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Abstract

Lipid bilayers play an important role in the pathological assembly of amyloidogenic proteins and 

peptides. This assembly yields oligomers and fibrils, which are highly toxic protein aggregates. In 

this study, we investigated the role of saturation in fatty acids of two phospholipids that are present 

in cell membranes. We found that unsaturated cardiolipin (CL) drastically shortened the lag phase 

of insulin aggregation. Furthermore, structurally and morphologically different aggregates were 

formed in the presence of unsaturated CL vs saturated CL. These aggregates exerted drastically 

different cell toxicity. Both saturated and unsaturated phosphatidylcholine (PC) were able to 

inhibit insulin aggregation equally efficiently. Similar to CL, structurally different aggregates were 

formed in the presence of saturated and unsaturated PC. These aggregates exerted different cell 

toxicities. These results show that unsaturated phospholipids catalyze the formation of more toxic 

amyloid aggregates comparing to those formed in the presence of saturated lipids.
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Lipid bilayers play an important role in cell and organelle compartmentalization, cell–

cell interaction, endocytosis, and exocytosis.1,2 These properties are determined by the 

lipid composition of the bilayers that varies among different organelles and cell types.3 

For instance, mitochondria possess a unique phospholipid cardiolipin (CL) that regulates 

electron transport complexes, carrier proteins, and phosphate kinases.4,5 At the same time, 

phosphatidylcholine (PC) dominates in the cell membranes of most of eukaryotic cells, 

including astrocytes and neurons.3,6 Membrane fluidity is further attenuated by different 

ratios of saturated and unsaturated fatty acids in such phospholipids. A rule of thumb is 

that with an increase in the concentration of unsaturated fatty acids, the membrane fluidity 

increases.

A growing body of evidence suggests that lipid bilayers can play an important role in the 

conformational changes of proteins.7,8 For instance, α-synuclein (α-Syn) is a small protein 

that is directly linked to Parkinson’s disease and was found to transition from unordered 

secondary structure to an α-helix on the surface of lipid bilayers.9,10 Galvagnion and 

co-workers found that lipids can lower the stability of α-Syn, promoting its aggregation 

into oligomers and fibrils.11–13 Our group found that lipids not only alter the rates of 

α-Syn aggregation but also uniquely modify the secondary structure of protein oligomers.14 

The transient nature of these protein species and their morphological heterogeneity require 

scanning optical nanoscopy techniques, such as atomic force microscopy–infrared (AFM–

IR) spectroscopy, for the elucidation of their structural organization.15–19 In AFM–IR, 

thermal expansions of the analyzed samples, which are induced by pulsed tunable IR 

light, are recorded by the scanning probe.20–22 If the laser frequency is tuned to the 

resonance frequency of the scanning probe, then the appearing resonance effect can be 

used for single-monolayer and even single-molecule sensitivity.23,24 This high sensitivity 

and nanometer spatial resolution were utilized to reveal the secondary structure of amyloid 
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fibrils,15,17,18,25–27 plant epicuticular waxes,28,29 polymers,30 malaria-infected blood cells,31 

bacteria,32–34 liposomes,35 and polycrystalline perovskite films.36

In addition to AFM–IR, high-speed AFM (HS-AFM),37,38 near-field scanning optical 

microscopy (NSOM),39 and tip-enhanced Raman spectroscopy (TERS)40–44 can be used 

to probe the structural organization of amyloid aggregates. For instance, HS-AFM was able 

to reveal structural transformations in islet amyloid precursor peptides (IAPPs) Aβ1–42 and 

α-Syn that led to fibril formation.37,45,46 Furthermore, HS-AFM revealed two aggregation 

mechanisms of Aβ1–42 that led to the formation of straight and spiral fibrils.38 Using 

NSOM, Kitts and Vanden Bout were able to measure the binding of fluorescent molecular 

probes to insulin fibrils,47 whereas Paulite and co-workers resolved the secondary structure 

of β2 microglobulin fibrils using this near-field scanning technique.48 Zenobi and Deckert 

groups pioneered TERS imaging of protein aggregates.42,43,44,49 For instance, Paulite 

and co-workers used TERS to determine the secondary structure of Aβ1−40 aggregates,50 

whereas vandenAkker and Deckert-Gaudig probed the structural heterogeneity of IAPP and 

insulin fibrils, respectively.40,49

Expanding upon these findings, we want to investigate the extent to which unsaturation 

in the fatty acids of phospholipids alters the structure and toxicity of amyloid aggregates 

that were grown in their presence. We aggregated insulin, a small protein that regulates 

glucose metabolism, in the equimolar concentrations of saturated and unsaturated CL and 

PC. Insulin aggregation is associated with type 2 diabetes and injection amyloidosis.51 

In a former case, insulin overproduction in the pancreas led to protein misfolding and 

aggregation. In the latter case, high local concentrations of insulin are created after hormone 

injection into the skin.52,53 This not only leads to insulin aggregation but can also catalyze 

the aggregation of other proteins present in cell media which may result in systemic 

amyloidosis.54

We first investigated whether insulin aggregation in the presence of saturated vs unsaturated 

lipids can have any effect on the rate of fibril formation. For this, protein was mixed in a 1:1 

molar ratio with both saturated and unsaturated CL and PC. The protein–lipid solutions were 

mixed with ThT and kept at 37 °C under 510 rpm agitation. We found that both s- and u-CL 

drastically shortened the lag phase (tlag) of insulin aggregation (Figure S1). Specifically, in 

the presence of u-CL, tlag was 3.2 ± 0.8 h, whereas in the presence of s-CL, tlag was 5.1 ± 

0.3 h. It should be noted that in the lipid-free environment, insulin exhibited a much longer 

tlag equal to 14.4 h. We also observed no changes in ThT intensity for insulin aggregated in 

the presence of both s-PC and u-PC. These findings show that PC strongly inhibits insulin 

aggregation.

We also found that the rate (t1/2) of insulin aggregation is different in the presence of s-CL 

and u-CL (Figure S1). Specifically, in the presence of u-CL, t1/2 was 6.1 ± 0.2 h, whereas in 

the presence of s-CL, t1/2 was 8.1 ± 0.4 h. At the same time, in the lipid-free environment, 

the insulin aggregation rate was t1/2 = 18.1 ± 0.4 h. These findings show that unsaturation 

in the fatty acids of phospholipids uniquely alters both the lag phase and the rate of insulin 

aggregation. Finally, ThT fluorescence measurements revealed that the intensities of the 

products of insulin aggregation that took place in the lipid-free environment are lower than 
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the intensity of aggregates formed in the presence of both s-CL and u-CL. This finding 

suggests that insulin aggregation in the presence of lipids yields more ThT-active protein 

aggregates.

Nanoscale imaging of Ins:CL-u revealed the presence of long fibrillar structures that were 

6–8 nm in height and stretched for micrometers in length (Figure 1). Such aggregates were 

not observed in Ins:CL-s samples that contained relatively short (~200 nm in length) fibrils 

that had a height similar to that of Ins:CL-u fibrils. These findings show that u-CL promotes 

insulin assembly into long fibrils that cannot be formed in the presence of s-CL. It should 

be noted that in the lipid-free environment, insulin formed prolong fibrillar assemblies with 

a large distribution of lengths that were on average 12 nm in height. At the same time, we 

found that both s- and u-PC yielded no fibrils but rather small (4–6 nm in height) oligomers. 

In summary, we can conclude that s- and u-PC strongly inhibit insulin fibril formation, 

whereas s- and especially u-CL strongly promote it, which is in good agreement with the 

above-discussed ThT results.

We utilized CD and ATR–FTIR to examine the secondary structure of insulin aggregates 

grown in the presence of s-CL, u-CL, s-PC, and u-PC as well as in the lipid-free 

environment (Figure 2). We found that CD spectra of both Ins:PC-s and Ins:PC-u exhibited 

two troughs at ~210 and 223 nm. Such spectra are characteristic of proteins with a mixture 

of α-helical and unordered secondary structures.55,56 These findings shows that both Ins:PC-

s and Ins:PC-u oligomers have predominantly α-helical and unordered secondary structures. 

At the same time, we observed some differences between the CD spectra collected from 

Ins:PC-s and Ins:PC-u. Specifically, a trough in the CD spectrum of Ins:PC-u is centered 

at 209 nm, whereas this trough is at 211 nm in the CD spectrum of Ins:PC-s. These 

spectroscopic differences point out the different secondary structure of Ins:PC-s and Ins:PC-

u. The same conclusion can be made on the basis of CD spectra collected from Ins:CL-s 

and Ins:CL-u. Although both spectra exhibit a trough at ~223 nm, which indicates the 

dominance of the β-sheet in their secondary structure, this band is blue-shifted in the 

spectrum of Ins:CL-u (222 nm) relative to the minimum of this trough in the spectrum of 

Ins:CL-s (225 nm). This points out the structural differences between Ins:PC-s and Ins:PC-u 

aggregates. It should be noted that insulin grown in the lipid-free environment was similar 

to the Ins:CL-s CD spectrum with a trough at 225 nm. This suggests that the secondary 

structures of Ins:CL-s and insulin grown in the lipid-free environment are similar. However, 

FTIR spectra collected from these aggregates show substantial differences in the positions of 

amide I in the spectra collected from these samples. Specifically, in the spectrum collected 

from Ins:PC-s, amide I was found to be centered at 1631 cm−1, whereas this band was 

at 1628 cm−1 in the spectrum collected from insulin aggregates grown in the lipid-free 

environment. These findings show that the secondary structures of Ins:CL-s and insulin 

aggregates grown in the lipid-free environment are different.57,58 FTIR analysis of Ins:PC-s 

and Ins:PC-u confirmed the predominance of a mixture of α-helical and unordered protein 

in their secondary structure.57,59 These conclusions could be drawn on the basis of the 

position of amide I at ~1655 cm−1. Furthermore, in the spectrum collected from u-PC, 

this band was centered at 1653 cm−1, whereas in the spectrum collected from Ins:PC-s, 

amide I was centered at 1657 cm−1. These findings demonstrate differences in the secondary 

structure of Ins:PC-s and Ins:PC-u oligomers.
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We also utilized nanoscale infrared (AFM–IR) spectroscopy to answer two fundamentally 

important questions: (1) Are lipids present in the structure of Ins:PC-u, Ins:PC-s, Ins:CL-u, 

and Ins:CL-s? (2) To what extent do the structures of these aggregates exhibit structural 

homogeneity?14,17,18,60

AFM–IR analysis of individual s- and u-PC aggregates revealed the presence of two 

populations of oligomers in both Ins:PC-s and Ins:PC-u (Figure 3 and Figures S3–S6). 

AFM–IR spectra collected from population A of s-PC exhibited very intense vibrational 

bands at ~800 and 1000–1200 cm−1 (Figure 3). These vibrational bands correspond to C–H 

and PO2
− vibrations, respectively.60 We have also found that these bands are present in the 

spectra collected from population B of Ins:PC-s; however, their intensities are substantially 

lower. We also found that AFM–IR spectra collected from both A and B populations 

of Ins:PC-s possessed vibrational bands at around 1380 and 1460 cm−1, which could be 

assigned to the CH and CH2 vibrations of lipids. Spectra collected from s-PC aggregates 

also exhibited an intense vibration at ~1734 cm−1, which can be assigned to the carbonyl 

vibration (C=O) of the lipid.61 These bands (CH, CH2, and C=O) were not observed in the 

spectra collected from insulin aggregates grown in the lipid-free environment.

An analysis of the amide I band of the spectra collected from A and B populations 

of Ins:PC-s revealed substantial differences in their secondary structure. Specifically, 

population A possessed 38% parallel and 20% antiparallel β-sheets and 42% unordered 

protein secondary structure, whereas these structures occupied 35, 11, and 54% of 

population B, respectively. Thus, oligomers of population B contained a substantially 

greater amount of the unordered protein secondary structure and a significantly smaller 

amount of the antiparallel β-sheet than oligomers of population A. It should be noted that 

additional nanoscale imaging analysis is required to fully elucidate the relative abundance 

of population A and B aggregates as well as the possible additional heterogeneity of protein 

aggregates in these samples. This work is currently underway in our laboratory.

We also observed two populations of oligomers in Ins:PC-u (Figure 3). AFM–IR spectra 

collected from population A exhibited vibrational bands at ~800, 1000–1200 and ~1734 

cm−1, which had significantly lower intensities than the corresponding bands in the spectra 

of Ins:PC-s aggregates. This suggests that these oligomers have a significantly smaller 

amount of lipid present in their structure. It should be noted that population B had a very 

small amount of lipid, if any, present in the structure. Similar conclusions could be drawn 

on the basis of the intensities of CH and CH2 vibrations of lipids (1380 and 1460 cm−1) 

in the spectra of populations A and B of u-PC. Populations A of Ins:PC-s and Ins:PC-u 

exhibited very similar protein secondary structures. However, population A and population 

B oligomers of Ins:PC-u appeared to be significantly different. Specifically, population 

B Ins:PC-u possessed a significantly greater amount of the parallel β-sheet (60%) and a 

significantly smaller amount of the antiparallel β-sheet (9%) than oligomers of population 

A (40% parallel β-sheet and 39% antiparallel β-sheet). These results demonstrate that AFM–

IR can be used to reveal the polymorphism of amyloid oligomers, which cannot be accessed 

using conventional CD and FTIR.
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AFM–IR analysis of Ins:CL-u and Ins:CL-s aggregates did not reveal any internal structural 

heterogeneity that was observed for both Ins:PC-u and Ins:PC-s oligomers. We also found 

that AFM–IR spectra collected from both Ins:CL-u and Ins:CL-s exhibit a set of vibrational 

bands at 800–900 and 1000–1200 cm−1, which indicates the presence of lipids in their 

structures. However, we found that the relative intensities of these bands in the spectra 

collected from Ins:CL-u and Ins:CL-s were different. This points out the different local 

environments of CL in these aggregates. Thus, although CL is present in both Ins:CL-u and 

Ins:CL-s, unsaturation of the fatty acids of this lipid drastically alters the binding between 

the lipid and the protein. The same conclusions can be drawn on the basis of the analysis 

of the intensity of the ~1734 cm−1 vibration. We have shown that the intensity of this band 

drastically changes upon protein–lipid interaction.

A detailed analysis of amide I in the spectra collected from Ins:CL-u and Ins:CL-s revealed 

significant differences in their secondary structures (Figure S7). Specifically, Ins:CL-u 

contained a substantially greater amount of unordered protein secondary structure (35%) 

and a significantly lower amount of the antiparallel β-sheet (13%) than Ins:CL-s aggregates 

(25% unordered and 23% antiparallel β-sheet). It should be noted that all aggregates 

discussed above that were grown in the presence of u-PC, s-PC, u-CL, and s-CL exhibit 

distinctly different secondary structure profiles compared to those of insulin aggregates 

grown in the lipid-free environment.

The question to ask is whether observed structural differences have any biological 

significance. To answer this question, we investigate the extent to which Ins:CL-u, Ins:CL-s, 

Ins:PC-u, and Ins:PC-s exert cell toxicity and cause ROS stress in the mice midbrain N27 

cell line (Figure 4).

The LDH test indicated that Ins:CL-u exerted significantly higher cell toxicity compared to 

Ins:CL-s. The same conclusion can be drawn for Ins:PC-u and Ins:PC-s oligomers. We also 

found that the toxicity of Ins:CL-s, Ins:PC-u, and Ins:PC-s is significantly lower than the 

toxicity exerted by insulin aggregates grown in the lipid-free environment. It should be noted 

that lipids themselves did not exert any significant cell toxicity. These findings show that 

lipids can uniquely alter the toxicity of insulin aggregates. Furthermore, insulin aggregates 

that were formed in the presence of unsaturated lipids exert significantly higher cell toxicity 

than the aggregates formed in the presence of saturated lipids. It should be noted that lipids 

themselves, except u-CL, exerted an insignificant LHD response on N27 cells relative to the 

control (Figure 4). Finally, we point out that the LDH assay detects cell necrosis. Therefore, 

mode advanced toxicity assays should be utilized in the future to reveal the exact mechanism 

of the amyloid toxicity of cells.

Similar conclusions could be drawn about the ROS levels exerted by insulin aggregates 

formed in the presence of unsaturated vs saturated lipids. Specifically, Ins:CL-u exerted 

significantly higher ROS production compared to that of Ins:CL-s, whereas ROS levels were 

found to be higher for Ins:PC-u than for Ins:PC-s. It should be noted that u-PC u-CL and 

s-CL themselves exerted significantly higher levels of ROS in N27 cells compared to their 

saturated analogs. At the same time, s-PC itself exerts significantly higher ROS levels in 

N27 cells compared to the ROS levels observed in the control.
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The lipid profile of cell and organelle membranes varies across different organs and tissues. 

For instance, the concentration of major lipids, such as PC, cholesterol, phosphatidylserine, 

and ceramide, is different in the membranes of astrocytes, microglia, neurons, and 

oligodendrocytes. Similar variations in the lipid concentrations are also observed for 

different brain regions: frontal cortex, midbrain, and stratum. The lipid profile of these 

brain areas changes upon neurodegeneration. Furthermore, fragments of lipid membranes 

are detected in Lewy bodies, which are extracellular deposits that are formed in Parkinson’s 

disease. These and other pieces of experimental evidence suggest that lipids can be involved 

in the destructive biochemical processes that lead to abrupt protein aggregation and amyloid 

fibril formation, a hallmark of a large group of neurodegenerative diseases.

Our results show that lipids uniquely alter the rates of insulin aggregation. These properties 

depend on the chemical structure of the lipid. Specifically, negatively charged CL (with a 

net charge of −2) drastically accelerates the rate of insulin aggregation while simultaneously 

shortening the lag phase. Furthermore, u-CL has a stronger effect on the observed changes 

in the rate and lag phase than its saturated analog (s-CL). However, zwitterionic PC (both s- 

and u-PC) strongly suppresses insulin aggregation.

Our findings show that lipids not only alter the rates of protein aggregation but also uniquely 

modify the morphology and secondary structures of the formed aggregates. Specifically, in 

the presence of both u- and s-PC, insulin yields only spherical oligomers, whereas in the 

presence of u-CL, insulin assembles into long fibrils. None of these structures are evident 

upon insulin aggregation in the lipid-free environment. The utilization of CD and FTIR 

revealed major structural differences between PC and CL aggregates. If the former are 

primarily composed of α-helix and unordered protein secondary structures, then the latter 

are dominated by the parallel β-sheet. It should be noted that structural differences are also 

observed between s- and u-PC as well as between s-and u-CL. These findings show that the 

lipid structure and unsaturation in fatty acids of phospholipids determine the structure and 

morphology of amyloid aggregates.

We infer than this effect arises from interactions that are developed between charged amino 

acid residues of proteins and polar headgroups of lipids. It was previously shown that lysine 

and glutamic acid residues on the N-terminus (amino acids 1–60) of α-Syn exhibit strong 

electrostatic interactions with headgroups of phospholipids. It was also hypothesized that 

such interactions trigger α-Syn aggregation.62 Furthermore, NMR and fluorescence methods 

revealed that lipid–protein interactions are also facilitated by hydrophobic interactions 

between nonpolar amino acid residues of the protein and the fatty acid tails of lipids.63,64

Our findings also reveal significant differences in ROS production and cell toxicity induced 

by insulin aggregates formed in the presence of saturated and unsaturated phospholipids. 

Specifically, toxicities exerted by unsaturated PC and CL on the N27 cell line are 

significantly higher than the toxicities of their saturated analogs. One can expect that 

the toxicity of insulin aggregates may correlate with the amount of β-sheet structure. 

Specifically, insulin fibrils that were grown in the lipid-free environment possess ~82% 

of both parallel and antiparallel β-sheets (Figure S7), whereas Ins:PC-u and Ins:PC-s 

aggregates possess ~65 and ~49% of the β-sheet, respectively. These β-sheet distributions 
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correlate with toxicities exerted by these aggregates (Figure 4). However, this conclusion 

cannot be drawn for Ins:CL-s and Ins:CL-u aggregates. Our results show that Ins:CL-u 

and Ins:CL-s have very similar amounts of both parallel and antiparallel β-sheets (66% for 

Ins:CL-u and 74% for Ins:CL-s), which are only slightly lower than the amount of β-sheets 

in insulin fibrils (82% for Ins) that were grown in the lipid-free environment (Figure S7). 

However, the toxicity of Ins is approximately twice the toxicity of Ins:CL-s and nearly 

the same as the toxicity of Ins:CL-u (Figure 4). Thus, we do not observe the relationship 

between the toxicity of Ins:CL aggregates and the amount of β-sheet in their structure.

The difference in the cell toxicity and ROS production between insulin aggregates that 

possess saturated and unsaturated CL and PC can be explained by the higher chemical 

reactivity of unsaturated fatty acids present in the phospholipids. A growing body of 

evidence shows that under ambient conditions, unsaturated lipids are prone to oxidation, 

which yields the formation of peroxides and hydroxylated analogs of lipids. This evidence 

explains the high ROS levels caused by unsaturated lipids themselves (Figure 4). Our 

findings show that the presence of such unsaturated lipids in insulin aggregates increases 

their toxicity. At the same time, the presence of their saturated analogs helps to reduce the 

toxicity of the aggregates relative to the toxicity of insulin aggregates that were grown in the 

lipid-free environment.

In summary, our experimental findings show that u-CL drastically shortens the lag phase 

of insulin aggregation compared to the s-CL present at the same lipid-to-protein ratio. 

Furthermore, we observed the inverse relationship between the quantity of β-sheets and the 

kinetics of fibril formation. Specifically, insulin fibrils that were grown in the lipid-free 

environment possess ~82% of both parallel and antiparallel β-sheets (Figure S7), whereas 

their tlag is 14.4 h. Ins:CL-u and Ins:CL-s possess 66 and 74% β-sheets (Figure S7) with 

tlag values of 6.1 and 8.1 h, respectively. However, this inverse relationship does not hold 

true for Ins:CL aggregates. These findings suggest that the lipid environment rather than 

β-sheet-driven templating is the major driving force of insulin aggregation in the lipid 

environment.

We also found that structurally and morphologically different aggregates were formed in 

the presence of s- vs u-CL. Furthermore, insulin aggregates grown in the presence of u-CL 

exerted higher cell toxicity comparing to the aggregates that were formed in the presence 

of the saturated phospholipid. At the same time, both Ins:PC-u and Ins:PC-s were able to 

inhibit insulin aggregation with equivalent efficiency. Similar to CL, structurally different 

aggregates were formed in the presence of s- and u-PC. These aggregates exerted different 

cell toxicities. These results show that unsaturated phospholipids catalyze the formation of 

more toxic amyloid aggregates compared to those formed in the presence of saturated lipids. 

These findings help to explain the underlying molecular determinant of toxicity and the 

structural variability of amyloid aggregates that are formed under pathological conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Lipids uniquely alter the morphologies of insulin aggregates. AFM images of (A and B) 

Ins:CL-u, (C and D) Ins:CL-s, (E and F) Ins:PC-u, (G and H) Ins:PC-s, and (I and J) insulin 

aggregates grown in the lipid-free environment. Scale bars are 200 nm.
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Figure 2. 
Structural analysis of insulin aggregates. (Left) CD and (right) ATR-FTIR spectra of insulin 

aggregates (Ins) grown in the lipid-free environment (red) as well as in the presence of 

Ins:CL-s (solid blue), Ins:CL-u (dashed blue), Ins:PC-s (solid green), and Ins:PC-u (dashed 

green).
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Figure 3. 
Nanoscale analysis of (A) Ins:PC-u (red) and Ins:PC-s (green) and (B) Ins:CL-u (black) and 

Ins:CL-s (blue) aggregates. Spectra collected from individual aggregates are shown in the SI. 

AFM–IR spectra of population A are shown in the corresponding solid, whereas population 

B is shown by the corresponding dashed lines.
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Figure 4. 
Insulin aggregates grown in the presence of saturated lipids possess cell toxicity different 

from that of the aggregates grown in the presence of unsaturated lipids. Histograms of 

(top) LDH and (bottom) ROS assays of Ins, Ins:CL-s, Ins:CL-u, Ins:PC-s, and Ins:PC-u 

(blue bars) and saturated and unsaturated lipids (green bars) themselves. For LDH and 

ROS production, error bars represent the means of three replicates. Red asterisks (*) show 

the significance of the level of difference between Ins and Ins aggregates grown in the 

presence of lipids as well as between lipid samples and the control. Blue asterisks show 

the significance of the level of difference between protein samples with saturated lipids and 

unsaturated lipids. NS is a nonsignificant difference, and *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 

0.001.
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