127 ± 16 132 ± 17

Hypertension 72 85

DM 20 29

CVD 15 29

LVH 7 15

AF 8 14

Abbreviations: AF = atrial fibrillation; CVD = cardiovascular disease; DM =
diabetes mellitus; HTN = hypertension; LVH = left ventricular hypertrophy;
SBP = systolic blood pressure.
Values are mean ± SD or %.
a Random sample weighted to analytic cohort. Some participants selected
for the cohort random sample also experienced stroke and becamepatients
(n = 68).
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5,306 participants in 2000–2004. The study design, re-
cruitment, and data collection for the JHS have been de-
scribed elsewhere.29 There were 1,944 individuals with
metabolomics data available, including 119 incident ischemic
stroke cases and 1,825 participants without stroke. Metab-
olomics measurements in JHS were performed using targeted
liquid chromatography with tandem mass spectrometry and
have been previously reported.30,31 There were 126 metabo-
lites in common between JHS and REGARDS. Missing data

were excluded from analyses. Statistically significant results
from our discovery in REGARDS (6 metabolites) were
evaluated for replication (with p < 0.008) using Cox pro-
portional hazard analysis of each metabolite and incident is-
chemic stroke. Given the limited number of events in JHS,
models were adjusted for age and sex; because all participants
were Black, race was not included as a covariate. The initial
candidate metabolites did not meet the prespecified threshold
for replication but were directionally consistent with the

Table 2 Metabolites Associated With Incident Ischemic Stroke

Metabolite

REGARDS JHS

HR 95% CI p Value HR 95% CI p Value

Guanosine 1.5 1.33–1.69 4.63E-11a — — —

Cotinine 1.31 1.17–1.45 7.96E-07a 1.28 1.07–1.53 7.00E-03

Gluconic acid 1.31 1.17–1.47 5.31E-06a 1.18 0.96–1.44 1.11E-01

Pseudouridine 1.32 1.18–1.47 1.03E-06a 1.16 0.95–1.42 1.52E-01

DMGV 1.34 1.2–1.5 3.36E-07a 1.17 0.97–1.42 1.04E-01

Acetylneuraminic acid 1.31 1.16–1.47 6.23E-06a — — —

Cytidine 1.25 1.12–1.4 6.03E-05a — — —

Xanthosine 1.22 1.1–1.36 2.50E-04a 0.96 0.8–1.15 6.33E-01

Atorvastatin 1.22 1.1–1.35 1.60E-04a 1.6 0.82–3.13 1.68E-01

C4 carnitine 1.19 1.08–1.31 5.20E-04 1.19 0.98–1.45 8.09E-02

Acetylglutamate 1.21 1.08–1.35 6.07E-04 1.14 0.86–1.51 3.54E-01

Uric acid 1.19 1.07–1.32 1.48E-03 1.27 1.05–1.54 1.53E-02

Metabolite

Meta-analysis REGARDS fully adjusted model

Meta HR Meta p value HR 95% CI p Value

Guanosine — — 1.34 1.18–1.34 7.26E-06a

Cotinine 1.3 1.90E-08a 1.18 1.03–1.18 1.38E-02

Gluconic acid 1.28 2.11E-06a 1.14 1–1.14 4.57E-02

Pseudouridine 1.27 2.75E-05a 1.28 1.13–1.28 1.03E-04a

DMGV 1.28 5.27E-05a 1.18 1.04–1.18 8.27E-03

Acetylneuraminic acid — — 1.14 1–1.14 4.76E-02

Cytidine — — 1.2 1.06–1.2 3.32E-03

Xanthosine 1.09 4.63E-01 1.13 1.13–1 5.35E-02

Atorvastatin 1.23 8.12E-05a 1.16 1.03–1.16 1.10E-02

C4 carnitine 1.19 1.03E-04a 1.12 1–1.12 4.88E-02

Acetylglutamate 1.21 8.64E-05a 1.15 1.02–1.15 2.18E-02

Uric acid 1.21 7.64E-05a 1.07 0.95–1.07 2.74E-01

Abbreviations: DMGV = dimethylguanidino valeric acid; HR = hazard ratio; JHS = Jackson Heart Study; REGARDS = Reasons for Geographic and Racial
Differences in Stroke.
HRs represent the HRs of incident stroke per unit of SD of the baseline level of eachmetabolite. REGARDSmodel: age + race + sex + age*race +metabolite; JHS
model: age + sex + metabolite; fully adjusted model: age + race + sex + age*race + smoking + atrial fibrillation + hypertension + diabetes + cardiovascular
disease + left ventricular hypertrophy.
a Values exceed the Bonferroni-corrected threshold.
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findings inREGARDS.Given the limited number of events in JHS,
we subsequently performed meta-analysis of the 126 metabolites
identified as common between the 2 studies under a random
effects model using the open-source METASOFT software tool.
For meta-analysis, significance was set at p < 3.97 × 10−4, corre-
sponding to the Bonferroni threshold for 126 tests.32

Genome-wide Association Studies
Genotyping was conducted using the Illumina Infinium
Multi-Ethnic AMR/AFR Bead Chip (MEGA) array33 in
REGARDS. Preimputation quality control included removal
of internal duplicates, HapMap controls, and sex mismatches.
Principal component analysis was performed, using EIGEN-
SOFT software (version 7.2.1), to estimate population

stratification. Imputation using cleaned single nucleotide
polymorphisms (SNPs) was conducted with the Transo-
mics for Precision Medicine cosmopolitan reference panel.
A total of 15, 248, and 746 variants with imputation quality
(R2) > 0.3 and minor allele frequency >0.01 were retained.
SNPs in Hardy-Weinberg disequilibrium (p < 10−6) were
removed from further analysis. Genome-wide association
was performed to identify SNPs associated with the top
candidate metabolites and to examine associations sepa-
rately by race. Models were adjusted for age, sex, and the
first 3 genetic principal components. These models were
conducted separately by race and meta-analyzed, with
analysis carried out in PLINK. The regional association
plots were created using SAS version 9.4. The multiple

Table 3 Associations Between Risk Factors and Metabolites

Hypertension DM2 CVD

OR 95% CI p Value OR 95% CI p Value OR 95% CI p Value

Guanosine 1.51 1.23–1.84 6.40E-05a 1.29 1.07–1.55 8.42E-03 1.31 1.02–1.69 3.40E-02

Cotinine 1.10 0.91–1.32 3.11E-01 0.94 0.79–1.13 5.39E-01 1.20 0.98–1.47 8.54E-02

Gluconic acid 1.23 1.02–1.48 2.64E-02 2.63 2.03–3.40 2.42E-13a 1.04 0.81–1.33 7.51E-01

Pseudo-uridine 1.24 1.03–1.48 2.17E-02 0.97 0.81–1.15 6.94E-01 1.18 0.94–1.49 1.60E-01

DMGV 1.51 1.26–1.81 1.01E-05a 1.51 1.25–1.81 1.18E-05a 1.23 0.97–1.56 8.58E-02

Acetyl-neuraminic acid 1.65 1.37–1.99 2.06E-07a 2.03 1.60–2.57 6.18E-09a 1.24 0.98–1.56 6.84E-02

Cytidine 1.46 1.22–1.75 5.01E-05a 1.08 0.90–1.30 3.81E-01 1.29 1.05–1.59 1.64E-02

Uric acid 1.54 1.29–1.86 3.49E-06a 1.64 1.36–1.99 3.12E-07a 1.11 0.91–1.35 3.13E-01

Atorvastatin 1.24 0.91–1.69 1.70E-01 1.49 1.15–1.94 2.90E-03 1.86 1.41–2.46 1.16E-05a

C4-carnitine 1.29 1.08–1.53 4.40E-03 1.14 0.94–1.38 1.73E-01 1.27 1.04–1.55 1.91E-02

Acetyl-glutamate 1.11 0.93–1.33 2.51E-01 1.54 1.27–1.86 9.62E-06a 1.22 0.98–1.52 7.78E-02

AF Smoking LVH

OR 95% CI p Value OR 95% CI p Value OR 95% CI p Value

Guanosine 0.99 0.73–1.35 9.60E-01 1.11 0.89–1.38 3.72E-01 1.04 0.80–1.35 7.68E-01

Cotinine 1.23 0.95–1.61 1.23E-01 16.18 7.60–34.46 7.39E-13a 1.09 0.86–1.37 4.95E-01

Gluconic acid 1.09 0.81–1.48 5.61E-01 1.32 1.05–1.65 1.65E-02 1.23 0.97–1.57 9.37E-02

Pseudo-uridine 1.15 0.89–1.48 2.75E-01 0.96 0.77–1.20 7.47E-01 1.03 0.80–1.34 8.06E-01

DMGV 1.22 0.92–1.61 1.69E-01 1.08 0.86–1.36 5.27E-01 1.19 0.92–1.54 1.88E-01

Acetyl-neuraminic acid 1.13 0.85–1.50 4.10E-01 1.35 1.10–1.67 4.71E-03 1.26 0.98–1.62 6.83E-02

Cytidine 0.96 0.74–1.26 7.79E-01 0.97 0.79–1.19 7.88E-01 1.11 0.86–1.45 4.20E-01

Uric acid 0.99 0.76–1.28 9.26E-01 1.01 0.84–1.22 9.04E-01 1.32 0.99–1.77 5.85E-02

Atorvastatin 1.40 0.95–2.06 9.30E-02 1.21 0.86–1.69 2.71E-01 1.11 0.76–1.62 6.04E-01

C4-carnitine 1.25 0.98–1.60 7.41E-02 0.89 0.71–1.12 3.16E-01 0.99 0.74–1.32 9.47E-01

Acetyl-glutamate 0.97 0.76–1.23 8.04E-01 1.28 1.04–1.59 2.29E-02 1.05 0.79–1.39 7.52E-01

Abbreviations: AF = atrial fibrillation; CVD = cardiovascular disease; DM2 = diabetes mellitus type 2; DMGV = dimethylguanidino valeric acid; LVH = left
ventricular hypertrophy; OR = odds ratio.
ORs represent the cross-sectional odds of each risk factor per unit of SD in the baseline level of eachmetabolite. Models were adjusted for age, sex, and race.
a Values exceed the Bonferroni-corrected threshold.
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testing corrected significance threshold for genome-wide
significance was set at p < 5 × 10−8.

Standard Protocol Approvals, Registrations,
and Patient Consents
The REGARDS study was approved by the institutional re-
view boards of all participating institutions and written in-
formed consent was obtained from all participants. The
metabolomics analysis was also approved by theMass General
Brigham institutional review board.

Data Availability
Qualified investigators may request access to obtain de-
identified data in accordance with institutional data sharing
agreements.

Results
Study Population
Over an average follow-up of 7.1 ± 4.5 years, there were 1,075
ischemic stroke cases identified in REGARDS. Participants
who developed an ischemic stroke during the follow-up pe-
riod were approximately 4 years older, more likely to be Black,
and had higher rates of comorbidities as defined by the Fra-
mingham stroke risk score function2,4 and including hyper-
tension, DM, CVD, LVH, and AF (Table 1).

Associations ofMetabolitesWith Ischemic Stroke
Nine metabolites surpassed the Bonferroni-adjusted thresh-
old in Cox proportional hazards models adjusting for age, sex,
race, and age by race interaction (Table 2). The 9 metabolites
included 4 nucleosides (guanosine, pseudouridine, cytidine,
and xanthosine), 3 amino acid derivatives (dimethylguanidino
valeric acid [DMGV], acetylneuraminic acid, and gluconic
acid), and 2 exogenous compounds (atorvastatin and the
nicotine metabolite cotinine).

Replication and Meta-analyses With the
JHS Cohort
There were 126 metabolites measured in common between
the REGARDS and JHS cohorts. Of the 9 leading metabolites
identified in REGARDS, 3 were not measured in JHS (gua-
nosine, acetylneuraminic acid, and cytidine), while an addi-
tional 3 (uric acid, C4-carnitine, and acetylglutamate) crossed
the significance threshold following meta-analysis (Table 2).
Except for xanthosine, HRs were similar for each metabolite
between the 2 cohorts. Uridine, the precursor of pseudour-
idine,34 had the strongest association with incident ischemic
stroke in JHS (HR 0.69 per unit of SD in uridine level, 95% CI
0.57–0.83; p = 7.00 × 10−5) and had a similar direction of
association in the REGARDS study (HR 0.87, 95% CI
0.79–0.97; p = 1.23 × 10−2), but did not remain significant
following meta-analysis (meta HR 0.78; meta p = 3.61 × 10−2)

Table 4 Mediation Role of Metabolites Between Each Risk Factor and Incident Ischemic Stroke

Stroke risk factors, mediating
metabolites

HR of risk factor without
metabolite

HR of risk factor with
metabolite HR of metabolite Mediation % p Value

Smoking

Cotinine 1.84 (1.37–2.49) 1.37 (0.97–1.94) 1.23 (1.09–1.39) 48.3 1.60E-04

Hypertension

Guanosine 1.91 (1.49–2.46) 1.71 (1.32–2.21) 1.44 (1.27–1.63) 17.6 7.57E-04

DMGV 1.91 (1.49–2.46) 1.76 (1.36–2.27) 1.28 (1.14–1.43) 13.2 1.15E-04

Acetylneuraminic acid 1.91 (1.49–2.46) 1.76 (1.36–2.29) 1.24 (1.10–1.40) 12.6 6.67E-03

Cytidine 1.91 (1.49–2.46) 1.81 (1.40–2.34) 1.21 (1.08–1.35) 8.2 1.52E-03

Uric acid 1.91 (1.49–2.46) 1.83 (1.42–2.37) 1.14 (1.03–1.27) 6.5 3.64E-02

DM

Gluconic acid 1.73 (1.36–2.20) 1.51 (1.18–1.93) 1.23 (1.09–1.39) 25.5 1.37E-04

DMGV 1.73 (1.36–2.20) 1.61 (1.27–2.05) 1.30 (1.16–1.45) 13.0 1.18E-03

Acetylneuraminic acid 1.73 (1.36–2.20) 1.54 (1.20–1.97) 1.23 (1.09–1.38) 21.2 5.31E-03

Uric acid 1.73 (1.36–2.20) 1.64 (1.29–2.09) 1.13 (1.01–1.26) 9.4 2.28E-02

Acetylglutamate 1.73 (1.36–2.20) 1.62 (1.27–2.07) 1.17 (1.05–1.31) 11.8 8.44E-03

CVD

Atorvastatin 1.98 (1.53–2.56) 1.91 (1.48–2.47) 1.18 (1.06–1.31) 5.3 1.22E-03

Abbreviations: CVD = cardiovascular disease; DM = diabetes mellitus; DMGV = dimethylguanidino valeric acid; HR = hazard ratio.
Model: adjusted for age, race, sex, age by race interaction, risk factor.
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after correction for multiple testing. However, cotinine, glu-
conic acid, pseudouridine, DMGV, and atorvastatin as well as
3 additional metabolites (uric acid, C4-carnitine, and acetyl-
glutamate) were significant after meta-analysis (Table 2).

Metabolites and Traditional Risk Factors
for Stroke
We next examined which of the leading metabolites were asso-
ciated with stroke independent of traditional stroke risk factors.
We carried forward the metabolites identified in meta-analysis
(cotinine, gluconic acid, pseudouridine, DMGV, atorvastatin,
uric acid, C4-carnitine, and acetylglutamate) and the 3 metab-
olites that were unique in REGARDS (guanosine, acetylneur-
aminic acid, and cytidine). Following adjustment for covariates
defined by the Framingham stroke risk function, 2 metabolites
remained associated with incident ischemic stroke: guanosine
and pseudouridine (Table 2).

To understand the potential role of the top candidate metab-
olites, we next examined associations with individual stroke risk
factors. In age-, sex-, and race-adjusted multivariable models,
hypertension was associated with guanosine, DMGV, ace-
tylneuraminic acid, cytidine, and uric acid (Table 3). Metabo-
lites associated with DM included gluconic acid, DMGV,
acetylneuraminic acid, uric acid, and acetylglutamate. Cotinine
was associated with a history of smoking and atorvastatin was
associated with CVD. Pseudouridine and C4-carnitine were
not associated with any risk factors (Table 3).

We next determined whether the metabolites mediated the
associations of risk factors with incident stroke (Table 4). As a

proof of principle, we first examined cotinine, a metabolite of
nicotine after smoking,35 reasoning that this metabolite would
partially mediate the association between current smoking
and incident ischemic stroke. Cotinine was highly associated
with current smoking status (odds ratio 16.2 of being a
smoker per unit of SD of cotinine level, 95% CI 7.6–34.5; p =
7.39 × 10−13) and mediated 48% of the association between
smoking and incident ischemic stroke (HR without mediator
1.84, 95% CI 1.37–2.49; HR with mediator 1.37, 95% CI
0.97–1.94; mediation p = 1.60 × 10−4). Guanosine was as-
sociated with hypertension (Table 4) and mediated the in-
cidence of ischemic stroke through hypertension by 17.6%
(HR without mediator 1.91, 95% CI 1.49–2.46; HR with
mediator 1.71, 95% CI 1.32–2.21; mediation p = 7.57 × 10−4).
Pseudouridine was not a significant mediator of any of the
stroke risk factors.

Genome-wide Association Studies
Because pseudouridine and guanosine were identified in-
dependent of traditional stroke risk factors, we next evaluated
whether genetic variation could account for some of the dif-
ference in levels of these metabolites using genome-wide as-
sociation studies. Black and White participants were first
analyzed separately and then jointly in these analyses (Table 5).
Among individuals of Black ancestry, we found a genome-wide
significant association signal for pseudouridine on chromo-
some 6 (Figure, A). The lead SNP rs66484859 (GRCh37/
hg19 genome assembly, chr6:101578136) minor allele was
associated with higher pseudouridine level (β = 0.30; p = 2.71 ×
10−8) (Figure, B), and this was located within the GRIK2
(glutamate ionotropic receptor kainate type subunit 2) locus.

Table 5 Single Nucleotide Polymorphisms Associated With Plasma Pseudouridine

SNP Gene

African American ancestry European ancestry All

β p Value β p Value β p Value

rs9498623 GRIK2 0.29 4.84E-08a −0.19 3.31E-01 0.23 4.07E-06

rs71654810 GRIK2 0.29 4.64E-08a −0.24 1.76E-01 0.22 7.63E-06

rs17062194 GRIK2 0.30 2.99E-08a −0.19 3.31E-01 0.24 1.94E-06

rs66484859 GRIK2 0.30 2.64E-08a −0.19 3.31E-01 0.24 1.72E-06

rs7741281 GRIK2 0.30 2.71E-08a −0.19 3.31E-01

rs12900886 MFGE8; ABHD2 0.11 1.78E-01 0.26 2.97E-06 0.24 2.15E-08a

rs12324224 MFGE8; ABHD2 0.11 1.86E-01 0.26 2.97E-06 0.24 2.48E-08a

rs71149248 MFGE8; ABHD2 0.11 1.78E-01 0.25 6.50E-06 0.23 3.39E-08a

rs4360903 MFGE8; ABHD2 0.15 1.35E-01 0.27 1.12E-06 0.25 2.36E-08a

rs11854739 MFGE8; ABHD2 0.15 1.35E-01 0.27 2.12E-06 0.25 3.00E-08a

rs35864015 MFGE8; ABHD2 0.15 1.22E-01 0.26 3.88E-06 0.25 4.52E-08a

rs34631560 MFGE8; ABHD2 0.11 2.99E-01 0.29 4.63E-07 0.26 2.11E-08a

Abbreviation: SNP = single nucleotide polymorphism.
a Exceeded the genome-wide association study p value threshold (5.0 × 10−8).
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In individuals of White ancestry, the association of pseu-
douridine with the chromosome 6 GRIK2 locus was not
present (Table 5), nor was any other locus; however, when
both Black and White ancestry groups were combined, a
second region of association was identified on chromosome
15, with lead SNP rs34631560 (GRCh37/hg19 genome
assembly, chr15:88973692) adjacent to the MFGE8 and
ABHD2 (CAMRA) loci (Figure, C and D; Table 5). This
association was larger in White participants (Table 5).
Neither of the leading SNPs for pseudouridine was associ-
ated with ischemic stroke risk and we did not identify any
genetic loci in association with guanosine level. Of the other
metabolites identified in the base model, DMGV level was
associated with the AGXT2 (alanine-glyoxylate amino-
transferase 2) gene locus, which has previously been
reported.36,37

Classification of Evidence
This study provides Class II evidence that guanosine and
pseudouridine are associated with incident stroke.

Discussion
In this study, we performed targeted metabolomic profiling in
the biracial REGARDS cohort to identify plasma metabolites
associated with risk of incident ischemic stroke, followed by
meta-analysis with the JHS cohort. Following adjustment
for traditional stroke risk factors, there were 2 nucleoside

metabolites, guanosine and pseudouridine, that remained
significant. We also examined whether the leading metabolites
mediated associations of other risk factors with stroke and
found that guanosine mediated 17.6% of the association of
hypertension with stroke. Finally, we observed a race-specific
genetic locus associated with pseudouridine level, but this was
not associated with stroke risk. Taken together, our findings
identify 2 novel nucleosides linked to stroke risk that do not
appear to be related to underlying genetic variation or to
known stroke risk factors. Rather, these nucleosides most
likely reflect unrecognized environmental or biological risk
pathways.

Our analysis demonstrated that guanosine was a partial me-
diator of the relationship between hypertension and incident
ischemic stroke risk and it also remained associated with
stroke risk independent of risk factors. These results could
indicate that, in addition to hypertension, guanosine may also
serve as a biochemical marker of a process not captured by
traditional stroke risk factors. For example, some evidence
suggests that guanosine directly contributes to endothelial
injury, limiting proliferation and inhibiting cell viability in a
dose-dependent fashion.38 In addition, the level of guanosine
and other nucleosides has been linked to dietary intake and
subsequent effects on colonic microbiota.39–42 It is therefore
possible that the increased risk associated with elevated gua-
nosine may be related to dietary patterns, which is an im-
portant area for future research.

Figure Manhattan Plots and Regional Association Plots for Pseudouridine Genome-wide Association Studies

(A) Manhattan plot of participants with African American ancestry for markers associated with pseudouridine. (B) Manhattan plot of participants with
European American ancestry formarkers associatedwith pseudouridine. (C)Manhattan plot of participants with African and European American ancestry for
markers associated with pseudouridine. (D) Regional association plot for risk loci on chromosome 6 (African American ancestry population only; rs66484859,
GRIK2 region). (E) Regional association plot for risk loci on chromosome 16 (rs34631560, MFGE8 region).
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We also found that pseudouridine, a modified isomer of uri-
dine, was associated with incident ischemic stroke. Further-
more, no mediation effects of pseudouridine were detected in
the relationship between risk factors and stroke risk. Pseu-
douridine is themost abundant posttransitional modification of
RNA, in which a uridine residue is irreversibly isomerized into
pseudouridine. Pseudouridylation can convert nonsense co-
dons into sense codons,43 alter mRNA splicing and stability,44

and can also facilitate noncanonical base pairing, each of which
is regulated in response to environmental stress signals.34,45 As
a biomarker, pseudouridine is not converted back to uridine
and enters the circulation following release after RNA hydro-
lysis. Therefore, pseudouridine levels may serve as a reflection
of cellular stress and turnover. We also observed that uridine
was inversely related to stroke risk in both cohorts, although the
significance level did not surpass adjustment for multiple hy-
pothesis testing. Nevertheless, associations in the opposite di-
rection for uridine and pseudouridine highlight the possible
precursor–product role of these pyrimidines in stroke risk.

To further investigate the role of guanosine and pseudouridine
as risk markers for stroke, we examined whether genetic vari-
ation could account for the observed risk. We did not identify
any SNPs associated with guanosine. SNPs within or adjacent
to 2 separate loci were associated with pseudouridine, including
rs66484859 in the GRIK2 gene in individuals of African an-
cestry and rs34631560 and rs34631560 adjacent to theMFGE8
and ABHD2 genes, predominantly in individuals of European
ancestry. None of these SNPs or the loci in general have been
reported in association with ischemic stroke,46 including in
recent studies that collectively studied more than 16,000 stroke
cases.47,48 Taken together with the available known biology of
guanosine and pseudouridine, we hypothesize that elevated
levels of these nucleosides have an acquired rather than genetic
basis for the relationship to stroke risk. Given the substantial
systematic and structural differences in the lived experience
between Black andWhite individuals in theUnited States, there
are a number of potential social and environmental factors that
could contribute to metabolite composition such as income,
occupation, education, diet, or housing conditions. Future
work is needed to systematically evaluate racial disparities in
these factors that are linked to each of the identified risk
markers. It is also important to note that our findings would not
imply that either nucleoside is a direct causal agent for incident
stroke, but rather (and perhaps more likely) each metabolite
may be an indirect marker.

Several prior studies have evaluated metabolites associated
with stroke, although important differences exist in compar-
ison to our study. A recent meta-analysis of 7 cohorts was
restricted to European ancestry populations and included 147
metabolites measured by nuclear magnetic resonance (NMR)
spectroscopy.49 The combined cohorts included 38,797
controls and 1,277 ischemic stroke events, a similar number as
this study. Based on the lower sensitivity of NMR, higher
abundance metabolites were studied. Histidine, pyruvate,
phenylalanine, and 7 types of lipoprotein subparticles were

associated with incident stroke. Atherosclerosis Risk in
Communities (ARIC), a prospective epidemiologic study of
participants of European and African ancestry, measured 245
metabolites that included 346 incident ischemic stroke
cases.50 The ARIC study identified tetradecanedioate and
hexadecanedioate as stroke risk factors, but no other associ-
ations remained significant in fully adjusted models.50 It is
possible that we did not verify these associations due to dif-
ferences in metabolome coverage, differences in the cohort
design, and possibly difference in the time intervals from
sampling to stroke onset. However, it is also possible the prior
findings, from a smaller number of cases, were chance
findings.

There are several strengths of our study that are worth noting,
including the large number of incident stroke cases and the
inclusion of Black andWhite participants. We also leveraged a
targeted tandem mass spectrometry platform that was
enriched for biologically informative metabolites and has high
specificity and sensitivity due to the tandem quadrupole de-
sign. There are also some limitations. First, there is some
uncertainty about the role of long-term metabolite dynamics,
diluting any observable relationship with future events in
longitudinal studies. Among metabolomics studies, there are
also analytical differences depending on the measurement
platform, sampling handling and storage, and extraction
procedures, each of which could introduce analytical varia-
tion. However, these factors would tend to bias results to-
wards the null hypothesis, and therefore may strengthen our
findings identified in replication and meta-analysis across 2
independent studies.

Our study identified that pseudouridine and guanosine were
associated with incident ischemic stroke independently of
traditional stroke risk factors. Mediation and genetic analyses
suggest that, together with the known biology of these nu-
cleosides, they may represent markers for acquired and pos-
sibly lifestyle-related exposures. Future research may further
elucidate the role of these metabolites in linking to stroke risk.

Acknowledgment
The authors thank the investigators, staff, and participants of
the REGARDS and JHS studies for their contributions. A full
list of participating REGARDS investigators and institutions
can be found at regardsstudy.org and for the JHS at
jacksonheartstudy.org.

Study Funding
Thisworkwas supported by theNIH(R01NS099209) (W.T.K.),
American Heart Association (AHA) (17CSA33550004)
(W.T.K.), and NIH P20 GM135007 (M.C.). REGARDS is
supported by NIH R01 HL13666 and by the cooperative agree-
ment U01 NS041588 co-funded by the National Institute of
Neurologic Disorders and Stroke (NINDS) and the National
Institute on Aging (NIA), NIH, Department of Health and Hu-
man Services. The JHS is supported and conducted in collabora-
tion with Jackson State University (HHSN268201800013I),

Neurology.org/N Neurology | Volume 98, Number 21 | May 24, 2022 e2105

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://www.regardsstudy.org
https://www.jacksonheartstudy.org
http://neurology.org/n


Tougaloo College (HHSN268201800014I), the Mississippi State
Department of Health (HHSN268201800015I), and the Univer-
sity of Mississippi Medical Center (HHSN268201800010I,
HHSN268201800011I, and HHSN268201800012I) contracts
from the National Heart, Lung, and Blood Institute (NHLBI) and
the National Institute on Minority Health and Health Disparities
(NIMHD). The content is solely the responsibility of the authors
and the views expressed in this article are those of the authors and
do not necessarily represent the official views of the NINDS, NIA,
NHLBI, NIMHD, or the US Department of Health and Human
Services. Representatives of NINDSwere involved in the review of
the manuscript but were not directly involved in the collection,
management, analysis, or interpretation of the data.

Disclosure
Z. Ament, A. Patki, N. Chaudhary, V.M. Bhave, A. Garcia
Guarniz, Y. Gao, and R. Gerszten report no disclosures relevant
to the manuscript. A. Correa received grant funding to the JHS,
which is supported in collaboration with Jackson State Uni-
versity (HHSN268201800013I), Tougaloo College (HHSN
268201800014I), the Mississippi State Department of Health
(HHSN268201800015I), and the University of Mississippi
Medical Center (HHSN268201800010I, HHSN268201800
011I, and HHSN268201800012I). S.E. Judd received funding
to her institution for REGARDS research from NIH R01
HL13666 and from the cooperative agreement of NINDS,
NIH, Department of Health and Human Services (U01
NS041588). M. Cushman received grant funding to her in-
stitution by NIH P20 GM135007. L. Long reports no disclo-
sures relevant to the manuscript. M.R. Irvin received funding to
his institution for REGARDS research from NIH R01
HL13666 and from the cooperative agreement of NINDS,
NIH, Department of Health and Human Services (U01
NS041588). W.T. Kimberly received funding to his institution
by NIH grant R01 NS099209 and AHA grant 17CSA3
3550004. Go to Neurology.org/N for full disclosures.

Publication History
Received by Neurology August 4, 2021. Accepted in final form
February 4, 2022. Solicited and externally peer reviewed. The handling
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