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The noradrenergic locus coeruleus (LC) is a controller of brain and behavioral states.
Activating LC neurons en masse by electrical or optogenetic stimulation promotes a ste-
reotypical “activated” cortical state of high-frequency oscillations. However, it has been
recently reported that spontaneous activity of LC cell pairs has sparse yet structured
time-averaged cross-correlations, which is unlike the highly synchronous neuronal activ-
ity evoked by stimulation. Therefore, LC population activity could consist of distinct
multicell ensembles each with unique temporal evolution of activity. We used nonnega-
tive matrix factorization (NMF) to analyze large populations of simultaneously recorded
LC single units in the rat LC. NMF identified ensembles of spontaneously coactive LC
neurons and their activation time courses. Since LC neurons selectively project to spe-
cific forebrain regions, we hypothesized that distinct ensembles activate during different
cortical states. To test this hypothesis, we calculated band-limited power and spectro-
grams of local field potentials in cortical area 24a aligned to spontaneous activations of
distinct LC ensembles. A diversity of state modulations occurred around activation of
different LC ensembles, including a typical activated state with increased high-
frequency power as well as other states including decreased high-frequency power.
Thus—in contrast to the stereotypical activated brain state evoked by en masse LC
stimulation—spontaneous activation of distinct LC ensembles is associated with a mul-
titude of cortical states.
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Flexible behavior is associated with transitions across diverse cortical states. For exam-
ple, various states of wakefulness, perceptual ability, and behavioral activity are associ-
ated with different cortical local field potential (LFP) and electroencephalogram (EEG)
states, each with its own clear spectrotemporal pattern of neural oscillations (1–3).
Behavioral state transitions, such as waking from sleep or entering a state of heightened
stress and reacting more quickly to stimuli, are associated with cortical state transition.
These changes are not necessarily driven by external stimuli. Instead, cortical state can
be controlled by factors internal to the organism (e.g., sleep need and perceived stress)
and therefore arise from self-organized neuronal interactions. It remains unclear exactly
which interactions among neurons control cortical states.
Cortical states are mediated, at least in part, by the brainstem nucleus the locus coe-

ruleus (LC). The LC releases norepinephrine to modulate neuronal excitability (4–7).
Noradrenergic neuromodulation of cortical state has been studied using electrical or
optogenetic stimulation. Such stimulation evokes highly synchronous activation of
many LC neurons because this brainstem nucleus (in rats) contains ∼1,600 neurons
tightly packed into a small volume of ∼200 × 500 × 1,000 μm (8, 9). Even a low
stimulation current (0.03 to 0.05 mA) pulse evokes spiking up to 400 μm from the
stimulation site in the rat LC (10) and thus synchronously activates many LC neurons.
Such en masse LC population activation evokes an activated cortical state characterized
by an increase in high-frequency power and a decrease in low-frequency power, regard-
less of whether the subject is anesthetized or not (10–13). Critically, it is still unknown
how spontaneous population activity in the LC, as opposed to LC activity evoked by
stimulation, relates to cortical states.
Although noradrenergic neuromodulation of cortical state has largely been studied

using external stimulation of LC, cortical state emerges from spontaneously occurring
internal neuronal interactions. Spontaneous LC neuronal population activity has been
traditionally thought to be highly synchronous (14–19), akin to the en masse popula-
tion activity evoked by LC stimulation. However, this standard view might not
describe spontaneous LC activity accurately. Graph theoretic analysis of time-averaged
cross-correlations among pairs of spontaneously active LC neurons in anesthetized rats
showed sparse yet structured pairwise correlations that are not characteristic of highly
synchronous population activity (20). This suggests that LC population activity
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potentially consists of multicell ensembles that become active at
different times. Importantly, however, pairwise graph theoretic
analyses were based upon time-averaged measures (20) and
could not detect multicell ensembles or resolve ensemble activ-
ity over time.
Here, we used nonnegative matrix factorization (NMF) (21)

to analyze large populations of simultaneously recorded single
units in the rat LC. NMF decomposes the time course of popu-
lation activity into often-recurring population firing patterns,
from which ensembles of neurons that often fire together can
be identified. Critically, NMF also quantifies how strongly a
population firing pattern or an ensemble was active at any given
time. We applied NMF to simulated synthetic spike trains and
found that NMF detects the precise neuronal composition and
activation time courses of each ensemble. In comparison, graph
theoretic analysis of time-averaged correlations could not detect
ground truth ensemble activity in these synthetic spike trains.
Importantly, unlike graph theoretic analyses operating on time-
averaged pairwise correlations of neuronal activity, NMF
resolved the activity of discrete LC ensembles over time. This
allowed us to demonstrate that LC population activity consists
of discrete LC ensembles each with its own evolution of activity
over time.
Given that LC neurons selectively project to specific forebrain

regions, we investigated how individual LC ensembles are related
to different cortical states. One possibility is that different ensem-
bles may simply evoke the stereotypical activated state (as
observed after LC stimulation) but with different ensembles being
associated with variations in cortical activated state duration or
power magnitude. A second and more intriguing possibility is
that distinct LC ensembles activate during a wide range of corti-
cal states that have different spectral signatures. This would sup-
port a new perspective that LC ensembles may contribute to the
diverse set of cortical states that characterize flexible behavior.
Since our methods allowed tracking of the spontaneous tem-

poral dynamics of individual LC ensembles, we could relate
ongoing LC ensemble dynamics to cortical state dynamics. We
calculated the cortical area 24a LFP band-limited power (BLP)
and power spectra in a window aligned to the spontaneously
occurring activation times of each LC ensemble. In contrast to
the standard view that LC population activity evokes a stereo-
typical activated cortical state, we observed heterogenous corti-
cal states with different spectral and temporal properties that
depended on which LC ensemble was active.

Results

We recorded many LC single units simultaneously (range: 5 to
34 units; average: 19 units; n = 15 male rats) under urethane
anesthesia using a 32-electrode silicon probe confined to the
core of the LC nucleus. Probe location was verified histologi-
cally in coronal tissue sections. Neuronal identity was con-
firmed at the end of the experiments using intraperitoneal
injection of the α-2 agonist clonidine, which inhibited spiking
on all electrodes. Spikes recorded from outside the LC core
would not have been inhibited due to the lack of α-2-adrenergic
receptors in nearby brain structures (22). We simultaneously
recorded cortical LFP (8-kHz lowpass–filtered) from cortical
area 24a (anterior cingulate cortex) (23) using a tungsten elec-
trode in 9 of the 15 rats.

NMF Detects the Neuronal Composition and Activation Times
of Ensembles. It is currently unknown whether the spontane-
ous LC population activity that we recorded is composed of

ensembles (subsets of simultaneously active neurons) and how
ensemble activity changes over time. A graph theoretic commu-
nity detection analysis of time-averaged pairwise correlations in
the LC demonstrated groups of units linked by pairwise time-
averaged correlations (20). This result is compatible with the
possibility that spontaneous LC activity consists of ensembles.
However, this analysis may fail to detect ensembles if their
interaction is based on higher-order interactions between larger
groups of neurons that cannot be linearly decomposed into
pairwise correlations (24). Moreover, such time-averaged analy-
sis cannot identify the times at which individual ensembles are
active, which is needed for studying the relationship between
spontaneous LC ensemble activity and ongoing cortical state.
Thus, we need a methodology to detect ensembles and measure
their activation times. Among available alternatives (25), we
chose to use NMF because it offers several advantages given the
nature of spike trains (26, 27). First, NMF linearly decomposes
spike trains based only on nonnegative constraints on the
detected firing patterns and their strength of activation over
time. This nonnegativity constraint is a minimal and biologi-
cally grounded assumption for spike trains. Second, unlike
decompositions that are based on orthogonality constraints
(28), NMF has been designed and proven to work well even
when different ensembles are nonorthogonal because they acti-
vate partly overlapping in time or because some neurons partic-
ipate in multiple ensembles. We first use synthetic spike trains
with ground truth ensemble activity patterns to demonstrate
how NMF goes deeper than the graph theory analysis previ-
ously applied to LC data (20) to identify recurring firing
patterns, extract ensembles from these firing patterns, and
determine the ensemble activation dynamics over time.

Fig. 1 illustrates how NMF works using three different hypo-
thetical scenarios of simulated spike trains. Each scenario con-
sisted of simulated spike trains from 10 single neurons. The
ground truth ensemble dynamics were different in each scenario.
In the first scenario (Fig. 1A), two ensembles (ensemble 1: units
2 to 7; ensemble 2: units 9 to 10) were strongly activated at dis-
tinct times. In the second scenario (Fig. 1B), the same two
ensembles were strongly activated at distinct times in the first
and third part of the simulation, were inactive in the second
part, and then were simultaneously coactivated in the last part
of the simulation. Finally, in the third scenario (Fig. 1C), we
simulated three distinct ensembles (ensemble 1: units 2 to 4;
ensemble 2: units 5 to 7; ensemble 3: units 9 and 10). Ensem-
bles 1 and 2 had different temporal activation patterns with
often only one of the two ensembles being active, but they also
had a period in which they were both strongly coactive.

NMF decomposes the rate matrix containing the population
vectors at all time points into a sum of K nonnegative spatial
modules, each of which is multiplied by a nonnegative activa-
tion coefficient. Formally, a spatial module is a vector (one
entry per neuron) specifying the relative strength of firing of
each neuron (26, 27). A spatial module may be thought of as
an often-recurring population firing pattern. Thresholding
these spatial module values defines the ensemble of specific sin-
gle units that were significantly active within each module. For
example, in Fig. 1 A and B, NMF identifies spatial module 1 as
a population firing pattern consisting of high activity of units 2
to 7 and low activity for the other units. The high (threshold-
ing-crossing) module values identify units 2 to 7 as the ensem-
ble 1 that was activated in module 1. For each spatial module,
its activation coefficient at any given time describes how
strongly the spatial module (and thus the ensemble of coactive
units within it) is recruited. By thresholding the activation
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Fig. 1. Comparison of NMF versus graph theoretic analysis for detecting ground truth ensemble dynamics from synthetic spike trains. Three different simu-
lated spike rasters were generated to compare the NMF method with the graph theoretic method. (A) Scenario 1 (two ensembles active at distinct times). (B)
Scenario 2 (two ensembles active at distinct and overlapping times). (C) Scenario 3 (three ensembles active at distinct and overlapping times). Top Left, Simu-
lated spike rasters of 10 single units. The spikes belonging to different ground truth ensembles are in different colors. The red lines indicate transitions in
the population activity. Top Right, Simulated ongoing cortical LFP with different cortical states plotted in different colors. Bottom Middle, Binned spike rates of
each unit. Bottom Left, Neuronal groups detected by graph theoretic analysis of time-averaged pairwise correlations. White indicates a significant time-
averaged correlation for the pair defined by each axis. Groups of coactive neurons are indicated by the green and red boxes (SI Appendix, Materials and
Methods). Bottom Right, NMF decomposition into the spatial modules and their activation time courses.
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coefficients, we detected the times of occurrence of each spatial
module (population firing pattern) and of the associated ensem-
ble. These will be referred to as “ensemble activation times.”
The number of spatial modules (K ) was determined, both

for these synthetic data and for actual LC population record-
ings, based on two criteria. First, the chosen K explained a high
amount of variance in the data with the fewest possible spatial
modules. K was in the “elbow” region of the reconstruction
error, such that a higher K would have given diminishing
returns in data reconstruction accuracy when plotted as a func-
tion of the possible number of spatial modules (SI Appendix,
Fig. S1). Second, the selected K yielded stable spatial modules
regardless of the random initialization of the procedure (SI
Appendix, Materials and Methods).
We previously used graph theoretic analysis of time-averaged

cross-correlations to detect correlated activity among multiple
pairs of LC neurons (20). To understand how it compares with
NMF, we performed this previous analysis on the synthetic
spike trains. Despite the difference in ensemble dynamics,
ensemble composition, and number of ensembles across scenar-
ios, graph theory detected the same two groups of strongly cor-
related units in each scenario (Fig. 1). The temporal activation
patterns of these neuronal groups cannot be obtained because
graph theoretic analysis uses time-averaged activity. Therefore,
while graph theoretic analysis could not identify the precise
neuronal composition of ensembles or their activation dynam-
ics, NMF identified these ensemble properties correctly in all
three simulated scenarios.

Spontaneous LC Population Activity Consists of Distinct
Ensembles with Largely Nonoverlapping Activation Dynamics.
We assessed whether LC population activity consists of ensem-
bles using NMF on the population matrix containing the time-
dependent binned spike count vectors of simultaneously
recorded single units independently for each rat. We binned
activity in 100-ms sliding windows, which is the time scale cap-
turing most of the synchrony among LC single-unit pairs (20).
NMF found 146 ensembles of coactive LC single units from

15 rats. Fig. 2A shows an example ensemble from a recording
of 24 single units. The rasters show 7 single units that sponta-
neously coactivated as an ensemble for a transient period of
∼100 ms as well as the unchanging baseline-level activity of the
remaining 17 units not assigned to that ensemble. The corre-
sponding perievent time histograms (PETHs) describe the time
course of average spike rate for single units within the ensemble
and the single units not assigned to that ensemble. Around the
time of ensemble activation (at t = 0 s), units assigned to this
example ensemble coactivated, whereas the activity of units out-
side the ensemble did not change. We verified over the entire
dataset that single units not assigned to an ensemble did not
increase their spike rate when the ensemble was active, whereas
units assigned to the ensemble did (SI Appendix, Fig. S2).
Fig. 2B shows an example in which LC population activity

was decomposed into five distinct ensembles. The ensembles
were active in most cases at different times, but occasionally
more than one ensemble was simultaneously active (e.g., brown
and red lines at t = 0.5 s). Reconstructing the total population
firing rate as a function of time through NMF decomposition
(i.e., essentially summing up the activation time courses across
the five ensembles) returned a close approximation of the
pooled population spike rate. This example suggests that LC
neuronal population activity is composed of distinct ensembles
that activate at largely nonoverlapping times.

Most ensembles were only transiently active for 100 ms (Fig.
2C). The median ± SE of the median activation duration over
all ensembles was 114 ± 8 ms (n = 146 ensembles). The aver-
age PETH across all ensembles showed that activation decayed
sharply around 100 ms after activation onset (SI Appendix, Fig.
S2). However, distinct ensembles were quiet for a wide variety
of durations between these brief activations (Fig. 2C). The
duration of the inactive periods was highly variable across
ensembles (median ± SE of the median = 611 ± 295 ms).
These findings are compatible with the view that distinct
ensembles have different spontaneous dynamics.

LC neurons spontaneously fire bursts of action potentials, typi-
cally with an interspike interval of <100 ms (29–33); therefore,
we also assessed whether LC ensemble activation times could
occur in a burst pattern. We calculated auto-correlograms of the
time course of the ensemble activation coefficients (SI Appendix,
Fig. S3). We found almost no interactivation intervals in the
100 ms after ensemble activation. The most prominent character-
istic of ensemble activity dynamics was a tendency for rhythmic
ensemble activation at 500 to 700 ms. Thus, burst patterns did
not occur in LC ensemble activation dynamics.

Ensembles were comprised of relatively small subsets of
single units. On average, 27% of single units were active in
ensembles relative to the total number of simultaneously
recorded single units in each rat (Fig. 2D). Ensemble size
ranged from 6 to 62% of the simultaneously recorded single
units (Fig. 2E). We assessed whether ensembles consisted of
disjoint sets of single units or overlapping single units. Out of
285 single units, 115 participated in multiple ensembles
(40.4%), 149 participated in only one ensemble (52.3%), and
21 did not participate in any ensemble (Fig. 2F).

Ensembles preferentially consist of one type of LC single
unit (narrow or wide [20]), defined by their extracellular wave-
form shape (Fig. 2G). We assessed if the proportion of each
unit type participating in each ensemble was statistically differ-
ent from what would be expected if ensembles were formed by
units taken by random resampling regardless of type. For all
rats, the hypothesis that ensembles are formed by combining
units regardless of their type was rejected (P < 0.05).

We examined the spatial distribution of units within the
ensembles. We assessed (by randomly shuffling the recorded
location of units) whether the median distance between unit
pairs within the ensemble differed from a random spatial orga-
nization. Location was defined as the electrode on the array
that recorded the maximal spike amplitude (averaged across all
spikes). Only a small proportion of ensembles (18 out of 121
ensembles with more than two units) had a median distance
between unit pairs that differed from the one expected by a
random spatial organization (at P < 0.05 with the null hypoth-
esis distribution computed with 100 shuffles; Fig. 2H). Finally,
for each ensemble, there was no difference in the distribution
of distances between unit pairs belonging or not belonging to
the same ensemble (Wilcoxon’s rank sum test with false discov-
ery rate correction for 121 ensembles; lowest P value was P =
0.1434). These results are consistent with a nontopographical
diffuse arrangement of LC neurons spontaneously firing as an
ensemble.

LC Ensembles Are Temporally Distinct and Are Sparsely Active.
Before considering how the activation of LC ensembles relates
to cortical states, it is important to further characterize the rela-
tive dynamics across ensembles in order to form hypotheses
about whether different ensembles have sufficiently distinct
dynamics to potentially produce ensemble-specific cortical
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states. We first characterized when the activation of an ensem-
ble makes it less likely that the same or another ensemble is
active at some other time. We computed auto-correlogram and
cross-correlograms of the time course of the ensemble activation
coefficients and detected significant troughs in the correlograms
(Fig. 3 A and B). A trough in the auto-correlogram occurred in
62% of the ensembles (90 out of 146). For these ensembles,

the decreased spiking was most frequent at a 100-ms delay after
ensemble activation but could occur as late as 300 ms after
ensemble activation (Fig. 3C). We found that 44% of ensemble
pairs (348 out of 790) had a significant cross-correlogram
trough. Cross-correlogram troughs were most frequent after a
delay of ±300 ms but covered a wide range of times lasting up
to 1 s (Fig. 3D). The times at which troughs were observed

A

C D E

F G H

B

Fig. 2. Characteristics of LC ensembles. (A) The spike rasters and PETHs are shown for one exemplar ensemble. Left, Spike rasters of the single units inside
the ensemble aligned to the ensemble activation times (t = 0 s). Right, The same for other simultaneously recorded single units that were not assigned to
this ensemble. Each ensemble activation event is a “trial” in the spike raster. The PETHs show the spike rate averaged over units in the ensemble and then
averaged over all detected ensemble activation events. (B) An example LC recording in which NMF found five ensembles among nine single units. Upper Left,
Population activity pooled by summing spike rate across all simultaneously recorded single units. Lower Left, Activation coefficients of five individual ensem-
bles in different colors. Right, Spatial module values for each single unit. A threshold was applied to these values to identify which single units were signifi-
cantly active in each spatial module firing pattern. Units that crossed the threshold are marked with an asterisk and form an ensemble (each color is an
ensemble). (C) The scatter plot shows the average ensemble active times versus inactive times along with the corresponding histograms. (D) The distribution
of ensemble sizes is plotted. The values are the percentage of simultaneously recorded single units that were assigned to an ensemble. (E) Each bar reports
the percentage of single units assigned to that ensemble. Bars are grouped by rat. Note that a single unit can be part of more than one ensemble. (F) Num-
ber of single units participating in one ensemble or multiple ensembles. (G) The percent of each unit type (wide or narrow) making up each ensemble is plot-
ted across ensembles. Rats in which only one single unit type was recorded are not included in this plot. (H) Box plots show the distribution of the distances
between each pair of single units within each ensemble. Ensembles with only two single units were excluded. The light gray line shows the median, the gray
box shows the interquartile range, and the pink line shows the full range of the data. Asterisks indicate the ensembles with pairwise distances between units
within the ensemble having a more diffuse (black asterisks) or more constrained (red asterisks) spatial organization than expected from a random spatial
distribution.
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match well with the wide range of pauses apparent in ensemble
activity shown in Fig. 2C. These pauses in the activity of single
ensembles and in the relative timing between ensemble pairs pro-
duce sparse activations of distinct LC ensembles and provide evi-
dence that different ensembles have distinct activation dynamics.

LC Ensembles Can Be Synchronously Active. Although our
results demonstrate that LC ensembles are distinct from one
another and activate with largely nonoverlapping time courses
that contain numerous highly variable firing pauses, it does not
preclude the possibility that LC ensembles coactivate. Examples
of this in LC data can be seen in Fig. 2B (e.g., brown and red
lines at t = 0.5 s). The occurrence of ensemble coactivation is
important to quantify because such ensemble population activa-
tions would be more like the en masse firing evoked in LC
stimulation studies that have been used to define the role of the
LC in modulating cortical state (10–13).
We computed the cross-correlograms between the activation

time courses of each ensemble pair and quantified both the
number of ensemble pairs with significant (positive) peaks of
cross-correlation and the lag of the cross-correlogram highest
peak for those ensembles. We found that 506 of 790 ensemble
pairs (64%) had significant cross-correlogram peaks. An exam-
ple significant peak at zero lag is shown in Fig. 4A. We found
that most of the significant peaks occurred at zero lag (Fig. 4B).
Out of 506 ensemble pairs with significant cross-correlation
peaks, 420 (83%) had a zero lag peak. In the overall population
of 790 ensemble pairs, synchronous coactivation was observed
among 53% of ensemble pairs. This result suggests that
although ensembles are distinct, a large proportion of ensemble
pairs can coactivate.

To measure how frequently ensemble pairs synchronously
coactivate, we calculated a zero lag synchronization index for
each of the 420 ensemble pairs with a significant zero lag cross-
correlogram peak. This index quantifies the percentage of acti-
vation instances of an ensemble that were zero lag coactivations
with another ensemble. The average synchronization index was
28% with a range of 3 to 59% (Fig. 4B, Inset, n = 420 ensem-
ble pairs). Importantly, the remaining 47% of ensemble pairs
(370 out of 790) never coactivated (no zero lag peak in the
cross-correlogram). Overall, and contrary to the standard view
that the LC neuronal population fires en masse with a high
level of synchrony, these analyses show that LC ensembles have
ensemble synchronous coactivations, but this happens for only
approximately half of the ensembles that synchronously coacti-
vate on average approximately one-quarter of the time. Overall,
for the most part, ensemble dynamics are nonoverlapping.

Spontaneous Activation of Distinct LC Ensembles Is Associated
with Different Cortical States. The largely nonoverlapping
dynamics of individual LC ensembles may enable distinct
ensembles to evoke different cortical states. Alternatively, all
ensembles may promote the stereotypical activated state often
imputed to LC activation (1–3, 10–13). We disambiguated
between these two possibilities by characterizing cortical state
around the time of spontaneous LC ensemble activations.

We aligned the cortical area 24a LFP to the times of sponta-
neous activation of individual LC ensembles. For this analysis,
NMF identified 89 ensembles in nine rats from which cortical
LFPs and LC population activity were simultaneously recorded.
We calculated both the LFP spectrogram and the BLP in
five canonical frequency bands (θ, 4� 8 Hz;α, 8� 12 Hz;β,
12� 30 Hz;γ, 30� 70 Hz; high γ, 70� 150 Hz), analyzing
data from a 900-ms window aligned to spontaneous activation
of each LC ensemble. This window began 400 ms before the
beginning of ensemble activation, ran through a fixed 100 ms
meant to approximate the ∼100-ms average duration of ensem-
ble activation, and continued for 400 ms after the end of
ensemble activation. This window was chosen for two reasons.
First, it provided a good tradeoff between temporal and spectral
resolution. Second, our previous analyses of cross-correlations
and durations of activation and activity pauses show that it is
unlikely that multiple ensembles were coactive during this win-
dow (Figs. 2C and 4B). Therefore, this window ensured that

A B

C D

Fig. 3. Ensemble auto-correlogram and ensemble pair cross-correlogram
troughs. (A) The histogram plots the auto-correlogram (time binning of
100 ms) of the activation time course of an example ensemble (ensemble
5 from rat 2591). A trough in the auto-correlogram denotes postactivation
inhibition. Significant troughs were defined as those that had auto-
correlogram values below the first percentile (lower dashed orange line) of
the surrogate distributions of correlogram values computed by randomly
jittering ensemble activation times. The solid blue line shows the average
of the surrogate correlograms. (B) The histogram plots the cross-
correlogram of the activation time course of an example ensemble pair
(ensembles 9 and 11 from rat 2632). The activation time of the reference
ensemble is at t = 0 s (green line). A frequent silence of one ensemble
400 ms after the other spontaneously activated is shown by the significant
trough. Plotting conventions are as in A. Significant troughs of cross-
correlograms were computed with the same method used for the auto-
correlograms. (C) Histogram of the number of significant auto-correlogram
troughs as a function of the time lag. (D) Histogram of the number of signif-
icant cross-correlogram troughs across time lags.

A B

Fig. 4. Peaks of cross-correlograms between the activation times of
ensemble pairs. (A) Histogram of the cross-correlogram (time bin 100 ms)
of the activation time course of an example ensemble pair (ensembles 1
and 2 from rat 1052) with a significant zero lag cross-correlation peak. The
activation time of the reference ensemble is at t = 0 s (green line). Signifi-
cant peaks were defined as those that had cross-correlogram values above
the 99th percentile (upper dashed orange line) of the surrogate distribu-
tions of correlogram values computed by randomly jittering ensemble
activation times. The solid blue line shows the average of the surrogate
correlograms. (B) The histogram shows the number of ensemble pairs with
a significant cross-correlogram peak as a function of time lag. Most peaks
occur at zero lag. Inset, histogram of synchrony index values for the 420
ensemble pairs that had significant zero lag cross-correlogram peaks.
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changes in the cortical LFP spectrum were predominantly
related to activation of an individual ensemble in the LC. We
averaged the BLP and the spectrogram for each ensemble over
all instances of its activation. To compare spectrograms and
BLP across ensembles, we normalized them using a spectral
modulation index, which quantifies the relative changes of
power around the time-averaged power in each frequency bin
(SI Appendix, Materials and Methods).
Visual inspection of individual examples of BLP aligned to

LC ensemble activation revealed diverse patterns of modula-
tions in cortical BLP around the ensemble activation time
depending on which ensemble was active (Fig. 5A). Impor-
tantly, BLP modulations averaged over the 400 ms after sponta-
neous activation of each ensemble were larger than those
obtained when recomputing surrogate BLP modulations after
randomly shuffling the ensemble activation times (Fig. 5B).
The scatter plots showing the changes in BLP revealed a struc-
ture within the large diversity of power changes associated with
individual ensembles (Fig. 5B). After spontaneous activation of
approximately half of the ensembles, there was a relative
decrease of cortical power both in the low (θ) and in the high
(γ, high γ) frequencies with respect to preactivation power.
However, for approximately one-quarter of the ensembles, there
was a relative decrease of low-frequency power and an increase

of high-frequency power similar to the cortical activated state
observed after external stimulation of the LC (10–13). Relative
increases of both low-frequency and high-frequency power as
well as relative increases of low-frequency power but decreased
high-frequency power were also observed after activation of
smaller proportions of ensembles.

Similar trends were found when considering individual
examples of spectrograms computed around ensemble event
activations (Fig. 6 and SI Appendix, Fig. S4). Considering spec-
trograms is useful because it gives more detailed spectral infor-
mation than BLP. To capture typical trends in the cortical
spectrograms (from 4 Hz to 150 Hz) across LC ensembles (n =
89), we clustered the spectrograms calculated in the same peri-
ensemble activation window considered above for BLP. This
clustering analysis found four predominant spectrogram types
with different trends in spectrotemporal modulations, which
we term clusters A, B, C, and D. We chose four clusters by first
varying the putative number of clusters from 1 to 22 and quan-
tifying the diminishing returns of adding each additional cluster
(SI Appendix, Fig. S5). Critically, only one of these spectrogram
types (cluster A, Fig. 6A, associated with activation of 28% of
the ensembles) had a spectral change characterized by a relative
increase in high-frequency power and a relative decrease of low-
frequency power from before to after LC ensemble activation,

A

B

Fig. 5. Modulations of cortical LFP BLP aligned to spontaneous activation of LC ensembles. (A) Examples of BLP (calculated using the spectrogram modula-
tion index) for different ensembles. The Upper row shows θ band (red) and γ band (green) cortical BLP in a window around ensemble activation onset
(marked by a vertical red line) for four example ensembles. Inset arrows indicate whether time-averaged power in each band increased or decreased after
the ensemble was active relative to the window prior to ensemble activation. The Lower row shows the θ band (red) and high γ band (green). Plotting con-
ventions are identical for both rows. (B) Scatter plots show the time-averaged BLP 400 ms after spontaneous ensemble activation. Each blue data point is an
ensemble (n = 89). Left, θ band versus γ band. Right, θ band versus high γ band. The percentages indicate the percent of ensembles (blue crosses) in each
quadrant. The green line indicates 0 on each axis. Brown crosses represent surrogate (shuffled) BLP modulations obtained by recomputing BLPs after ran-
domly shuffling the times of ensemble activations.
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which resembled the stereotypical activated cortical state observed
after electrical or optogenetic stimulation of the LC (10–13).
Another spectrogram type (cluster B, associated with activation

of 23% of the ensembles) was characterized by an overall relative
increase in oscillatory power across all frequencies after ensemble
activation as well as a broadband decrease just prior to and during
ensemble activation. Two others (clusters C and D, associated
with activation of 24% and 25% of the ensembles, respectively)
showed a relative decrease of power across all frequencies above
the θ band. Cluster C was also accompanied by a brief increase in
high-frequency power during ensemble activation.
The patterns seen with the clustering of the spectrograms in

Fig. 6A recapitulate reasonably well the major different behaviors
found across all individual ensembles as shown by the distribu-
tion of relative modulations of BLP in Fig. 5. For instance, half
of ensembles show a relative decrease of BLP power across all fre-
quencies after ensemble activation (lower left quadrants in Fig.
5B), matching well the finding of two out of four spectrogram
clusters with a generalized relative power decrease after ensemble
activation (Fig. 6A). It is important to note that the four spectro-
gram clusters do not indicate that those were the only kind of
state transitions happening, rather they represent the centroids of
the most common trends recapitulating predominant behaviors.
We next assessed whether firing properties differed between

distinct groups of ensembles associated with the four cortical
spectrogram clusters (Fig. 7). We first characterized the strength

of ensemble activation and found that it differed across the
ensembles associated with the four spectrogram clusters. The
population spike rate was averaged across all ensemble activa-
tion events and all single units in the ensemble. The peak of
the resulting population spike rate PETH was used to charac-
terize the activation strength of the ensemble. We found that
the median activation strength across ensembles associated with
each cortical spectral cluster differed (Kruskal–Wallis test, P =
0.0003, ω2 = 0.9634, χ2 = 18.8899, n = 89 ensembles). Post
hoc tests showed that cluster A differed from clusters B and C
(Fig. 7A). We also examined the ensemble activation strength
by first averaging across ensemble activation times to obtain a
PETH for each single unit separately and then averaging across
single units. Activation strength of the ensemble was the peak
of the single unit averaged PETH. The median activation
strength across ensembles in each cortical spectral cluster type
again differed (Kruskal–Wallis test, P = 0.0008, ω2 = 0.9869,
χ2 = 16.8530, n = 89 ensembles). Activation strength differed
between clusters A and C and clusters A and D (Fig. 7B).
Regardless of how ensemble activation strength was assessed
(Fig. 7 A and B), ensembles associated with spectral cluster A
were more strongly active than ensembles associated with other
clusters. Finally, we examined whether the size of the ensemble
differed across cortical spectral clusters. The median number of
units across ensembles differed across clusters (Kruskal–Wallis
test, P = 0.0012, ω2 = 0.9618, χ2 = 15.8187). Post hoc tests

A

B

C

D

Fig. 6. Modulations of cortical LFP spectrograms aligned to spontaneous activation of LC ensembles. (A) The average across all spectrograms within each
cluster aligned to ensemble activation time (red line). Significant modulations are in color, and nonsignificant values are white. The significance of spectro-
gram modulations of cluster centers was computed as described in Materials and Methods. (B) The ensemble activation–aligned spectrogram for an example
ensemble from each cluster. Plotting conventions are the same as in A. (C and D) For each example ensemble in B, the PETH of its population spike rate (C)
and the spike rasters of single units in the ensemble (D) are plotted around spontaneous activation of the ensemble (red lines). For all graphs, we plotted
data in a periensemble activation window from 300 ms before to 400 ms after ensemble activation onset because the spectrograms were estimated in slid-
ing windows whose centers all fell within this window.
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showed that cluster A had fewer units than cluster C (Fig. 7C).
In summary, ensembles associated with cluster A spectra
(“activated state”) had smaller size and stronger spontaneous
activations than other ensembles.

Synchronous Spontaneous Activation of a Larger Pool of LC
Ensembles Results in a More Homogeneous Cortical State.
These data demonstrate a relationship between distinct LC
ensembles and cortical states. This finding stands in marked
contrast to the stereotypical activated state evoked by electrical
or optogenetic stimulation that synchronously activates LC
neurons. Therefore, we predicted that when several LC ensem-
bles are coactive (a situation that may resemble more the
stimulation-evoked en masse LC activation than when consid-
ering only the activation of an individual ensemble), the associ-
ated cortical states should include more frequently the activated
state and become more homogenous. We took advantage of
our observation that ensemble pairs can sometimes become
coactive (Fig. 4B). We assessed the cortical LFP spectrograms,
as in Fig. 6A and B, but aligned spectrograms to spontaneously
occurring coactivation times of ensemble pairs. A total of 199
ensemble pairs, which had a significant zero lag cross-
correlogram peak, were simultaneously recorded with cortical
LFP. In contrast to the four spectrogram types observed around
the time of spontaneous activation of individual LC ensembles,
clustering now revealed only two spectrogram types at the time
points when ensemble pairs became synchronously coactive,
suggesting a reduced diversity with respect to the individual
ensemble analysis (Fig. 8). We refer to these two new clusters,

which now characterize cortical power spectrograms around the
synchronous activation of LC ensemble pairs, as clusters E and
F. Cluster F is the stereotypical activated cortical state, which
included more than half (101 of 199) of the ensemble pairs,
suggesting a larger proportion of activated states associated with
spontaneously occurring coactivation of different ensembles in
comparison to when individual ensembles were active. Cluster
E, on the other hand, is characterized by a relative decrease of
spectral power across all bands (98 of 199 ensemble pairs). In
sum, when two LC ensembles are coactive, such that LC popu-
lation activity becomes more similar to en masse LC activation,
the modulation of cortical state is more homogenous and
presents a higher proportion of relative cortical power changes
that are similar to the LC stimulation–evoked cortical state
change (10–13).

Discussion

Cortical states vary over a wide range and are in a tight rela-
tionship with many functions that are relevant to psychiatric
disorders, such as sleep, arousal, perceptual ability, and reaction
times. It is thus no surprise that there have been long-standing
efforts to understand the neural factors contributing to cortical
state fluctuations (1–3). However, the neuronal interactions
that control cortical states remain largely elusive. Blocking out
the effect of the external world (e.g., slow-wave sleep or anes-
thesia) has proven to be a successful approach for dissecting the
spontaneous brain-internal neuronal interactions that control
cortical state (34). These approaches have been used to demon-
strate that the LC evokes transitions to, and maintenance of, a
single and unitary activated state in the cortex (10–13). How-
ever, rather than studying the spontaneous emergence of corti-
cal states due to LC activity, these studies have used electrical
or optogenetic stimulation of the LC, which evokes en masse
LC population activity.

Here, we considered the effect of spontaneously occurring
events of LC ensemble activations. Using synthetic spike trains
with different ground truth patterns of ensemble activity, we
illustrate that NMF can detect the precise composition of
ensembles, even when multiple ensembles occasionally coacti-
vate or when neurons participate in multiple ensembles. By
applying this methodology to LC population activity, we
decomposed this spontaneous activity into multiple, separate
neuronal ensembles. This enabled us to study quantitatively the
spontaneous interactions between LC neurons and cortical
states and contribute to long-standing efforts to understand
how cortical state might be generated (1–3). We demonstrated
that ongoing cortical state differs depending upon which LC
ensemble was spontaneously active. We observed significant
power variations around the activation times of LC ensembles.
This result is consistent with the broad afferent input that the
LC receives from the forebrain, which predicts that cortical
states may affect individual LC ensembles and be affected by
them. Importantly, these findings establish that LC ensembles
do not simply evoke a stereotypical activated state in the cortex.
Thus, the temporally diverse and largely nonoverlapping nature
of spontaneous LC ensemble activations correspond to a diver-
sity of cortical states. When LC ensemble pairs become syn-
chronously coactive, which is a situation more similar to the
highly synchronized and en masse LC population activation
driven by LC stimulation (10–13), the diverse set of cortical
states had a higher proportion of the stereotypical activated
state that has been uniformly observed across these prior studies
using LC stimulation. Coactivation of ensemble pairs, or

A B C

Fig. 7. The firing properties of LC ensembles associated with each cortical
spectrogram cluster. (A) Box plots of ensemble activation strength in each
spectrogram cluster calculated using the peak of the ensemble population
firing rate PETH. (B) Box plots of ensemble activation strength in each spec-
trogram cluster calculated using the single-unit averaged firing rate PETH.
Due to the skewness of the single-unit firing rate distributions, we plot log-
transformed data. (C) Box plots of the number of single units within the
ensembles for the different spectrogram clusters. Significance is indicated
by post hoc tests: *P < 0.05; **P < 0.01; ***P < 0.001.

Fig. 8. Modulations of cortical LFP spectrograms aligned to spontaneous
coactivation of LC ensemble pairs. The spectrograms are aligned to the
coactivation times of ensemble pairs that had a significant zero lag cross-
correlation peak. The onset of ensemble pair coactivation is indicated by
the red line. The resulting spectra clustered into two types. Each plot shows
the average spectrogram across all ensemble pairs associated with each
cluster. Only significant changes in the power spectrum are plotted in
color, and nonsignificant modulations are white. Colors correspond to
spectral modulation index values, as in Fig. 6 A and B.
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multiensemble “collectives”, may provide transient global nor-
epinephrine release. These global events may occur in response
to specific, structured afferent input in specific moments during
anesthesia, sleep, or wakefulness that demand more homoge-
nous noradrenergic neuromodulation.
The types of cortical state modulations on a subsecond scale

around spontaneous activations of LC ensembles that we docu-
mented here happened within the broader context of two longer
(minutes) cortical states that occur during urethane anesthesia
(35, 36). The predominant urethane-associated cortical state con-
sists of slow waves and an LFP power spectrum that strongly
resembles that of non–rapid eye movement slow-wave sleep. This
slow-wave state is punctuated by continuously “activated” epochs
that are devoid of slow waves, enriched with beta and gamma
oscillations, and thus loosely resemble cortical activity during
wakefulness. Our findings show that, even in the context of these
continuous states, there are multiple substates that emerge when
one examines cortical activity around brain-internal neuronal
events, such as spontaneous LC ensemble activations. Using our
analytic methodology during sleep or wakeful behavior may
reveal many diverse cortical substates associated with LC ensem-
ble activations. These studies will require novel tools for record-
ing LC ensembles in nonanesthetized animals.

Potential Neurophysiological Causes of the Diversity in Cortical
State.Neuromodulation of different forebrain regions may alter
the brain-internal neuronal interactions that produce various
cortical states. LC neurons are broadly projecting but also have
localized projections to the forebrain and release a range of neu-
rotransmitters (37, 38); therefore, LC ensembles that project to
different forebrain neuronal networks could affect how those
networks self-organize cortical states. When considering how
distinct LC ensembles could promote different cortical states,
two potential factors for future study are the diversity of ensem-
ble neurochemical makeup and/or its projection profile. Given
that the region in which we assessed cortical state (area 24a)
receives projections from ∼61 to 65% of LC neurons in the rat
(39, 40), it seems likely that most ensembles project to area
24a, and they should, therefore, produce a similar state change.
Our finding to the contrary could be explained by the possibil-
ity that the neurochemical makeup of the LC neurons differs
across ensembles and results in cortical state diversity. Another
possibility is that despite most ensembles presumably sharing
area 24a as a projection target, it is the other targets that are
potentially not shared across ensembles that leads to LC
ensemble–specific cortical states in 24a. According to this fore-
brain “network” perspective, LC ensembles associated with dif-
ferent cortical states could have divergent axon collaterals,
which enable the ensembles to modulate distinct forebrain neu-
ronal networks that are associated with different cortical states.
Ensembles associated with the activated cortical state were
smaller and fired more strongly. Smaller ensembles may have
less diffuse projections and, with a higher spike rate, they may
release larger amounts of norepinephrine or have increased like-
lihood of releasing other neurotransmitters that could be associ-
ated specifically with the activated cortical state.

An LC Ensemble Code Enables Greater Diversity in
Neuromodulatory Functions. Behavioral and mental states
fluctuate widely from moment to moment, and it has been
known since the advent of EEG recordings that such diverse
cognitive–behavioral states are associated with a multitude of
cortical states (1–3). The brain-internal interactions that

generate this large state space are still largely unknown. LC
neurons were classically thought to modulate cortical and tha-
lamic neuronal excitability level using noradrenergic “tone”
(5–7), whereas the neuronal interactions that produce the corti-
cal state are contained within the cortex and thalamus (41, 42).
According to this standard view, the role of the LC has been to
modulate or predispose cortico-thalamic circuits toward the
activated cortical state (and predispose the organism toward
wakefulness), but the actual neuronal interactions that select
cortical state are between cortex and thalamus. However, this
standard view of cortical state generation was developed using
methods that artificially activated the LC neuronal population
en masse using external stimulation. Here, we studied the spon-
taneously self-organized neuronal interactions that are internal
to the brain to reveal that, in contrast to this classical thinking,
distinct LC ensembles can promote diverse cortical states. Each
ensemble in this small population of ∼1,600 brainstem norad-
renergic neurons may individually be a key player in selecting
ongoing cortical state from a multitude of possibilities. Thus,
our findings shift the role of the LC from “modulator/
promoter” of a single cortical state toward a “selector/con-
troller” from a large subset of cortical states.

Our results imply that a single brainstem nucleus can per-
form different neuromodulatory functions by simply changing
the groups of neurons that fire. Critically, these neuromodula-
tory dynamics can rapidly change on timescales relevant to flex-
ible and ever-changing cognitive–behavioral states. The distinct
LC ensembles with nuanced activation dynamics shown here
substantially enrich the kind of functions that are currently
attributed to brainstem nuclei.

Materials and Methods

Rats and Recording Procedures. Male Sprague–Dawley rats (350 to 450 g)
were used. Rats were anesthetized using an intraperitoneal injection of urethane
(1.5 g/kg body weight). A detailed description of research subjects and recording
procedures is in SI Appendix, Materials and Methods. All experiments were
carried out with approval from the local authorities and in compliance with the
German Law for the Protection of Animals in experimental research and the
European Community Guidelines for the Care and Use of Laboratory Animals.
A subset of the data was collected from rats used in a prior study (20). The LC
electrode was targeted based on standard electrophysiological criteria and post-
experiment administration of clonidine (SI Appendix, Materials and Methods).
Single-unit type was defined by waveform duration (20).

NMF Decomposition. We used NMF (21) to decompose a matrix of the spike
counts of all simultaneously recorded single units across time intervals. NMF lin-
early decomposes the matrix of the spike counts of the population of single units
at each time interval as a sum across a set of nonnegative basis functions (mod-
ules) using nonnegative coefficients (21, 26, 27). A detailed description of its
implementation is in SI Appendix, Materials and Methods. Briefly, NMF decom-
poses the population firing patterns across single units at each time interval
(27): R¼ WHþ residuals. R ∈ ZT × N

þ is the data matrix containing the spike
counts of each of N single units binned into T time bins (with t being the index
of each time bin). H ∈ RK × N

þ is the matrix containing the basis function, which
has K spatial modules. Each module captures a different pattern of coactivity of
the single units and can, therefore, be used to identify which neurons are active
together and thus form ensembles. W ∈ RT × K

þ is the matrix containing the acti-
vation coefficients that describe the strength of recruitment of each module (and
thus of each ensemble of coactive neurons) at each time interval. We binned
spike counts at ΔT = 100 ms. The time resolution was selected based on our
previous work reporting that pairs of LC single units are predominantly synchro-
nized on a timescale of ∼100 ms or less (20). We also used ranges of ΔT from
very small values (a few milliseconds) up to large values (a few seconds) and
found that very small (≤20 ms) and very large (>1 s) bin sizes artificially identify
either many modules each containing only one single active unit or one large
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ensemble containing all single units, respectively. We chose K for each rat by
computing the amount of variance explained when varying K from its minimum
(one) to its maximum possible value (the number of simultaneously
recorded units).

Auto- and Cross-Correlograms and Permutation Testing. Auto-correlograms
were calculated in a 1,000-ms time window using a 100-ms time bin. Cross-
correlograms were calculated in a window of 2,000-ms with a bin size of
100 ms. To assess significance, the correlograms were compared to the upper
and lower 1% bounds of 1,000 surrogate correlograms, which were created by
jittering the activation times uniformly between ±1 s. These procedures are as
in ref. 20.

Definition of the Synchrony Index. The degree of synchrony between
ensemble pairs that had a significant peak at time 0 in the cross-correlogram
was measured using a synchrony index:

synch ¼ 2 × cij
τi þ τj

� �
× 100,

where cij is the number of times the two ensembles are coactive, and τi, τj are
the number of active times for each ensemble.

LC Ensemble Activation–Aligned Averaged LFP Spectrogram and BLP
Modulations. For each detected ensemble activation event, spectral analysis
used data comprised of 400 ms before the beginning of ensemble activation,
ran through a fixed 100 ms meant to approximate the ∼100-ms average dura-
tion of ensemble activation, and continued for 400 ms after the end of ensemble
activation. This window was chosen because it is the largest one, according to
our data (Figs. 2C and 4B), for which it is unlikely that multiple ensembles were
coactive during this window. Spectrograms were computed using the multitaper
method with three tapers and time bandwidth product of 5 in a 200-ms window
shifted in 10-ms steps. The spectral resolution obtained this way was ∼4 Hz. The
200-ms sliding window size allows extracting from the analysis window an esti-
mation of spectrograms in windows whose center falls between 300 ms before
to 400 ms after ensemble activation onset, which were thus used as ranges for
spectrogram plots in Fig. 6 and SI Appendix, Fig. S3.

Importantly, it should be noted that this short time window necessitated a
low-frequency resolution (∼4 Hz), and this coarse frequency resolution may be
insufficient to resolve, in a graded and smooth way, some transitions between
frequency bands such that power changes sharply rather than gradually across
frequencies. Although wavelet transformation would provide higher frequency
and time resolution in comparison to the multitaper method, it would contain
too much data for reliable clustering given the number of ensemble activation

times. Therefore, the multitaper method was chosen because of the need for
robust clustering down the analysis pipeline.

BLP was computed by filtering the LFP backward and forward to avoid phase
shifts (filtfilt function, MATLAB) using a third-order Butterworth filter, taking the
absolute value of the Hilbert transform of the filtered signal, and finally smooth-
ing them with a 200-ms Gaussian window (the value of the smoothing was cho-
sen to match the size of the sliding time window used for spectrograms). For
consistency, we plotted BLP and spectrograms using the same perievent activa-
tion window ranges.

For each ensemble, we first averaged BLPs and spectrograms across all
events. To compare spectrograms and BLPs across ensembles, we normalized
them to a spectral modulation index defined by the ratio between the difference
and sum of the spectral value at each time point and frequency bin and its time
average in the frequency bin over the entire perievent window. This quantity at
each time point and frequency bin can take values between �1 and 1 and
quantifies the relative changes of power around the time-averaged power in
each frequency bin in the main text. Spectra were clustered using a k-means
algorithm. Significance of spectrogram modulations of cluster centers (Fig. 6A) at
each specific time frequency point was computed as significance of deviation
from a zero median value using a two-tailed Wilcoxon signed rank and correct-
ing the so obtained P values for multiple comparison at a false discovery rate of
q = 0.05. Full details of all procedures are reported in SI Appendix, Materials
and Methods.

Data Availability. All data (single-unit spike times and local field potentials)
and the analysis code have been deposited in a publicly accessible database,
Gnode (https://doi.gin.g-node.org/10.12751/g-node.3rrsh5/) (43). Previously
published data were used for this work (20).
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