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Abstract Electrical coupling, mediated by gap junctions, contributes to signal averaging,
synchronization, and noise reduction in neuronal circuits. In addition, gap junctions may also provide
alternative neuronal pathways. However, because they are small and especially difficult to image,
gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junc-
tions between photoreceptors in the mouse retina using serial blockface-scanning electron micros-
copy, focused ion beam-scanning electron microscopy, and confocal microscopy for the gap junction
protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including
blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately

50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod

or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between
photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a
maximum conductance of ~1200 pS, if all gap junction channels were open. This is comparable to
the maximum conductance previously measured between rod/cone pairs in the presence of a dopa-
mine antagonist to activate Cx36, suggesting that the open probability of gap junction channels can
approach 100% under certain conditions.

Editor's evaluation

This article presents a beautiful analysis of gap junctions in the outer retina using a combination

of confocal imaging and electron microscopy. The result is a thorough description of connectivity
between rod and cone photoreceptors, and a clear resolution of ambiguities present in past work on
this topic.

Introduction

Signaling between neurons is served by both chemical synapses and electrical connections known
as gap junctions. Chemical transmission is the dominant mode, but electrical synapses can change
the properties and routing of local networks and microcircuits (Marder et al., 2017). Gap junctions
contain clusters of intercellular channels that allow the passage of ions and other small molecules, and
so support electrical coupling. At a gap junction, the membranes of two neighboring cells are closely
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elLife digest Neurons can talk to each other in two ways: they can send chemical messengers
across specialized junctions between two cells, or they can directly pass electrical signals to one
another. This latter process is made possible by gap junctions, a system of channel-like structures
which connect neighbouring cells and let ions move between them. In most neurons, gap junction
channels are made from a specialized protein called connexin 36. Gap junctions are small, difficult to
observe, and therefore often ignored by researchers studying neural circuits.

In response, Ishibashi et al. focused on nerve cells in the mouse retina, in particular the cones
(which detect color during the day) and the rods (which are essential for night vision). Gap junc-
tions between rods and cones allow them to communicate; for example, they enable rod signals to
directly activate cones. This provides an alternative route for rod signaling known as the ‘secondary
rod pathway’, which seems to be open at night and switches to closed around dawn.

Both rods and cones only produce connexin 36, so Ishibashi et al. labeled these proteins with fluo-
rescent tags to pinpoint gap junctions. This showed that each cone makes around 50 gap junctions
with nearby rods; however, gap junctions were not detected between cells of the same type.

In addition, 3D reconstruction helped to establish the length of each gap junction. Further experi-
ments showed that a typical rod was connected to a cone by about 80 connexin 36 channels. Finally,
calculations revealed that the gap junction channels would all need to open to account for the level
of electrical activity required for the secondary rod pathway. This suggests that gap junctions may be
much more active and important than previously thought.

The work by Ishibashi et al. provides a new understanding of the number, size and activity of gap
junctions in the retina, potentially paving the way to prevent diseases where light-sensing cells degen-
erate and cause blindness.

apposed or ‘zippered,’ leaving only a 2-4 nm gap (Bloomfield and Vélgyi, 2009; Miller and Pereda,
2017). Each gap junction channel is formed of two docked hemichannels, or connexons, and each
connexon is assembled from six connexin subunits. Connexin expression is required on both sides to
form a gap junction (Miller et al., 2017, Jin et al., 2020). The vertebrate connexin family in mouse
includes 20 members, including Cx36, the most common neuronal connexin (Beyer and Berthoud,
2009, Séhl et al., 2004).

The pattern of gap junction connectivity between neurons confers distinct properties on circuit
function. Homologous gap junctions between cells of the same type support the lateral spread of
signals through coupled networks that can average over a wider area than a single neuron, as would
be expected for rod/rod or cone/cone coupling, if they were shown to occur. In addition, heterol-
ogous coupling between different cell types can provide the specific connections to form another
neuronal pathway or an alternative route for signal flow. For example, rod/cone coupling provides an
alternative pathway for rod signals to enter cone-driven circuits, known as the secondary rod pathway.
The gap junction connections between All amacrine cells and ON bipolar cells in the retina, which
support the primary rod pathway, are another well-known example of heterologous coupling (Demb
and Singer, 2012; Feigenspan et al., 2001; Mills et al., 2001; Veruki and Hartveit, 2002).

While the distribution of gap junctions is widespread in neural tissue and their roles in signal aver-
aging, noise reduction, synchronization, and predictive coding have been well documented (Connors,
2017, Nagy et al., 2018), they are small, difficult to image, and often ignored. Thus, the role of elec-
trical coupling in neural circuits may be underappreciated and poorly understood. Indeed, it is chal-
lenging to reliably identify gap junctions in electron microscopy (EM) material (Pallotto et al., 2015),
and gap junctions may be absent from large-scale serial EM reconstructions (Kasthuri et al., 2015;
Scheffer et al., 2020). In this study, we demonstrate an approach for measuring small gap junctions
reliably in the mouse retina that can be applied to other parts of the brain.

In the retina, the synaptic endings of photoreceptors, known as cone pedicles and rod spherules,
terminate in the outer plexiform layer (OPL) where they make synapses with second-order neurons:
horizontal cells and bipolar cells. Cone pedicles are found in a single layer in the mid-OPL, whereas
the smaller rod spherules are found above and between the cone pedicles in the top (distal) half of the
OPL. In the mouse retina, rods outnumber cones by about 30-1 (Carter-Dawson and LaVail, 1979),
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and, numerically, the OPL is dominated by rod spherules. Cone pedicles are the largest structures in
the OPL. They contain numerous synaptic ribbons, each marking an active zone, and make synaptic
contacts with horizontal cells and 13 types of cone bipolar cell. One of these bipolar cell types, CBC9,
contacts short wavelength-sensitive (i.e., ‘blue’) cones selectively, which can be identified on this basis
(Behrens et al., 2016, Nadal-Nicolas et al., 2020). Rod spherules contain a single large ribbon and
synapse with horizontal cells and a single type of rod bipolar cell.

The numerous, small gap junctions in the OPL were first described in early ultrastructural studies in
cat and primate retinas (Kolb, 1977; Raviola and Gilula, 1973; Smith et al., 1986). Basal processes,
called telodendria, spread laterally from cone pedicles to make small gap junctions with rod spherules.
In freeze-fracture EM, the gap junctions appear as strings of single particles curved around the synaptic
invagination of rod spherules (Raviola and Gilula, 1973). The presence of gap junctions at rod/cone
contacts is consistent with the electrical transmission of rod signals to cones, forming the secondary
rod pathway in which rod signals influence cone-driven circuits (Asteriti et al., 2014; Ingram et al.,
2019; Li et al., 2010; Nelson, 1977; Ribelayga et al., 2008; Ribelayga and Mangel, 2010; Schnee-
weis and Schnapf, 1995).

Rods and cones both express Cx36, but no other connexins (Bloomfield and Vélgyi, 2009; Jin
et al., 2020; O'Brien et al., 2012) with Cx36-mediated rod/cone coupling accounting for most of
the gap junctions in the OPL (Asteriti et al., 2017; Ingram et al., 2019; Jin et al., 2020). In addition
to rod/cone gap junctions, cone/cone coupling has been reported in cat and primate retinae (Kolb,
1977, Smith et al., 1986). Rod/rod gap junctions have been suggested from tracer coupling studies
and EM studies of the mouse retina (Jin et al., 2015; Li et al., 2012; Tsukamoto et al., 2001), and,
in salamander retina, rods are extensively electrically coupled (Zhang and Wu, 2004). However, the
evidence for rod/rod gap junctions in the mammalian retina is mixed (Bloomfield and Vélgyi, 2009,
Bolte et al., 2016; Jin et al., 2020; Tsukamoto et al., 2001) and will be addressed here.

In this study, we used a combination of confocal microscopy, serial blockface-scanning electron
microscopy (SBF-SEM) and focused ion beam-SEM (FIB-SEM), to address four major goals: (i) recon-
struct the cone telodendrial network, (i) identify all (both homologous and heterologous) gap junction
types in the OPL, (iii) resolve the question of rod/rod coupling, and (iv) make a quantitative estimate
of rod/cone coupling.

We used a publicly available SBF-SEM dataset (e2006; Helmstaedter et al., 2013), which contains
photoreceptor terminals and the OPL, to map membrane contacts between photoreceptors. Unfor-
tunately, because this dataset was prepared to enhance membrane contrast and facilitate tracing
neuronal processes, gap junctions were not identifiable. To work around this problem, we used
confocal microscopy to identify the location of Cx36 gap junctions on rod spherules (Jin et al., 2020).
Tracing the contacts between cone telodendria and rod spherules in the SBF-SEM dataset revealed
numerous potential sites that corresponded with the location of Cx36 immunofluorescence in the
confocal dataset. Thus, the combination of confocal microscopy and SBF-SEM is complementary.
To confirm the location of rod/cone gap junctions, we used FIB-SEM on new samples processed to
preserve ultrastructure, which allowed high-resolution imaging of contacts between cone pedicles
and rod spherules.

We confirmed that heterologous rod/cone gap junctions account for the vast majority of gap junc-
tions in the OPL (Jin et al., 2020). The combination of imaging methods enabled us to determine
the pattern of connectivity between photoreceptors and make a quantitative estimate of rod/cone
coupling, based on gap junction size and number. Finally, we correlated this morphological data
with our previously published measurements of gap junction conductance between photoreceptors
obtained from paired rod/cone recordings (Jin et al., 2020). This combination of morphological and
physiological data provides a way to estimate some of the fundamental properties of gap junctions
and how they may contribute to a neuronal circuit. Our calculations suggest that most connexon chan-
nels, up to 100% under certain conditions, can contribute to the wide dynamic range of these small,
string-like gap junctions between rods and cones.
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Results

Localization of Cx36 in the OPL: Confocal microscopy
Immunofluorescent labeling for Cx36 revealed small clusters of labeling in the OPL (Figure 1A, red).
To locate these potential gap junctions, we used an antibody to the vesicular glutamate transporter
(vGlut1) (Figure 1B, blue) to identify rod spherules and an antibody to cone arrestin (CAR) to label
cone pedicles (Figure 1C, green). Labeling with the CAR antibody stains cones in their entirety from
the outer segment to the pedicle (Figures 1C and 2A). Fine processes, called telodendria (e.g.,
oblique arrows in Figure 1C), extend laterally from each cone pedicle to form an overlapping matrix
in the OPL. The area between and above the cone pedicles is filled with numerous vGlut1-labeled rod
spherules while the space underneath is occupied by the dendrites of horizontal cells and bipolar cells.
The cone telodendria rose above the level of the cone pedicles to contact the overlying rod
spherules (Figure 1C). In the OPL, there are many small Cx36 clusters associated with cone teloden-
dria, often at their tips, relatively high (distal) in the OPL. Staining the rod spherules for a synaptic
vesicle marker, such as the vesicular glutamate transporter, shows that Cx36 clusters are contained
within the band of vGlut1-labeled rod spherules (Figure 1B, Figure 1—video 1). There was almost
no Cx36 labeling in the outer nuclear layer (ONL). This is important because it rules out the presence
of Cx36 gap junctions between rod somas and/or passing axons in the ONL, where they are packed
together at high density. Cx36 clusters are also apparent distinctly underneath each cone pedicle
(vertical arrowheads, Figure 1), on processes previously identified as bipolar cell dendrites (Feigen-
span et al., 2004; O’Brien et al., 2012; Raviola and Gilula, 1973). Because they are not colocalized
with cone pedicles, they are excluded from further analysis in this article.

Number of Cx36 clusters on individual cones

When all the cones are labeled for CAR, the complexity of the overlapping matrix makes it difficult
to analyze individual cone pedicles with confidence. Therefore, we turned to a transgenic mouse line,
Opn4°e;Z/EG (Ecker et al., 2010), where there is sparse labeling of a few individual cones (Figure 2A).
This made it possible to view individual EGFP-labeled cones against a background of all cones stained
for CAR (Figure 2B). The immunofluorescence data were analyzed by extracting only the Cx36 clus-
ters that colocalized with EGFP-labeled pedicles (Figure 2C) and reconstructing in 3D to find the
number and location of Cx36 clusters on a single-cone pedicle (Figure 2D, Figure 2—video 1). At
each Cx36 cluster, there is an adjacent rod spherule (Figure 2E), suggesting that these structures are
rod/cone gap junctions. There are approximately 51.4 + 8.88 (mean =+ SD, n = 18, three retinae) Cx36
clusters on each cone pedicle (Figure 2D and F, Figure 2—source data 1), along the telodendria and
over the upper surface of the cone pedicle.

Localization of Cx36 clusters on blue cone pedicles

Blue cones initiate a specific color-coded pathway in the mammalian retina (Behrens et al., 2016;
Dacey and Lee, 1994; Haverkamp et al., 2005, Kouyama and Marshak, 1992). Blue cones in the
dorsal retina were stained in their entirety by use of a blue cone opsin Venus transgenic mouse line
(Figure 2—figure supplement 2). Alternatively, blue cones were identified using an antibody to blue
cone opsin to stain the outer segment and then following the CAR-labeled axon down to the pedicle
in a confocal series (Figure 2—figure supplement 3, Figure 2—video 2). In either case, a sparse
mosaic of ‘true blue’ cones was located in the dorsal retina, as opposed to the ventral retina where
most cones express both blue (S) and green (M) opsins (Nadal-Nicolas et al., 2020). We find that the
pedicles of blue cones have telodendria-bearing Cx36-labeled clusters in a manner indistinguishable
from green cone pedicles (Figure 2G, Figure 2—figure supplement 3). Thus, it appears that blue
cones also make numerous Cx36 gap junctions with rods.

Cx36 clusters are located in all rod spherules, close to the opening of

the postsynaptic compartment

In high-resolution confocal images (x63 objective, NA 1.4, Zeiss Airyscan), the Cx36 elements occur
exclusively where cone telodendria contact the base of each rod spherule (Figure 3A). Some rod/
cone contacts have multiple Cx36 clusters (Figure 3A, arrow). In these images, rod spherules appear
as oval structures (blue) including two unlabeled compartments or holes, separated by the synaptic
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Figure 1. The distribution of Cx36 in the outer plexiform layer (OPL). Cx36 labeling in the OPL, confocal microscopy. (A) Numerous small Cx36 clusters
(red) restricted to the OPL, absent in the outer nuclear layer (ONL). For all four panels: horizontal arrowheads, bipolar cell Cx36 clusters under each cone
pedicle that were excluded from analysis because they were not colocalized with cone pedicles; horizontal arrow, non-pecifically labeled blood vessel.
(B) Cx36 clusters are contained within the band of rod spherules, stained with an antibody against vGlut1 (blue). (C) Cx36 clusters decorate the cone

Figure 1 continued on next page
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pedicles and their telodendria, labeled for cone arrestin (green). Oblique arrows point to examples of cone telodendria. (D) Four channels showing Cx36
(red), cone pedicles (green), and rod spherules (blue) all contained within the OPL. DAPI-labeled nuclei (gray) show the well-organized ONL. Figure 1—

video 1 shows this dataset.

The online version of this article includes the following video for figure 1:

Figure 1—video 1. Animation of a confocal series from the outer plexiform layer (OPL) showing Cx36 (red) decorating the cone telodendria (green,

cone arrestin).

https://elifesciences.org/articles/73039/figures#fig1video

ribbon, immunolabeled for ribeye (Figure 3B, white). The lower hole in the rod spherule of Figure 3B
contains the mGluRé-labeled (green) tips of rod bipolar cell dendrites and was thus identified as the
postsynaptic compartment. The upper hole contains a single large mitochondrion, labeled for the
mitochondrial translocase TOMMZ20 (red). To quantitatively determine the position of Cx36-labeled
points, we captured vGlutl-labeled rod spherules and generated a mean structure by aligning,
stacking, and averaging the images from 18 complete rod spherules from a single section. The sites
of individual Cx36 elements were marked and found to be located around the base of the mean rod
spherule (Figure 3C and D). A spline curve was fitted to the outline of the mean rod spherule and,
after linearizing this curve, the density of Cx36 was plotted. The twin peaks of the resulting curve
show that Cx36 (red) is distributed around the mouth of the synaptic opening, shown by a drop in
the vGlut1 labeling (blue) (Figure 3E). In the same region, the labeling for the cone signal (green) is
high, suggesting that Cx36 gap junctions occur at telodendrial contact points with rods. Two potential
outliers, at approximately 3 o'clock and 9 o’clock (Figure 3C), were actually located on other nearby
rod spherules and so were excluded from the analysis. In this sample of 18 rod spherules, there were
45 Cx36 clusters, yielding 2.50 = 0.764 Cx36 clusters/rod (mean * SD). From the mean structure of
these 18 rod spherules, all Cx36 elements were located at the base of the rod spherule, within 1-2 um
of the opening to the postsynaptic compartment (Figure 3E).

To estimate the fraction of rods that are coupled to cones, we generated a larger sample, including
the 18 rods above. We counted the number of Cx36-labeled points at the base of each rod spherule
where there was contact with a cone, excluding any rod spherules that were not completely contained
within the section. From seven different sections, from three retinae, all 260 rod spherules analyzed
have cone contacts and Cx36 labeling close to the synaptic opening (Jin et al., 2020). Frequently,
there are multiple Cx36-labeled points at the base of a single rod spherule; the number of Cx36
elements ranged from 1 to 6 with a mean of 2.48 + 1.01 (mean * SD) (Figure 3F and G, Figure 3—
source data 1). Presuming that a Cx36 cluster indicates the presence of a gap junction, we conclude
that every rod spherule was coupled to a nearby cone.

Distribution of photoreceptors in the OPL: Serial blockface electron

microscopy

The e2006 SBF-SEM dataset is derived from a block of mouse retina including 164 cone pedicles and
thousands of rod spherules with a voxel size of 16.5 x 16.5 x 25 nm (Helmstaedter et al., 2013). Cone
pedicles are easily recognized as the largest structures in the OPL, and we were able to map them and
register the resulting map with the data from Behrens et al., 2016 (Figure 4A). From these data, we
could locate the blue cone pedicles previously identified by their selective contacts with blue cone
(CBC9) bipolar cells (Behrens et al., 2016). Rod spherules were also easily identified as the numerous
round and compact structures with prominent postsynaptic inclusions in the synaptic invagination. In
this dataset, rod spherules are 2-3 pm in diameter and they are massed above and surrounding the
cone pedicles (Figure 4B), usually oriented with the synaptic invagination at the base.

Skeletons show many contacts between cone telodendria and rod
spherules

To assess potential gap junctional contacts between cone pedicles and rod spherules, we chose a
patch of 29 adjacent cones (Figure 4A, box 1) to skeletonize, meaning we followed their processes
to nearby contacts or termination. This patch included 13 central cone pedicles within the ring
surrounded by an annulus of 16 additional cone pedicles (Figure 4A and C). Some calculations were
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Figure 2. Cx36 is colocalized with cone pedicles. (A) EGFP-labeled single cones (green) against a background of all cones stained for cone arrestin
(red) and vGlut1, which stains rod spherules (blue). Most cone pedicles appear magenta because they are labeled for both cone arrestin and vGlut1.
The EGFP-labeled cone pedicles are white, triple labeled for EGFP, cone arrestin, and vGlut1. (B) A mini-stack of five optical sections (0.5 pm in total)
showing the distribution of Cx36 (red) on cone pedicles (blue), including a single EGFP-labeled cone (green + blue = cyan). Arrows point to individual

Figure 2 continued on next page
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Figure 2 continued

Cx36 clusters. Images of individual channels are available in Figure 2—figure supplement 1A. (C) Enlarged version, same mini-stack showing Cx36
clusters colocalized with the single EGFP-labeled cone pedicle. Note the similarity with panel (B) because Cx36 is predominantly colocalized with cone
pedicles and there is very little nonspecific Cx36 background. Additional images of the same size as (B) are available in Figure 2—figure supplement
1B. (D) 3D projection of a complete single EGFP cone pedicle (green) compiled from confocal sections showing only Cx36 clusters (red) colocalized with
this cone pedicle, as in (C). From such data, we calculated the mean number of Cx36 clusters per cone pedicle (F, below). Images of individual channels
are available in Figure 2—figure supplement 1C. Figure 2—video 1 shows this dataset. (E) A single confocal section showing that rod spherules (blue)
occur close to the Cx36 clusters (red) located on a cone pedicle (green). Left: Cx36 clusters (red), arrows point to individual Cx36 clusters (all panels).
There is some faint background labeling for Cx36, which is mostly contained within the cone pedicle. Center: the distribution of Cx36 clusters (red) on a
cone pedicle (green) and its telodendria. Right: triple label showing that rod spherules, labeled for vGlut1 (blue), contact the cone pedicle (green +blue
= cyan) at Cx36 clusters (red). (F) The number of Cx36 clusters, 51.4 + 8.88 (mean + SD), on a single reconstructed cone pedicle (as in D), box shows
quartiles, mean (circle), median (bold line), SD (whisker), min/max (x), n = 18. (G) Blue cone pedicle (cyan), identified in a blue cone opsin Venus mouse
line, had telodendria-bearing Cx36 clusters (red), similar to those of green cones, stained for cone arrestin (green).

The online version of this article includes the following video, source data, and figure supplement(s) for figure 2:

Source data 1. Number of Cx36 clusters on a single-cone pedicle.

Figure supplement 1. 3D reconstruction of a single EGFP-labeled cone pedicle and colocalized Cx36 clusters.

Figure supplement 2. The distribution of blue cone opsin in the mouse retina.

Figure supplement 3. Blue cone pedicles have telodendria-bearing Cx36 clusters.

Figure 2—video 1. 3D reconstruction of a single EGFP-labeled cone pedicle among all cone arrestin (blue)-labeled cones, with extensive telodendria.

https://elifesciences.org/articles/73039/figures#fig2video'

Figure 2—video 2. Animating from the outer plexiform layer (OPL) to the outer segments following the cone axon allows cone labeled for blue cone
opsin (magenta) to be connected to its pedicle (*), labeled for cone arrestin.
https://elifesciences.org/articles/73039/figures#fig2video2

based on the central 13 cones to avoid edge artifacts. All skeleton data are provided in Figure 4—
source data 1 and summarized in Appendix 2—table 1. This central area contained one blue cone
pedicle, but, in addition, we analyzed all the blue cone pedicles in the dataset (Figure 4A), as identi-
fied by Behrens et al., 2016 (summarized in Appendix 2—table 2). We also examined several other
locations, including an area with a sparse distribution of cone pedicles (Figure 4A, box 2), to be sure
we did not select an atypical area (Figure 5—figure supplement 1C and D). The mosaic of cone
pedicles with their overlapping telodendria is plotted in Figure 4C. Cone axons were followed into
the ONL, and a projection shows that the telodendria are contained within the upper part of the OPL
(Figure 4D).

We started our analysis with a single-cone pedicle (cone 5), near the center, which had a complex
but typical field of telodendria approximately 10 pm in diameter, and we marked the position of
every rod spherule in contact with this cone (Figure 5A). Cone 5 has contacts with 34 rod spherules
that included every rod spherule within the telodendrial field. In a projection, it can be seen that the
telodendria extend laterally and above the cone pedicle, reaching up to the overlying rod spherules
(Figure 5A). Many, but not all, telodendria terminate at the base of a rod spherule. The skeleton of a
blue cone pedicle (cone 2) is similar (Figure 5A, bottom, B and C, arrow).

Outlining the telodendrial fields and adding the rest of the cone pedicles shows a dense matrix
of overlapping telodendria (Figure 5B) each with an area of 104 + 0.2 pm? (mean = SD, n = 29,
Figure 5F, Figure 5—source data 1) and a coverage estimated at 1.56 (n = 29 cones). Each cone
contacts 43.0 + 5.40 rod spherules (mean * SD, n = 29 cones) (Figure 5G, Figure 5—source data 1),
including every rod spherule within its field, typically at the base. Plotting convergence (number of rod
spherule contacts per cone) against the pedicle area shows a slight trend for the largest cone pedicles
to contact more rods spherules (Figure 5H, Figure 5—source data 1).

Examining these contacts from the perspective of the rod spherules, we coded the overlying rod
spherules in the same color as each cone pedicle. Rod spherules with contacts from two or three of the
central 13 cone pedicles are marked black or dark gray, respectively, with noncontacted rod spherules
marked as light gray. Viewing the resulting map quickly makes the point that most rods are contacted
by two or three cone pedicles (Figure 5C, Figure 5—figure supplement 1A). Omitting the cone pedi-
cles (except for one example) and all rod spherules in contact with those cones leaves only an annulus
of rod spherules outside the field of reconstructed cones and demonstrates the almost total absence
of rods with no cone contacts (Figure 5—figure supplement 1B). We found 3/811 (0.4%) rods without
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Figure 3. Cx36 clusters are found at the base of each rod spherule.

(A) Top: details of outer plexiform layer (OPL), rod spherules, stained for vGlut1 (blue) and outlined with dashed lines are located above and between
cone pedicles labeled for cone arrestin (green). Cx36 clusters (red) are found at the base of rod spherules where they contact cones. Multiple Cx36
clusters occur at some contacts (arrow). Bottom: Cx36 clusters are located on cone telodendria. Images of individual channels are available in

Figure 3 continued on next page
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Figure 3—figure supplement 1A. (B) Top left: a rod spherule labeled for vGlut1 (blue), outlined with a dashed line, has two compartments (* and

**). Top middle: bottom compartment is open at the base and contains two mGluRé-labeled rod bipolar dendrites, identifying the postsynaptic
compartment. Top right: the upper compartment is filled with a large mitochondrion, labeled for TOMM20 (red). Lower left: the synaptic ribbon, labeled
for ribeye (white), lies between the two compartments, arching over the postsynaptic compartment. Lower middle: the synaptic ribbon lies between
the mitochondrion and the mGIuRé label. Bottom right: all four labels superimposed showing a typical rod spherule. Images of individual channels with
visible background are available in Figure 3—figure supplement 1B. (C) 18 rod spherules, each from one optical section, aligned and superimposed.
Taking the rod spherule as a clock face (top center is 12 o’clock), Cx36 clusters (red with individual puncta marked +), are found at the base, 6 o’clock,
along with cone telodendria (green). The two single +s at 3 o'clock and 9 o’clock are associated with other rod spherules and were excluded from

the analysis. (D) Average rod spherule showing Cx36 and cone telodendria at the base with a fitted spline curve. (E) The distribution of label in each
confocal channel along a linearized version of the spline curve. Where the vGlut1 label is low, indicating the opening to the postsynaptic compartment,
the Cx36 (red) and cone (green) signals are high. The double peak for Cx36 indicates clusters on each side of the synaptic opening. (F) Scatterplot
showing the number of Cx36 clusters, presumed to be gap junctions, per rod spherule from a sample of 240 rods, mean 2.48 + 1.01, box shows
quartiles, mean (circle), median (bold line), SD (whisker), min/max (x). (G) Data plotted as histogram showing the distribution of multiple Cx36 clusters
per rod spherule, n = 260 rods, 645 gap junction points.

The online version of this article includes the following source data and figure supplement(s) for figure 3:
Source data 1. Number of Cx36 clusters on a rod spherule.

Figure supplement 1. Location of Cx36 and the fine structure of rod spherules.

cone contacts within the field of 29 cones, an insignificant fraction. As a precaution, we also checked
a sparse patch with a rare hole in the cone mosaic (Figure 5—figure supplement 1C and D). Even
here, more than 95% of rods received cone contacts.

If each cone contacts every rod spherule within its telodendrial field, then in areas where the cone
telodendria overlap, each rod must receive contacts from multiple cones. This is clearly the case, and,
in fact, most rods receive contacts from two, three, or, rarely, four cones. A simplified map for two
adjacent cones is shown in Figure 5D, while the contact map for all 29 cones is shown in Figure 5—
figure supplement 2A. Of approximately 40 rods in contact with each cone pedicle, only a few have
exclusive contacts with a single cone (7.23 * 3.38, mean * SD, n = 13 central cone pedicles). Most
rods receive contacts from several cone pedicles while adjacent cone pedicles share as many as 23
rod spherules, (mean = SD = 6.23 * 4.67, n = 79 cone pairs) (Figure 5—figure supplement 2B,
Figure 5—source data 2). There is a pronounced edge effect because the outermost ring of cone
pedicles lacks the overlap from further unanalyzed cones: to avoid this, we analyzed the rod contacts
of the central 13 cone pedicles. In this area, rods with multiple cone contacts were the norm; 74% of
rod spherules received contacts from two or three cones, yielding a rod to cone divergence of 1.89
(Figure 5E). This reflects the density of the telodendrial network and the large number of rod/cone
gap junctions in the OPL. Clearly, each rod spherule has the potential to make several contacts with
close-by cones, in agreement with the confocal data showing the distribution of Cx36.

Blue cone skeletons also contact rod spherules

The skeleton of a blue cone, defined by its bipolar cell contacts (Behrens et al., 2016; Nadal-Nicolas
et al., 2020), is also shown in Figure 5A and the analysis of all five blue cones from the dataset of
Behrens et al., 2016 is presented for comparison with green cones (Figure 5F and G). The blue cone
data are summarized in Appendix 2—table 2. The telodendrial area of blue cones was 85.1 + 18.6
pm? (mean + SD, n = 5) (Figure 5F). Like green cones, blue cones contact all rod spherules, within
their telodendrial field (convergence 39.8 + 5.11, mean = SD, n = 5). The convergence in blue cones
fell within the range of rods in contact with green cones, 43.0 + 5.40 rod spherules (mean + SD, n =
29). Most of the rods in contact with a blue cone also receive contact from adjacent overlapping green
cones. Thus, there is no evidence for color-selective rod contacts.

3D reconstruction of cone pedicles to visualize contacts with rod
spherules

We segmented several cone pedicles and the rod spherules contacted by each cone pedicle. The
contact sites, where the cell membrane of a cone telodendron combined with the cell membrane of
a rod spherule, with no visible space between them, were highlighted (Figure 6A-D). These contact
pads could then be superimposed on either the cone pedicle or the surface of the overlying rod
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Figure 4. Map of cone pedicles shows telodendria overlap.

(A) Map of 164 cone pedicles in €2006, modified from Behrens et al., 2016. Box 1 contains the 29 cone pedicles (thick outlines) that were
reconstructed as skeletons in (C). The central 13 cone pedicles are contained within the ring. Blue cone pedicles filled with dark blue. Box 2 is a lower
density area where six additional cone pedicles were also reconstructed as a check (Figure 5—figure supplement 1C). In total, there were six blue cone

Figure 4 continued on next page
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Figure 4 continued

pedicles, filled dark blue (Behrens et al., 2016). One blue cone pedicle was at the upper edge (black arrow). The cone pedicles outside the boxes were
not reconstructed, except for the single blue cone pedicle that lies outside the boxes. (B) Low-power vertical section from e2006 showing rod spherules
(three shades of blue), above and in between cone pedicles (green). (C) Skeletons of all 29 reconstructed cone pedicles (thick outlines) showing
overlapping telodendrial fields, individually colored. Thick outlines show solid part of cone pedicles. The central 13 cone pedicles are contained within
the ring. (D) Projection of (C) showing cone pedicles restricted to the outer plexiform layer (OPL) and axons ascending through the outer nuclear layer
(ONL).

The online version of this article includes the following source data for figure 4:

Source data 1. Cone pedicle skeletons and rod spherule points.

spherules. Typically, the telodendrial contacts, often from more than one cone, appear as arcs, close
to the synaptic opening of rod spherules (Kolb, 1977, Smith et al., 1986; Tsukamoto et al., 2001).
Confocal analysis also demonstrated multiple cone contacts with a single rod spherule (Figure 6E).

The reconstruction of adjacent cones 3 and 5 shows a complex field of telodendria extending
laterally and upward (distally) from the pedicles (Figure 6F). Their telodendria interdigitate, mostly
avoiding each other; the sparse cone-to-cone contacts will set a limit on cone/cone coupling. We
also reconstructed all the rod spherules in contact with these cones (Figure 6G, Figure 6—video 1,
Figure 6—video 2). Most of the overlying rod spherules have telodendrial contacts (Figure 6A and C)
but a few make direct contacts with the upper surface or roof of the cone pedicle (Figure 6B and D,
Figure 6—figure supplement 1A). When the contact sites with rods are displayed on the cone pedi-
cles, the appearance is similar to the 3D reconstruction of confocal material showing the distribution
of Cx36 clusters on a single-cone pedicle (Figures 2D and 6H). When the contact sites are displayed
on the rod spherule lower surfaces, it is obvious that most telodendrial contacts are very close to the
mouth of the synaptic invagination, often forming a curved line or horseshoe around it (Figure 61 and
J), within 1-2 pm. Neighboring cone pedicles often contact the same rod spherules. At such sites, the
contact pads from both cone pedicles can be found, often interspersed around the synaptic mouths
of the rod spherule (Figure 6J and K, Figure 6—video 1, Figure 6—video 2). The cone contact sites
are consistent with the location of Cx36 near the mouth of the synaptic invagination and thus indicate
the potential presence of rod/cone gap junctions (Figure 6E). However, a contact pad may exceed the
extent of a gap junction and therefore does not predict its size (see below).

Of the cone pedicles that were completely reconstructed, cones 5, 3, and 2 (a blue cone) had 57,
59, and 54 contact pads, respectively. Thus, the number of contact pads is close to the number of
Cx36 clusters per cone pedicle (51.4 + 8.88, mean * SD), from the confocal analysis, and this suggests
that most of the contact pads include gap junction sites. There were a few examples where a cone
telodendron contacts a rod spherule far from the synaptic invagination, often in transit to another
location, and these can show large areas of contact. But these sites are not associated with Cx36
labeling in the confocal data. In other words, these are incidental contacts of passage, not gap junc-
tions, and they were excluded from our analysis.

There are a few anomalies in the OPL: some rod spherules sit directly astride a cone pedicle and
receive few or no telodendrial contacts. Instead, they make direct contacts with the roof of the cone
pedicle (Figure 6—figure supplement 1). In addition, the lowest (most proximal) row of rods in the
ONL do not have axons or spherules (Li et al., 2016). Instead, the synaptic machinery is included in
the lowest crescent of the cell body, adjacent to the OPL. These low rods represent the most distal
synaptic structures in the OPL, yet they still receive contacts from cone telodendria (Figure 6—figure
supplement 2). Finally, there are a few rod spherules below (proximal to) the level of the cone pedi-
cles. These are often inverted so the mouth is on top, and this is the site of telodendrial contacts
(Figure 6—figure supplement 3). Thus, in every case, including these anatomical variations, cone
contacts occur close to the rod synaptic opening, coincident with the location of Cx36. These sites
very probably contain Cx36 rod/cone gap junctions.

3D reconstruction of a blue cone pedicle also shows contacts with rod
spherules

Based on the work of Behrens et al., 2016, who identified the cones in contact with the blue cone
bipolar cell (CBC9), we could locate the blue cones in the map of cone pedicles. The telodendrial field
of cone 2, ablue cone, contacts 41 rod spherules and overlaps substantially with the surrounding cones
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Figure 5. Cone skeleton analysis shows cones contact all nearby rod spherules.

(A) Skeletons of one green cone (cone 5, green) and one blue cone (cone 2, blue) in wholemount view and projected. Black arrows show ascending
axons. The position of each contacted rod spherule is marked by a dot, color-coded the same color (green or blue) if the contacts are exclusive to this
cone pedicle; black, contacts two cones; gray, contacts three cones. (B) Telodendrial fields of 29 reconstructed cone pedicles, each color-coded; central
13 outlined by polygons, arrow points to blue cone (cone 2, thick blue outline). Cones 3 and 5 are also outlined with cyan and green, respectively.

Figure 5 continued on next page
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(C) Outlines of central 13 cone pedicles showing all rod spherule contacts, color-coded, exclusive to one cone; black, contacts with two cones; dark
gray, contacts with three cones. Light gray, rod spherules outside the range of the central 13 cone pedicles. Arrow points to blue cone (cone 2, thick
blue outline). (D) Simplified skeleton map showing contacts of two green cone pedicles (cones 3 and 5); the box contains the cone identity, the total
number of rod contacts (above), and the exclusive number of rods that contact this cone only (below). Circles indicate the number of rod spherules
shared between cones linked by lines to neighbors. Cone 2 is a blue cone, which shares rod contacts with neighboring cones. (E) Pie chart showing
distribution of cone contacts per rod spherule. (F) Area of telodendrial field for all 29 reconstructed cone pedicles, central 13 cones (ring in Figure 4A
and C) and 5 blue cones. Box shows quartiles, mean (circle), median (bold line), SD (whisker), min/max (x). (G) Convergence, rod contacts per cone for
all 29 reconstructed cone pedicles, central 13 (ring in Figure 4A and C) and five blue cones. Box shows quartiles, mean (circle), median (bold line), SD
(whisker), min/max (x). (H) Convergence vs. cone pedicle area. Line of linear regression shows some tendency for larger cone pedicles to contact more

rods. +, blue cones.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Cone coverage area and rod convergence.

Source data 2. The number of rod spherules shared between two adjacent cone pairs.

Figure supplement 1. Nearly all rods receive cone contacts.

Figure supplement 2. Rod connectivity map for 29 cone pedicles.

(Figure 6—figure supplement 4A). This blue cone pedicle made the same types of rod contacts as
other cones, including telodendrial contacts, roof contacts, and contacts with the rods in the bottom
row of the ONL (Figure 6—figure supplement 4B). Reconstructing in 3D shows typical contact pads
around the mouth of the overlying rod spherules with alternating contributions from multiple cones,
including this blue cone (Figure 6—figure supplement 5). Thus, blue cone pedicles also make rod/
cone gap junctions and both blue and green cones can make gap junctions with the same rod. We
found no evidence of color-specific coupling.

SBF-SEM dataset shows electron-dense rod/cone gap junctions

While the SBF-SEM data analyzed above provided extensive information about close appositions
between cone pedicles and rod spherules, the sample preparation was not appropriate to resolve
definitive gap junctions in the tissue. To demonstrate that the contact pads described above represent
the presence of gap junctions, we also examined rod/cone contacts in an SBF-SEM dataset (eel001) in
which synapses and rod/cone gap junctions were visible. In Figure 7A and B, a roof contact between
a cone pedicle and an overlying rod spherule is shown. There is clear separation between the cell
membranes until a darkly stained chromophilic area where the membranes merge, indicating a gap
junction approximately 350 nm in length. The postsynaptic inclusions of the rod spherule show that
this site is close to the opening of the postsynaptic compartment. In a brief survey of the SBF-SEM
data, we found 13 examples of darkly stained merged membranes at rod/cone contacts, and a much
larger number in the FIB-SEM dataset (see below). We have shown above that Cx36 occurs at such
contacts between rods and cones and therefore conclude that this confirms the presence of a gap
junction.

Size and distribution of rod/cone gap junctions revealed by FIB-SEM
FIB-SEM provides isotropic data (same resolution in each dimension), facilitating 3D reconstruction
(Xu et al., 2017), and this allows measurement of gap junction dimensions. Thus, we also obtained
two FIB-SEM datasets of mouse OPL (FIB-SEM 1 and FIB-SEM 2) with 4 nm voxels revealing electron-
dense staining consistent with the size and position of Cx36 labeling, which we interpret as gap
junctions. Contacts from cone telodendria at the base of each rod spherule show darkly stained gap
junctions (Figure 7C and D) in the same position as Cx36 labeling determined by confocal microscopy
(Figure 3). It should be noted that the area of telodendrial contact is frequently larger than the size
of the gap junction (Figure 7D). Thus, while contact pads in the SBF-SEM 2006 images indicate the
potential for a gap junction (Figure 6H-K), they do not predict its size.

Sometimes, what appear as small separate gap junctions in a single section merge in nearby sections
to form one large continuous gap junction. An example is shown in Figure 7E-H; two small gap junc-
tions on either side of the synaptic opening are part of a horseshoe structure similar in shape to many
of the reconstructed contact pads. Reconstructing in 3D shows one large gap junction encircling the

Ishibashi et al. eLife 2022;11:€73039. DOI: https://doi.org/10.7554/eLife.73039 14 of 41


https://doi.org/10.7554/eLife.73039

(3
ELlfe Research article Neuroscience

Figure 6. Segmentation and 3D reconstruction e2006: cone telodendria contact rod spherules close to the mouth of the synaptic opening.

(A) Single serial blockface-scanning electron microscopy (SBF-SEM) section, telodendria from two cones (green or cyan), rod spherule (pink), in the
plane of the synaptic opening with cone contacts on both sides. (B) Single SBF-SEM section, rod spherule (blue), postsynaptic inclusions show it is

close to the synaptic opening, 25 nm x 4 sections = 100 nm away. The rod spherule sits on the roof of a cone pedicle (green) with a contact, shown

Figure 6 continued on next page
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Figure 6 continued

by the arrow, where membranes merge. (C) Single SBF-SEM section, rod spherule (magenta) with contacts at the synaptic opening from two different
cones (green or cyan). (D) Single SBF-SEM section, rod spherule (orange), contacts (arrow) the roof of a cone pedicle (green) with a telodendrial contact
(arrowhead) from a second cone (cyan). Postsynaptic inclusions in the rod spherule indicate the contacts are close to the synaptic opening, 25 nm x 9
sections = 225 nm away. (E) Top: confocal microscopy, single optical section, shows Cx36 clusters (red) where telodendria from two different cones (white
for cone arrestin, labels both cones; green for a single EGFP-labeled cone) contact rod spherule (blue), at the mouth of the synaptic opening. Bottom:
cone arrestin signal turned off for clarity, showing only one cone is labeled for EGFP. (F) 3D reconstruction from e2006, two adjacent green cone pedicles
(cone 5, green, and cone 3, cyan), ghost cell bodies (gray) show limits of outer nuclear layer (ONL) and inner nuclear layer (INL), arrow marks ascending
cone axons. (G) Same two cone pedicles with all 66 (= 38 + 34-6 shared) reconstructed rod spherules contacted by these two cones. (H) Rotated view,
looking down at top surface of same two cone pedicles, contact pads with rod spherules marked in red or yellow for each cone. Arrowhead marks

a single rod spherule; arrow ascending axon. (l) Rotated view, looking up at the bottom surface of all rod spherules in contact with these two cones,
contact pads in red or yellow, arrowhead marks a single rod spherule magnified in panels (J) and (K). (J) Single rod spherule (pink), green cone pedicle
(cone 5), with adjusted transparency, with contact pad (red) encircling the synaptic opening at the base of the rod spherule (arrowhead). The second
cone (cone 3, cyan) also contacts this rod spherule nearby (yellow), approximately 1 um from the synaptic mouth. (K) Detail showing the bottom surface
of three adjacent rod spherules that receive contacts close to the synaptic opening from both cone pedicles, contact pads in red or yellow, arrows show
rod axons, arrowhead indicates same rod spherule as (J). Figure 6—video 2 shows this dataset.

The online version of this article includes the following video and figure supplement(s) for figure é:
Figure supplement 1. Confocal microscopy, roof contacts.

Figure supplement 2. Low rods.

Figure supplement 3. Low rod spherules.

Figure supplement 4. Blue cones, segmentation, e2006.

Figure supplement 5. Blue cones 2006, 3D reconstruction.

Figure 6—video 1. 3D reconstruction of a single cone (cone 5, green) with contact pads in red, then all rod spherules that were in contact with this
cone.

https://elifesciences.org/articles/73039/figures#figévideo'

Figure 6—video 2. A pair of reconstructed adjacent cone pedicles (cone 5, green, and cone 3, cyan).
https://elifesciences.org/articles/7303%/figures#figbvideo2

base of the rod spherule with a length of approximately 1.5 pm (Figure 7H, Figure 7—video 1). This
curved structure is highly reminiscent of the curved gap junction strings revealed by freeze-fracture
EM (Raviola and Gilula, 1973). In the OPL, a few large gap junctions of a similar shape, >1 ym long,
were readily apparent in the confocal view of wholemount retina labeled for Cx36 (Jin et al., 2020).

We were able to rotate these gap junction contacts in 3D and estimate the gap junction size from
the en face view (Figure 7—figure supplement 1), as well as the distance from the mouth of the
postsynaptic compartment. We analyzed 42 complete rod spherules with a total of 135 rod/cone gap
junctions. These data are summarized in Appendix 2—table 3. In the two FIB-SEM datasets, all 42
rod spherules analyzed have gap junctions close to the mouth of the synaptic compartment consistent
with the location of Cx36 (Figure 3A-E). We could not always trace the contact back due to the small
volume of these high-resolution datasets, but when it was possible, in 112 cases, 100% of the gap
junction contacts were identified as a cone. The number of gap junctions per rod spherule ranged
from 1 to 6 with a mean of 3.21 + 1.23 (mean * SD, n = 135, Figure 8A, Figure 8—source data 1). The
mean distance from the center of synaptic mouth was 0.686 * 0.635 pm, (mean * SD, n = 135), but
this is a skewed distribution. 84% of gap junctions lay within 1 um of the synaptic mouth with a median
distance of 0.435 um; 94% were within 2 ym (Figure 8B and C, Figure 8—source data 1), coincident
with the position of cone contacts and the location of Cx36 labeling (Figure 3C-E). There were eight
gap junctions, 6% of the total, which fell outside this range. When these outliers were traced back,
the contacts were identified as cones in every case, so despite their distant location relative to the rod
synaptic mouth, they were identified as rod/cone gap junctions.

The identity of the dense chromophilic material visible in EM pictures of gap junctions is unknown,
but it may consist of gap junction proteins (connexins) in addition to scaffolding proteins and modula-
tory subunits that are thought to make up a gap junction complex (Lasseigne et al., 2021, Nagy et al.,
2018). Freeze-fracture EM analysis of retinal gap junctions has shown that they exist in several distinct
forms, from plaques with a crystalline array to sparse linear forms such as ribbons and strings (Kama-
sawa et al., 2006). En face, the rod/cone gap junctions had a relatively uniform width (~120 nm),
suggesting a standardized component with a variable length such as a string, as previously reported
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Figure 7. Segmentation and 3D reconstruction show gap junctions at rod/cone contacts.

(A) Serial blockface-scanning electron microscopy (SBF-SEM) dataset (eel001), a rod spherule (blue) nestled on the roof of a cone pedicle (green) with
a densely stained gap junction contact (red arrow). (B) Magnified image of (A), detail showing an electron-dense gap junction (red arrow) with merged
membranes. Note that there is clear separation except at this point. Postsynaptic inclusions indicate the gap junction is close to the synaptic opening

Figure 7 continued on next page
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Figure 7 continued

of the rod spherule. (C) Focused ion beam-scanning electron microscopy (FIB-SEM): electron-dense gap junction staining at contact points (red arrow
and arrowhead) between cone telodendria (green) and a rod spherule (blue). Inset: rotated en face view of one gap junction (red arrow) to measure
length. (D) FIB-SEM: second example (red arrow) of an electron-dense gap junction at a cone contact (green) with a rod spherule (blue). Inset: en face
view of the gap junction. Note that green cone telodendrial contact exceeds the gap junction staining. (E) FIB-SEM: overview of a rod spherule (blue)
with a transparent reconstruction over the image planes in (F) and (G). Note the large mitochondrion towards the top of the rod spherule. (F) Image
plane of the rod spherule (blue) through the synaptic opening with a small gap junction on each side (arrows) at a cone contact (green). (G) Image
plane close to the base of the rod spherule (blue) reveals the two small gap junctions in (F) are part of a single large gap junction. There is a horseshoe-
shaped gap junction (arrow) close to the synaptic opening where a cone telodendron (green) wraps around the base of the rod spherule. Large Cx36
horseshoe-shaped Cx36 clusters like this are easily observed by confocal microscopy. (H) FIB-SEM 3D reconstruction of the rod spherule (transparent
blue) showing a single large gap junction (red, arrow) around the synaptic opening at the base. Postsynaptic inclusions are also rendered with two rod
bipolar dendrites (gray and cyan) and two horizontal cell processes (green and purple). The synaptic ribbon is shown in yellow, partially obscured by the
postsynaptic processes. Figure 7—video 1 shows this dataset.

The online version of this article includes the following video and figure supplement(s) for figure 7:
Figure supplement 1. Measurement of gap junction (GJ) size in focused ion beam-scanning electron microscopy (FIB-SEM).

Figure 7—video 1. 3D reconstruction showing a large horseshoe-shaped gap junction (red) around the base of a transparent rod spherule with
postsynaptic processes also filled (from focused ion beam-scanning electron microscopy [FIB-SEM]).
https://elifesciences.org/articles/73039/figures#fig7video’

in freeze-fracture studies of the OPL (Raviola and Gilula, 1973). This is also consistent with the low
fluorescent intensity of Cx36 in the OPL compared to the IPL, where gap junctions occur predomi-
nantly in the form of bright Cx36 clusters representing dense two-dimensional arrays of connexons
(Kamasawa et al., 2006).

The mean length of a rod/cone gap junction was 477 + 227 nm (mean = SD, n = 135, 42 rods,
Figure 8D, Figure 8—source data 1). Raviola and Gilula, 1973 reported the photoreceptor gap junc-
tions as strings of single particles with a spacing of 10 nm. Therefore, we estimate that the average
rod/cone gap junction contains a string of 48 connexons (477/10 = 48). The total gap junction length
per rod spherule was 1.53 pm = 0.439 ym (mean = SD, n = 42, Figure 8E, Figure 8—source data 1)
or 150 channels. The largest individual gap junctions occurred when there was only one gap junction
per rod spherule (Figure 8D, F, and G, red points, Figure 8—source data 1); these were outliers with
a length close to the mean total length and they were visible in confocal images as large curved Cx36-
labeled structures (Jin et al., 2020).

In summary, the quantitative analysis of rod/cone gap junctions from the FIB-SEM data confirms the
presence of gap junctions at the sites identified from the contact analysis of SBF-EM dataset 2006
and the confocal analysis of Cx36 labeling. Furthermore, rod/cone gap junctions appear as concentric
strings around the postsynaptic opening, as reported in the original freeze-fracture data (Raviola and
Gilula, 1973, Reale et al., 1978).

Cone/cone gap junctions were not detected
To evaluate cone/cone coupling, we segmented and partially reconstructed six cone pedicles from
dataset FIB-SEM 1. The small size/high resolution of the dataset meant that no cone pedicles were
complete. Nevertheless, we found 22 contacts between six pairs of cones, 3-4 contacts per pair
(Figure 9A). This suggests that a single-cone pedicle could make around 20 contacts with up to six
surrounding pedicles given a telodendrial coverage of 1.5.

Although we were able to locate cone/cone contacts, they did not have the typical appearance of
a gap junction. While the contacts were direct, without intervening glial processes, there was no clear
membrane density. When a nearby rod/cone gap junction was contained in the same frame, it was
much more densely stained (Figure 9B). We examined all 22 cone/cone contacts, but we were unable
to identify any typical electron-dense gap junctions in this material. This is surprising given previous
reports of cone/cone coupling in mammals.

Exclusion of rod/rod gap junctions

Previous work has reported the presence of rod/rod gap junctions (Tsukamoto et al., 2001). However,
in our FIB-SEM sample of 42 reconstructed rod spherules, we were unable to locate any rod/rod gap
junctions. The location and packing density of rod spherules means they are often adjacent, but we
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Figure 8. Quantitative analysis of 42 reconstructed rod spherules from focused ion beam-scanning electron microscopy (FIB-SEM). (A) The number of
gap junctions per rod spherule ranged from 1 to 6 (3.21 £ 1.23, mean = SD, n = 42). Box shows quartiles, mean (circle), median (bold line), SD (whisker),
min/max (x). (B) Gap junction distance from the rod spherule synaptic opening, skewed distribution, median, 0.435 pm. Box shows quartiles, mean
(circle), median (bold line), SD (whisker), min/max (x). (C) Histogram plots of gap junction position, gray area shows radius of the synaptic opening (0.138
+0.121 pm, n = 42 rod spherules). (D) Gap junction length vs. width for 135 gap junctions from 42 rod spherules. Note restricted width compared to
much greater variability in length, consistent with string-like structure. Box shows quartiles, mean (circle), median (bold line), SD (whisker), min/max

(x) for width and length. Outliers in red are from rod spherules with a single large gap junction. (E) Total gap junction length per rod for 42 rod spherules.
Box shows quartiles, mean (circle), median (bold line), SD (whisker), min/max (x). (F) Average gap junction length plotted as a function of the number

of gap junctions per rod shows that if there is only one gap junction per rod spherule, it is a long one. The two longest gap junctions from (D) were
both singles (red, same two as in D). These are easily observed when labeled for Cx36 using confocal microscopy (Figure 2—figure supplement 3; Jin
et al., 2020). The dashed line is the median gap junction length (0.419 pym), and it runs through the data for multiple gap junctions per rod. In other
words, each additional gap junction is approximately a standard size. (G) Total gap junction length per rod spherule as a function of the number of gap
junctions per rod shows that the single gap junctions (red) are outliers with great length. Total gap junction length tends to rise with the number of gap
junctions. The straight line of linear regression shows the effect of adding a standard mean gap junction length (0.44 um) each time and runs through all
the data except for the singles (red). Fitted line is y = 0.44x; (R? = 0.33).

The online version of this article includes the following source data for figure 8:

Source data 1. Quantitative analysis of rod spherules from focused ion beam-scanning electron microscopy (FIB-SEM).

found there is usually clear separation between their membranes. Occasional small contacts between
adjacent rod spherules show no membrane density, in contrast to rod/cone gap junctions (Figure 9C),
and are often distant from the synaptic opening at the base where most Cx36 is clustered in the
confocal data. Thus, our FIB-SEM data does not support the presence of rod/rod coupling in the
mouse retina. This is consistent with physiological results that show the lack of direct rod/rod coupling
(Jin et al., 2020).
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Figure 9. Rod/rod and cone/cone contacts do not appear as gap junctions, focused ion beam-scanning electron microscopy (FIB-SEM).

(A) Partial reconstruction of six cone pedicles from FIB-SEM. (B) Examples of cone/cone contacts (red/blue or yellow/cyan, arrows), which show no
membrane density. These examples were selected because of the nearby rod/cone contacts (arrowheads), which show prominent dense staining at their
contact points, consistent with the presence of a gap junction. (C) Rod/rod contacts (red/magenta, arrows) show no membrane specialization compared
to nearby rod/cone gap junctions (red/green, arrowheads).
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Figure 10. Cartoon summary of rod/cone gap junctions in the mouse retina. A cartoon showing the variety of Cx36 rod/cone gap junctions, including
cone telodendrial contacts, cone pedicle roof contacts, and inverted rod spherules. The lowest row of rod cell bodies in the outer nuclear layer (ONL)
do not have axons or rod spherules but still have Cx36 gap junctions with cone telodendria, which reach the upper margin of the outer plexiform layer
(OPL). All these structural variants were also found with blue cone pedicles, indicating that there was no color specificity in rod/cone coupling. Most rod
spherules have gap junction contacts with more than one cone. All rod spherules, with very few exceptions (such as areas of low cone density), make
gap junctions with nearby cone pedicles. In contrast to the numerous rod/cone gap junctions, we could not detect rod/rod or cone/cone gap junctions
in these experiments.

Discussion

In this study, we demonstrate an approach to image and analyze small gap junctions reliably in a retinal
neural circuit using a combination of light and electron microscopy, as summarized in Figure 10. For
rod spherules, these sites of contact with cone telodendria correlate with the location of Cx36 immu-
nofluorescence detected by confocal microscopy, both occurring close to the mouth of the synaptic
opening, so there is a high probability that these sites represent gap junctions. By combining the
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EM and immunofluorescence data with previously obtained electrophysiological measurements (Jin
et al., 2020), we estimated the number of connexon channels and their conductance in the OPL of
the mouse retina. Most importantly, our calculations suggest that the open probability for channels in
a rod/cone gap junction may reach 100% with a dynamic range of ~20. Detailed calculations for the
estimation are described below. By learning their basic properties, we have laid the groundwork to
understand the role of rod/cone gap junctions in visual processing.

Because of their small size, gap junctions are often difficult to identify in EM micrographs, unless
fortuitously captured in cross-section. Ideally, there should be sufficient resolution to reveal their
pentalaminar signature, approximately 10 nm across (Marc et al., 2018; Marc et al., 1988). Indeed,
some authors advocate resampling at high magpnification (0.27 nm) with goniometric tilt to optimize
visibility (Sigulinsky et al., 2020). However, the time investment makes this impractical to do for
every potential gap junction in a sample. Thus, in spite of their importance, they are often left out
of morphological analyses and physiological models due to the difficulty in assessing their numbers
and dimensions from large-scale EM datasets (Kasthuri et al., 2015; Scheffer et al., 2020). In our
FIB-SEM material, and appropriately fixed SBF-SEM material, the pentalaminar structure of gap junc-
tions cannot be resolved, but an area of increased membrane density and chromophilic staining is
present where the membranes of a cone telodendron and a rod spherule merge. The identity of the
chromophilic material is unknown, but presumably it represents the aggregation of connexons and
auxiliary proteins at gap junction sites (Lasseigne et al., 2021; Nagy et al., 2018). Correlation of the
membrane densities in the FIB-SEM reconstructions with the confocal localization of Cx36 clusters was
key to confirming the EM structures as gap junctions.

A similar approach could be applied to other systems to gain an understanding of gap junctions as
circuit elements in specific neuronal pathways. The difficulty in finding and imaging gap junctions will
largely be determined by their size, distribution, and abundance in a particular region (e.g., scattered
distribution over a dendritic tree compared to precise localization on a small structure such as a rod
spherule) and the morphological organization of the tissue (e.g., the stereotypical, layered organiza-
tion of the OPL in retina versus a more complex morphology). Though it will be more challenging, we
plan to apply our approach to the inner retina, where the circuitry is relatively complex and there is
greater variability in gap junction morphology, from sparse strings of single connexons to crystalline
plagues of much greater density (Kamasawa et al., 2006). More generally, our study demonstrates
the utility of targeted, small-scale ‘connectomic’ analysis for the identification of neural circuit compo-
nents. The promise of connectomics, to decode neuronal circuits and function, cannot be fulfilled
without the inclusion of gap junctions and electrical coupling (Scheffer and Meinertzhagen, 2021).

Rod/cone gap junctions predominate

Our results confirm the original work from cat retina, which showed 48 rod contacts per cone with a
divergence of one rod to two cones (Smith et al., 1986), very close to the numbers reported here. In
the primate retina, freeze-fracture EM showed string-like gap junctions of 400-600 nm in concentric
arcs around the rod spherule synaptic opening (Raviola and Gilula, 1973). The telodendrial contacts
described here have the same curved appearance and coincide with the location of Cx36 on the lower
or vitreal surface of each rod spherule. With FIB-SEM, we found string-like rod/cone gap junctions with
a mean length of ~480 nm, a tribute to the remarkable freeze-fracture EM work from nearly 50 years
ago (Raviola and Gilula, 1973). Since that time, Cx36 has been identified as the major neuronal
connexin and we show that Cx36 labeling signposts rod/cone gap junctions at the confocal level.
In summary, the results from mouse, cat, primate, and human retinas all indicate that rod/cone gap
junctions are a common feature of the mammalian retina (Kantor et al., 2016; O’Brien et al., 2012,
Raviola and Gilula, 1973; Smith et al., 1986). We demonstrate that rod/cone coupling accounts for
nearly all gap junctions between photoreceptors.

The position of rod/cone gap junctions, at the base of the rod spherule, close to the opening of the
synaptic cavity, appears to be systematic in that the vast majority of rod/cone gap junctions occur at
this site. Our results show a range of 1-6 Cx36 contacts per rod spherule, comparable with 4-6 cone
contacts per rod in the cat retina, forming a ring of contacts around the postsynaptic opening of the
rod spherule (Smith et al., 1986). In rod spherules from the mouse retina, two gap junction contacts
were described, usually on opposite sides of the synaptic opening, mostly arising from a single cone
(Tsukamoto et al., 2001). We may speculate that gap junctions are localized with some of the same
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scaffolding proteins that occur at the rod synaptic terminal, but the functional significance of this
repeated motif is unknown. In mutant mouse lines, where Cx36 has been deleted from either rods or
cones, cone telodendria are still present and they still reach out to contact nearby rod spherules in the
absence of rod/cone gap junctions (Jin et al., 2020). Therefore, the specificity of synaptic connections
is not determined or maintained by the presence of Cx36 gap junctions.

Previously, some Cx36-GFP labeling was also found in the ONL (Feigenspan et al., 2004),
suggesting that some coupling may occur between somas and/or passing axons. However, we did
not observe this pattern with Cx36 antibodies and, in our hands, Cx36 labeling of photoreceptors was
restricted to the OPL (Figure 1). It is possible that the Cx36-GFP construct caused a trafficking defect.

Rod/cone coupling forms the entry to the secondary rod pathway (Kolb, 1977; Smith et al., 1986;
Bloomfield and Dacheux, 2001). It was previously thought that these gap junctions must be closed at
night to preserve the amplitude of single-photon responses of individual rods, which underlie scotopic
sensitivity (Smith et al., 1986). However, recent work indicates that rod/cone coupling is high at night
and low in daytime due to circadian activity and the influence of dopamine (Jin and Ribelayga, 2016;
Jin et al., 2020). This leads to a reduction in the amplitude of the single-photon response at night.
While this may appear to be detrimental, we have suggested that noise reduction, a consequence of
convergence and coupling in the photoreceptor network, is the major function of rod/cone gap junc-
tions, in addition to driving the secondary rod pathway (Field et al., 2019; Jin et al., 2020).

Rods and cones both express Cx36

The small number of Cx36 clusters per rod (2-3), compared to more than 50 per cone pedicle, a ratio
of approximately 20, may explain early failures to detect rod Cx36 RNA transcripts (Bolte et al., 2016;
Feigenspan et al., 2004). However, there is strong physiological evidence that Cx36 is required for
rod/cone coupling (Asteriti et al., 2017, Ingram et al., 2019, Jin et al., 2020). Cx36 is the most
common neuronal connexin, and it does not pair with other connexins, making only homotypic gap
junctions (Koval et al., 2014; Nagy et al., 2018; Teubner et al., 2000). We have recently shown that
both rods and cones express Cx36 and that no other connexins are present in either rods or cones (Jin
et al., 2020). In addition, Cx36 is required on both sides to form a rod/cone gap junction (Jin et al.,
2020; Miller et al., 2017). Thus, the simplest case holds that both rods and cones express Cx36, and
rod/cone gap junctions are heterologous but homotypic (meaning between different cell types but
both expressing the same connexin).

Cx36 numbers for rods and cones are consistent

We gathered data for both rods and cones independently. Because they are linked by rod/cone gap
junctions, they should each serve as a check on the other. From confocal imaging of individual EGFP-
labeled cone pedicles, we estimate that each cone pedicle has 51.4 + 8.88 (mean + SD, n = 18)
Cx36 clusters (Figure 2), presumed to represent gap junctions, with nearby rod spherules. From the
rod perspective, 43 rods contact each cone, and there are 2.48 = 1.01 (mean £ SD, n = 260 rods,
Figure 3F and G) Cx36 clusters at the base of each rod spherule. Most rods contact more than one
cone, with a mean divergence of 1.89 (Figure 5E, Appendix 2—table 1); thus, the number of rod/
cone gap junctions per cone pedicle can be calculated as 43 x 2.48/1.89 = 56.4, in close agreement
with the number of Cx36 gap junctions counted in confocal reconstructions of individual cone pedi-
cles. These numbers are also close to previous calculations of ~45 Cx36 clusters/cone pedicle, based
on the density of Cx36 clusters and the number of cone pedicles from wholemount retina (Jin et al.,
2020).

The number of gap junctions per rod was calculated by two methods: a confocal analysis of Cx36
clusters and using the FIB-SEM data. Analysis of the FIB-SEM data gave 3.21 gap junctions per rod
spherule. The confocal analysis of Cx36 clusters gave 2.48 gap junctions per rod spherule, 25% less.
The lower number in the confocal analysis might be expected because small Cx36 clusters could be
missed, and two close together could merge and be counted as one due to the lower resolution of
light microscopy (Sigulinsky et al., 2020). Despite the differences in resolution, both methods showed
a similar number of gap junction contacts close to the rod postsynaptic compartment. Although the
smallest Cx36 clusters may be less than the confocal detection limit (different from the resolution
limit), these data suggest that we accounted for at least 75% of the photoreceptor gap junctions by
confocal microscopy.
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Blue cone pedicles are also coupled to rods

In the coupled cone networks of primate and ground squirrel retina, there is good evidence that blue
cones are not coupled to neighboring red/green (primate) or green cones (ground squirrel) (Horn-
stein et al., 2004; Li and DeVries, 2004, O'Brien et al., 2012). In the primate retina, the telodendria
of blue cones are few in number and too short to reach the neighboring red/green cones (O’Brien
et al., 2012). Thus, blue cones appear to be electrically separated from other cones in these two
species, perhaps to maintain spectral discrimination (Hsu et al., 2000). In the mouse retina, although
the blue cones were identified by Behrens et al., 2016, we were unable to find any cone-to-cone gap
junctions, regardless of spectral sensitivity (see below).

In contrast to the selective connections between cones in some species, rods were coupled to
both blue and green cones indiscriminately in the mouse retina (present work) and in primate retina
(O’Brien et al., 2012). Blue cones, identified in confocal work by the presence of S-cone opsin, and
in SBF-SEM by their connections with blue cone bipolar cells (Behrens et al., 2016, Nadal-Nicolas
et al., 2020), and green cones both made telodendrial contacts at Cx36 clusters with all nearby rod
spherules (Figure 5). Thus, we find no evidence for color specificity in rod/cone coupling. In fact, a
single rod spherule may be coupled to both blue and green cones (Figure 6—figure supplement 5).
Therefore, rod signals can pass via the secondary rod pathway into both blue and green cones and
their downstream pathways. Considering blue cone circuits specifically, rod input to blue cone bipolar
cells and downstream circuits is predicted via the secondary rod pathway, in addition to the previously
reported primary rod pathway inputs from All amacrine cells to blue cone bipolar cells (Field et al.,
2009;: Whitaker et al., 2021).

Cone/cone gap junctions are rare

We were unable to confirm the presence of cone/cone gap junctions in the mouse retina despite
locating more than 20 examples of cone/cone contacts from six partially reconstructed cone pedicles
from one FIB-SEM dataset. In each case, there was no indication of the typical membrane density
or chromophilic staining at cone/cone contacts. Nearby rod/cone contacts provided prominent gap
junctions for comparison (Figure 9B). This result is surprising, given previous reports of cone/cone
coupling in several mammalian species, including mouse (DeVries et al., 2002; Kolb, 1977; Smith
et al., 1986; Tsukamoto et al., 2001). However, close contacts without gap junctions are not unprec-
edented. In rabbit retina, many bipolar cells are coupled by gap junctions, but some are not, despite
contacts and the presence of gap junctions elsewhere in the same cell (Sigulinsky et al., 2020). Gap
junctions do not determine the specificity of neuronal connections.

The available data was derived from a limited set of six partially reconstructed cones due to the
high-resolution, yet small volume of the FIB-SEM dataset. Thus, while we are confident that rod/cone
coupling accounts for the vast majority of photoreceptor gap junctions, the sample size is too small
to rule out a minor amount of cone/cone coupling, perhaps too small or too faintly stained to be
readily detected by confocal imaging. Our previous electrophysiological studies suggest that there
is weak cone-to-cone coupling in the mouse retina, which may indicate that cone/cone gap junctions
are smaller than rod/cone gap junctions. Cone/cone coupling persists in the rod-specific Cx36 KO,
suggesting it is direct (Jin et al., 2020). In the rod-specific Cx36 KO, there was some residual Cx36
labeling, associated with cone telodendria, which was significantly different from the background
noise and may represent a small amount of cone/cone coupling, estimated as two gap junctions/cone
(Jin et al., 2020).

Cone-to-cone coupling has been reported in other mammals but there may be species variation.
In the ground squirrel, a cone-dominated retina, the low number of rods with the resulting adjacency
of the cones may promote cone/cone coupling (DeVries et al., 2002; Li, 2020; Li et al., 2010). In
the central primate retina, cones are densely packed and often adjacent, which is not the case in
mouse retina. In peripheral primate retina, cones are more widely spaced, and they are connected by
a sparse array of telodendria, which seem to target neighboring cones, making the pattern of Cx36-
labeled gap junctions very obvious, in addition to numerous rod/cone gap junctions (O’Brien et al.,
2012). Finally, in the rod-less, cone-only mouse, there is a large increase in Cx36 labeling in the OPL,
suggesting that cone/cone coupling occurs, at least under these circumstances (Dang et al., 2004).
The evidence for photoreceptor coupling in our study, including weak cone/cone coupling, is summa-
rized in Appendix 1.
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No rod/rod gap junctions

Previous work in the mouse retina has suggested that rods form a coupled network based on the
appearance in electron micrographs of small contacts between rods (Tsukamoto et al., 2001). Most
of these rod/rod contacts were characterized as small and with no membrane density (Tsukamoto
et al., 2001). Furthermore, some of the rod/rod contact sites were between the spherules and passing
rod axons, a location where there is no Cx36 labeling. We have searched diligently for rod/rod gap
junctions, but we have been unable to confirm their presence. Not only is Cx36 labeling restricted
to the base of the rod spherule, around the synaptic opening, but, in the FIB-SEM material, this was
almost the only location where we found rod gap junctions. We mapped the gap junctions from 42
rod spherules, and their distribution was in close agreement with the distribution of Cx36 labeling and
cone telodendrial contacts. We could not trace every process making a gap junction contact to their
cell of origin, but in 112 cases where we could, all were cone telodendria. Even the small number of
outlying gap junctions distant from the synaptic opening were traced to cones.

We did find small contacts between adjacent rod spherules (Figure 9C), but there was no membrane
density indicating the presence of a gap junction, and, in this equatorial position, around the midline
where the rod spherules are closely packed, there was no Cx36 labeling. Furthermore, apparent rod/
rod coupling was eliminated in the cone-specific Cx36 KO, indicating that physiological evidence of
rod/rod coupling in wildtype retina is actually due to indirect rod/cone/rod coupling via the network
(Jin et al., 2020). In the cone-specific Cx36 KO, which should preserve rod/rod gap junctions, Cx36
labeling of photoreceptors was essentially eliminated, providing no evidence for residual rod/rod
coupling (Jin et al., 2020). The loss of most Cx36 coupling in either the rod- or cone-specific KO indi-
cates that rod/cone coupling accounts for the majority of photoreceptor gap junctions and provides
no support for direct rod/rod coupling. We are aware of the difficulty in proving the absence of a
particular structure, but, based on the weight of the available evidence, we conclude that there are no
rod/rod gap junctions in the mouse retina, and that this may be a common feature of the mammalian
retina. The comparative evidence for photoreceptor coupling, including the lack of rod/rod coupling,
is summarized in Appendix 1.

Calculations of size for rod/cone gap junctions

Gap junctions are common building blocks of neural circuits throughout the CNS, but to accurately
model their effect on circuit function, it is essential to know their size, number of connexon channels,
their conductance, and perhaps most importantly, their dynamic range or plasticity. The size of the
conductance through a gap junction depends not only on the number of connexons and the unitary
conductance, but also on the channel activity, usually characterized as the open probability. These are
the fundamental properties required to understand the function of gap junctions in neuronal microcir-
cuits. Here, we have an opportunity to estimate these variables.

Rod/cone gap junctions appear as low-density strings of single particles in freeze-fracture EM
(Raviola and Gilula, 1973; Reale et al., 1978), and this is consistent with the uniform width of rod/
cone gap junctions in our 3D FIB-SEM reconstructions, as well as the low intensity of Cx36 labeling
compared to the much larger plaque-type gap junctions of the inner retina (Kamasawa et al., 2006).
Therefore, in our calculations, we have taken rod/cone gap junctions as strings with a width of one
connexon and a length given by the 3D reconstructions of gap junctions from the FIB-SEM datasets.

To calculate the number of connexons from the length of gap junctions, we need to determine the
spacing of Cx36 channels. The mean density of gap junction plaques in freeze-fracture preparations of
mouse cerebellum was 12,940 + 405/um? (mean = SEM, n = 12), close to the density of Cx36 plaques
in the inner retina (12,000/um?) (Kamasawa et al., 2006, Szoboszlay et al., 2016). From this, we
calculated the center-to-center spacing as 9.45 + 0.296 nm (mean + SEM) for connexons in a Cx36
gap junction plaque. This result is in close agreement with 10 nm spacing reported in freeze-fracture
material of rod/cone gap junctions in primate retina (Raviola and Gilula, 1973).

Knowing the spacing, we calculated the number of connexon channels from the mean length of
a rod/cone gap junction in the FIB-SEM dataset, 477 = 19.5 nm (mean = SEM, n = 135 from 42 rod
spherules), yielding 50.5 + 2.60 (mean = SEM) connexon channels per rod/cone gap junction. We esti-
mate that there are 3.21 £ 0.190 (mean + SEM, n = 42, Appendix 2—table 3) gap junctions per rod,
but these are shared with several nearby cones. Dividing by the rod to cone divergence (the number
of cones contacted by each rod), 1.89 + 0.0337 (mean = SEM, n = 361, Appendix 2—table 3), gives
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1.70 = 0.105 (mean + SEM) gap junctions or a mean of 85.9 + 6.91 (mean + SEM) connexons between
an average rod/cone pair. For a unitary conductance of 14.3 = 0.8 pS (mean = SEM, n = 92, per Cx36
channel) (Srinivas et al., 1999, Teubner et al., 2000), we can calculate the maximal conductance
between a rod and a cone, if all gap junction channels were in an open state, as ~1228 + 120 pS (mean
= SEM, 85.9 connexons x 14.3 pS/connexon). It is important to note that this theoretical maximum
was derived from our morphological data.

Possible sources of error

It is important to note that there are several assumptions and potential sources of error that may
affect these calculations. The structure of small gap junctions lies below the resolution of conventional
light microscopy and must be inferred. Likewise, in EM material, the identity of the darkly stained
chromophilic material is unknown and may include auxiliary proteins in addition to connexins, which
may exaggerate the dimensions of a gap junction, particularly in width for string-like gap junctions.
For this reason, our estimates of rod/cone gap junction width were guided by freeze-fracture SEM
images from primate (Raviola and Gilula, 1973; Reale et al., 1978). Thus, our calculations are based
on the length of gap junction strings with a width of one connexon because the freeze-fracture studies
show a string of single-gap junction particles on the surface of a rod spherule (Raviola and Gilula,
1973, Reale et al., 1978). This is consistent with the low intensity of Cx36 labeling in the OPL, which
indicates the presence of very small or sparse gap junctions such as strings (Dang et al., 2004; Mills
et al., 2001). If we failed to detect some gap junctions, this would artificially increase the open prob-
ability numbers. However, this is probably a minor concern because we were able to detect gap junc-
tions with a minimum length of approximately 100 nm, or ~10 connexons, in the FIB-SEM material
(Figure 8). These issues of gap junction size and string width could perhaps be addressed in the future
by super-resolution microscopy for Cx36.

We are assuming negligible species variation in the size and packing density of rod/cone gap
junction channels, and this is supported by the similarity in measurements of rod/cone gap junction
length, ~500 nm, from our FIB-SEM data in mouse and the freeze-fracture studies in primate (Raviola
and Gilula, 1973; Reale et al., 1978). Tissue shrinkage during EM sample processing is another
potential source of error, though our measurements of gap junction position from SEM and confocal
microscopy gave comparable results (Figures 3E, 8B and C). Therefore, the errors introduced by the
use of these different microscopy techniques are unlikely to be large and do not materially affect our
conclusions.

Finally, previous work reported that electrical coupling between photoreceptors changes with the
time of day, reflecting the influence of light/dark adaptation and circadian clocks (Ribelayga et al.,
2008; Li et al., 2013; Zhang et al., 2015; Jin et al., 2015; Jin and Ribelayga, 2016; Jin et al., 2020).
Yet, daily changes in photoreceptor coupling reflect changes in Cx36 phosphorylation state and open
probability, without significant structural changes in the number or size of Cx36 gap junctions present
(Li et al., 2013; Zhang et al., 2015). Thus, circadian changes are not likely to affect our conclusions
concerning the structure of rod/cone gap junctions.

While we have listed these potential sources of error in the interest of transparency, we note that
a combined underestimation of the connexon number by a factor as large as two yields a maximum
open probability number of >50% (107%/2). This would still provide a historically high number for
the open probability of gap junctions. Thus, we believe our calculations predict that the fraction of
connexons that participate in gap junction modulation is greater than previously appreciated. Our
results suggest that modulation of gap junction strings may include most connexon channels, perhaps
approaching 100% when pharmacologically driven to an extreme.

Dynamic range of rod/cone gap junctions

Using this detailed structural information, combined with our previous conductance measurements
from rod/cone paired recordings, we can calculate the physiological properties of rod/cone gap junc-
tions. Our recently published work shows a mean resting value of 307 = 2.31 pS (mean * SEM) for
the rod/cone transjunctional conductance (Jin et al., 2020). Compared to the theoretical maximum
above, this indicates a resting open probability in darkness of 25.0% + 2.45% (mean = SEM). Notably,
this is much higher than previous estimates of around 1% (Connors, 2017, Marandykina et al.,
2013). But these earlier values may be low because the size of the gap junctions was estimated by
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immunofluorescence, which provides a high number for gap junction area and connexon number, with
a correspondingly low number for the open probability (Kamasawa et al., 2006; Szoboszlay et al.,
2016). More recently, when the number of connexons was accurately measured by freeze-fracture
EM, the open probability of cerebellar gap junctions was calculated as 18% (Szoboszlay et al., 2016),
close to the value derived here.

Rod/cone coupling is modulated by dopamine (Ribelayga et al., 2008; Jin et al., 2020). From
our previous studies with paired recordings, in the presence of quinpirole, a D2 agonist, rod/cone
coupling was measured as 35.5 = 0.968 pS (n = 500, bootstrapping from data in Jin et al., 2020).
In the presence of spiperone, a D2 antagonist, the maximum conductance for a rod/cone pair was
1312 = 22.8 pS (n = 500, bootstrapping from data in Jin et al., 2020). Compared to the theoretical
maximum of 1228 + 120 pS above, derived from morphological data, these values translate to a
minimum open probability of 2.89% + 0.293% and a maximum open probability of 107% * 10.6%
of available Cx36 gap junction channels. Note that details of these calculations with the cumulative
errors can be found in Appendix 3. This is a very surprising result because previous measures of open
probability have produced such low estimates (Connors, 2017), but we believe it is consistent with
our data. For the first time, it suggests that the range of gap junctions can be modulated from close to
0 to approximately 100% of available Cx36 channels. In other words, all of the channels in these small
string-like rod/cone gap junctions are switchable and may contribute to their plasticity.

The diffusion coefficient through Cx36 gap junctions, a proxy for conductance, was correlated with
the phosphorylation of Cx36 as measured using phospho-Cx36 antibodies (Kothmann et al., 2009;
O’Brien, 2014). Pharmacological manipulation using dopamine agonists or antagonists produced
phosphorylation-driven changes in tracer coupling between mouse photoreceptors that encompassed
a 20-fold range of diffusion coefficients, producing a large dynamic range for gap junction plasticity
(Li et al., 2013). In the present experiments, the ratio of minimum to maximum open channels, from
3-100% or 36-1312 pS, was approximately 30, similar to the dynamic range derived from tracer
coupling studies with phospho-specific Cx36 antibodies. While these calculations are necessarily
approximate, they support the concept that gap junctions provide a versatile component, offering a
large range of plasticity in neural circuits. In the retina, rod/cone coupling may reduce transduction
noise in the photoreceptor network and the modulation of rod/cone gap junctions also provides a
switchable entry to the secondary rod pathway, which varies with light intensity and the circadian cycle
(Bloomfield and Vélgyi, 2009; Field et al., 2019; Jin et al., 2020; Jin and Ribelayga, 2016). In more
general terms, this example from the retina demonstrates that gap junctions may perform a variety of
essential functions in neural circuits.

Materials and methods

Animals

All animal procedures were reviewed and approved by the Animal Welfare Committee at the Univer-
sity of Texas Health Science Center at Houston (AWC-20-0138), Oregon Health & Science University
(IPO0000456, A3304-01), and University of Maryland College Park (R-OCT-20-56). C57BL/6J (stock
no. 000664) mice were purchased from the Jackson laboratories. We used mice 2—-6 months of age of

Table 1. Antibodies.

Antibody Source Catalog # Species Dilution Notes
Cone arrestin Millipore AB15282 Rabbit 1:1000 Labels cones, including pedicle
Cx36 Millipore MAB3045 Mouse 1:1000 Cx36 gap junctions
vGlutl Synaptic Systems 135304 Guinea pig 1:3000 Labels PR terminals, especially rod spherules
Blue cone opsin Millipore AB5407 Rabbit 1:1000 Blue cone outer segments
Ribeye/CtBP2 BD Transduction 612044 Mouse 1:500 Synaptic ribbon marker
TOMM20 Santa Cruz SC-11415 Rabbit 1:1000 Mitochondrial marker
Generous gift from Kiril
mGluRé6 Martemyanov Sheep 1:1000 mGIluRé receptors of ON bipolar cells and rod bipolar cells
PMCA Santa Cruz Biotechnology sc-28765 Rabbit 1:200 Labels rod spherule plasma membrane
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either sex. Animals were housed under standard laboratory conditions, including a 12 hr light/12 hr
dark cycle. All animals were euthanized in the middle of the day (during the light cycle), under room
lights.

Antibodies and immunocytochemistry

Mice were anesthetized by intraperitoneal injection of a ketamine/xylazine mix solution (100/10 mg/kg)
before being euthanized by cervical dislocation. Eyes were rapidly collected, hemisected, the vitreous
was removed, and the resulting eyecup was placed in 4% paraformaldehyde in phosphate-buffered
saline (PBS) at room temperature for 1-2 hr. Vibratome sections (Leica VT 1000S) or wholemounted
retinas were reacted with a cocktail of antibodies (Table 1), according to procedures described previously
(Li et al., 2013; O'Brien et al., 2012; Jin et al., 2020). Briefly, sections were washed and blocked in 3%
donkey serum/0.3% Triton X-100 (in PBS) for 2 hr (overnight for whole mounts) and incubated overnight
at room temperature with a cocktail of primary antibodyf(ies) in 1% donkey serum/0.3% Triton X-100 (in
PBS) (7 days for whole mounts). Tissues were processed free-floating on an oscillating platform at 1 Hz.
Following incubation with the primary antibody, sections were rinsed in PBS (6%, 20 min) and reacted
with a secondary antibody(ies) for 2 hr (overnight for whole mounts) at room temperature in the dark.
Donkey Alexa Fluor—, Cy3-, or DyLight-conjugated secondary antibodies were purchased from Jackson
ImmunoResearch Laboratories Inc (West Grove, PA) and used at 1:600 dilution. Last, sections or whole
mounts were covered with mounting medium and sealed with nail polish. 4',6-diamidino-2-phenylindole
(DAPI) (100 pg/ml) was added to the mounting medium to stain the nuclei.

Blue cone opsin Venus mouse line

A bacteria artificial chromosome (BAC) clone (bMQ-440P15) from an SV129 genomic library (bMQ),
encompassing the entire mouse Opn1sw locus, was used to create the Opn1sw_Venus BAC transgenic
construct through ET recombination as described elsewhere (PMID: 9771703). Briefly, a Venus-bGH
PolyA-NeoR (flanked by FRT sites) cassette was integrated into the Opn1sw locus on the BAC clone
replacing coding region of exon 1 to generate the Venus-bGH-Neo knockin version of the BAC clone.
Recombination was verified by PCR reactions specifically designed to detect recombination junctions
by ET recombination (or homologous recombination). This BAC clone carrying the reporter cassette
was further trimmed, through ET recombination, to retain a 15 kb fragment, including upstream regu-
latory sequence (10 kb upstream of the coding region), the Kl cassette, and the ~2 kb sequence down-
stream of exon 2 of the Opn1sw gene. The intended transgenic construct was verified by overlapping
PCR and Sanger sequencing. Transgenic FO founders were created by microinjecting the transgenic
construct (1 ng/pl) into fertilized eggs from C57blé/j donors followed by genomic PCR screening
amplifying the reporter insert.

Confocal microscopy image acquisition

A Zeiss LSM-800 confocal microscope with Airyscan was used for four-channel imaging of retinal
whole mounts and sections with a x63 (N.A. 1.4) oil-immersion objectives. Images with 30-40 nm pixel
size were acquired in series of 0.15 pm optical sections. Airyscan images were processed by Zen soft-
ware (Zeiss) to yield super-resolution images. We measured the full width at half maximum of the point
spread function for this instrument as 170 nm using 0.1 pm latex beads (Molecular Probes). Figures
were presented as short stacks of 2-6 images. Images were processed in ImageJ, Imaris (Oxford
Instruments), or Photoshop (Adobe Systems Inc) for contrast enhancement and further analysis.

Quantitative analysis of Cx36 clusters

Single cones

Retinal sections from OPN4-EGFP mice were used because only a few cones were EGFP positive and
it was possible to image well-isolated single-cone pedicles. Airyscan images were loaded in Imaris
software, and the colocalization between the cone (EGFP) and Cx36 (Cy3) was analyzed. Neighboring
colocalized voxels were grouped as a 3D object by surface rendering, and the number of extracted
3D objects was measured.

Rod spherules
An antibody against the synaptic vesicular glutamate transporter (vGlut1) was used to label rod
spherules. It does not stain the cell membrane and thus underfills rod spherules (Quraishi et al.,
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2007). Some sections were also stained for Plasma Membrane Calcium ATPase (PMCA), which stains
the rod spherule membrane (Johnson et al., 2007), encircling the vGlut1 labeling (Figure 6—figure
supplement 3A). Due to lack of clear colocalization between Cx36 and the rod marker (vGlut1), the
number of Cx36 clusters per rod was counted manually. Some rod spherules were excluded from
analysis if they were too close to link a Cx36 cluster to a specific rod. A total of 260 well-isolated rod
spherules in seven retinal sections from three retinae were chosen to analyze the number of Cx36
clusters. To analyze the position, a mini-stack of 6 x 0.15 pm optical sections from 18 rod spherules
wase extracted, aligned, and averaged (ImageJ). A spline curve 8 pixels (272 nm) wide was applied
to the perimeter, and the intensity profile for Cx36 was plotted linearly around the synaptic opening.

Connectivity analysis: SBF-SEM (e2006)

A region in the OPL from a publicly available serial block-face scanning EM (SBF-SEM) dataset e2006,
voxel size 16.5 x 16.5 x 25 nm (Behrens et al., 2016, Helmstaedter et al., 2013), including 164
cone pedicles, was analyzed using KNOSSOS software (Helmstaedter et al., 2011) (https://knossos.
app/). A volume of approximately 15 ym (OPL depth) x 50 um x 50 pm in the OPL was chosen to
analyze, in which we identified 29 cone pedicles and 811 rod spherules. Because there are some
areas of relatively low cone density, an additional area, including six widely spaced cone pedicles, was
also analyzed. The whole e2006 dataset included a total of six blue cones (Behrens et al., 2016) but
one was located at the edge of the dataset and was truncated. Thus, a total of five blue cones were
analyzed.

Skeletons

We traced the telodendria from all 29 cone pedicles by skeletonization with KNOSSOS. All rod
spherules contacted by a specific cone were identified. We used the membrane apposition between
cone pedicle/telodendria and rod spherule to indicate rod/cone contact. The contact information was
stored as an annotation directory in KNOSSOS and further analyzed using Excel (Microsoft) and Origin
(OriginLab Corp).

Segmentation and 3D reconstruction

A volume of 27 pm (OPL plus a part of ONL) x 27 ym x 39 ym was extracted from the e2006 dataset
to segment using Microscopy Image Browser (Belevich et al., 2016). The segmented voxel data were
loaded into Imaris to create a 3D reconstruction by surface rendering. Images were constructed in
Imaris by rotating and adjusting transparency as required.

SBF-SEM: Singer dataset (eel001)

An excised retina was fixed for 1 hr at room temperature with 2% glutaraldehyde in 0.15 M caco-
dylate buffer, washed in three changes of the same buffer, and postfixed with 1% osmium tetroxide in
0.15 M cacodylate containing 1.5% potassium ferrocyanide. A wash in three changes of distilled water
followed the reduced osmium fixation and preceded an en bloc fix in 2% aqueous uranyl acetate. Dehy-
dration in a graded series of ethanol (35-100%) and infiltration in a propylene oxide:epoxy resin series
was followed by embedding and polymerization in epoxy resin. Imaging by SBF-SEM was performed
under contract with Renovo Neural (Cleveland, OH) using a FEI Teneo Volume Scope. Beam current
was 50 pA, and the face was imaged with 7 x 7 x 40 nm resolution. Each face image spanned the
width of the retina from the first layer of photoreceptor cell bodies in the ONL to the ganglion cell
bodies in the GCL and comprised two stitched fields of 8192 x 8192 pixels for a dimension of 8192
x 16,384 pixels or 57.34 x ~114.68 pym. In total, 1649 slices were acquired, making the z-depth
traversed = 65.96 pm. Image stacks were viewed using KNOSSOS and processed in Photoshop.

FIB-SEM sample preparation

Mice were euthanized and enucleated; retinas were quickly dissected and placed in 3% paraformal-
dehyde and 1% glutaraldehyde for 30 min, then processed for electron microscopy using the Dresden
protocol (Paridaen et al., 2013). The resulting resin blocks were trimmed to contain the OPL within
25 pm of the top edge of the block, cut and mounted to a 45° pre-tilted stub, and coated with 8 nm
of carbon. Three-dimensional data were acquired using the Helios G3 NanolLab DualBeam FIB-SEM.
In brief, a focused beam of gallium atoms ablated 4 nm off the surface of the sample (FIB conditions:
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30 keV accelerating voltage, 790 pA beam current), comprising the scanning electron microscope
(SEM) imaging area, with a field of view around 25 pm. The freshly ablated surface was then imaged
by backscattered electrons using the In-Column Detector (SEM conditions: 400 pA beam current, 3
keV accelerating voltage, 4 nm per pixel, and 3 ps dwell time; image resolution: 6144 x 4086, 4 nm
isotropic). Around 1149 (FIB-SEM 1 dataset; 1342 for FIB-SEM 2 dataset) ablation and imaging cycles
were run over a 3-day period, resulting in a sample depth of roughly 4.6 um. Images were then regis-
tered using the Linear Stack Alignment with SIFT algorithm (Fiji) and cropped to remove artifacts
arising from the alignment.

Gap junction position and size analysis from FIB-SEM

Individual rod spherules were cropped from the datasets and segmented for 3D reconstruction
as described above for the e2006 dataset. Gap junctions were identified by a darkly stained area
of merged membranes. The distance from a gap junction to the synaptic opening center of a rod
spherule was calculated using the oblique slicer tool in Imaris to align the center of the mitochondria
and the postsynaptic opening in a single plane. Gap junction length was visualized using the oblique
slicer to create an en face view. Some gap junctions showed belt-like structures with curvature and
torsion. Due to the complexity of the structure, the size of these gap junctions was estimated as a
simplified rectangular shape by measuring the length of the longer axis and average width of the belt.
The acquired data were analyzed in Excel and Origin.

Acknowledgements

This project was inspired by the paper from Behrens et al., 2016, who used 2006 to reconstruct
bipolar cells. We thank Christian Behrens, Timm Schubert, Philipp Berens, and Thomas Euler (Univer-
sity of Tibingen) for generously sharing data on blue cone bipolar cells. We thank Moritz Helms-
taedter (MPI, Frankfurt) for hosting the e2006 dataset. We thank Kiril Martemyanov (Scripps research
Institute, Jupiter, Florida) for the generous gift of an mGIluRé antibody. We thank David Berson
(Brown University) for advice, encouragement, and an introduction to connectomics. We thank Jessica
Riesterer at the Multiscale Microscopy Core, an OHSU University Shared Resource core facility, for
acquiring the FIB-SEM datasets. We thank Alice Chuang (Richard Ruiz Department of Ophthalmology
and Visual Science, McGovern Medical School) for statistical analysis. This work was supported by
NIH grants EY017836 (JHS); EY029408 (SCM and CPR); P30EY028102 (SCM); P30NS061800 (SAA);
RF1MH127343 (SAA, SCM, CWM, and CPR).

Additional information

Funding

Funder Grant reference number Author

National Institute of Mental RFTMH127343 Catherine W Morgans

Health Sue A Aicher
Christophe P Ribelayga
Stephen C Massey

National Eye Institute EY029408 Christophe P Ribelayga
Stephen C Massey

National Eye Institute EY017836 Joshua H Singer

National Institute of P30NS061800 Sue A Aicher

Neurological Disorders

and Stroke

National Eye Institute P30EY028102 Stephen C Massey

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Ishibashi et al. eLife 2022;11:€73039. DOI: https://doi.org/10.7554/eLife.73039 30 of 41


https://doi.org/10.7554/eLife.73039

eLife

Neuroscience

Author contributions

Munenori Ishibashi, Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
Validation, Visualization, Writing — original draft, Writing — review and editing; Joyce Keung, Investiga-
tion, Methodology, Validation; Catherine W Morgans, Sue A Aicher, Conceptualization, Formal anal-
ysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Validation,
Visualization, Writing — original draft, Writing — review and editing; James R Carroll, Formal analysis,
Investigation, Methodology, Resources, Visualization; Joshua H Singer, Funding acquisition, Investi-
gation, Methodology, Resources, Writing - review and editing; Li Jia, Resources; Wei Li, Resources,
Writing — review and editing; Iris Fahrenfort, Conceptualization, Investigation, Methodology, Writing
- original draft, Writing — review and editing; Christophe P Ribelayga, Conceptualization, Formal
analysis, Funding acquisition, Investigation, Project administration, Supervision, Writing — original
draft, Writing — review and editing; Stephen C Massey, Conceptualization, Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Visualization,
Writing — original draft, Writing — review and editing

Author ORCIDs

Munenori Ishibashi  http://orcid.org/0000-0002-6922-573X
James R Carroll  http://orcid.org/0000-0002-9264-4502

Joshua H Singer  http://orcid.org/0000-0002-0561-2247

Wei Li  http://orcid.org/0000-0002-2897-649X

Christophe P Ribelayga http://orcid.org/0000-0001-5889-2070
Stephen C Massey http://orcid.org/0000-0003-0224-6031

Ethics

All animal procedures were reviewed and approved by the Animal Welfare Committee at the Univer-
sity of Texas Health Science Center at Houston (AWC-20-0138) or by our collaborators' local Institu-
tional Animal Care and Use Committees.

Decision letter and Author response
Decision letter https://doi.org/10.7554/elife.73039.sa
Author response https://doi.org/10.7554/¢elife.73039.sa2

Additional files

Supplementary files
¢ Transparent reporting form

Data availability

All the data used to create the figures in the manuscript have been provided as source data files for
Figures 2, 3, 4, 5 and 8. The analyzed previously published SBF-SEM dataset €2006 is publicly avail-
able here: http://neuro.rzg.mpg.de/.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier
Ishibashi M, Keung J, 2018 Confocal imaging of the https://download. brainimagelibrary,
Ribelayga CP, Massey outer plexiform layer in brainimagelibrary. 30675648bee230%e
SC mouse retina org/30/67/
30675648bee230%e/

Singer JH 2018 SBF-SEM of mouse retina.  https://wklink.org/ webKnossos, 9712

eel001 9712
Morgan CW, Aicher 2019 FIB-SEM of the outer https://bossdb.org/  BossDB, ishibashi2021
SA, Carroll JR plexiform layer in light- project/ishibashi2021

adapted mouse retina. EM1

and EM2

Ishibashi et al. eLife 2022;11:e73039. DOI: https://doi.org/10.7554/eLife.73039 31 of 41


https://doi.org/10.7554/eLife.73039
http://orcid.org/0000-0002-6922-573X
http://orcid.org/0000-0002-9264-4502
http://orcid.org/0000-0002-0561-2247
http://orcid.org/0000-0002-2897-649X
http://orcid.org/0000-0001-5889-2070
http://orcid.org/0000-0003-0224-6031
https://doi.org/10.7554/eLife.73039.sa1
https://doi.org/10.7554/eLife.73039.sa2
http://neuro.rzg.mpg.de/
https://download.brainimagelibrary.org/30/67/30675648bee2309e/
https://download.brainimagelibrary.org/30/67/30675648bee2309e/
https://download.brainimagelibrary.org/30/67/30675648bee2309e/
https://download.brainimagelibrary.org/30/67/30675648bee2309e/
https://wklink.org/9712
https://wklink.org/9712
https://bossdb.org/project/ishibashi2021
https://bossdb.org/project/ishibashi2021

e Llfe Research article

Neuroscience

References

Asteriti S, Gargini C, Cangiano L. 2014. Mouse rods signal through gap junctions with cones. eLife 3:e01386.
DOI: https://doi.org/10.7554/eLife.01386, PMID: 24399457

Asteriti S, Gargini C, Cangiano L. 2017. Connexin 36 expression is required for electrical coupling between
mouse rods and cones. Visual Neuroscience 34:E006. DOI: https://doi.org/10.1017/50952523817000037,
PMID: 28965521

Behrens C, Schubert T, Haverkamp S, Euler T, Berens P. 2016. Connectivity map of bipolar cells and
photoreceptors in the mouse retina. elLife 5:e20041. DOI: https://doi.org/10.7554/eLife.20041, PMID:
27885985

Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. 2016. Microscopy Image Browser: A Platform for
Segmentation and Analysis of Multidimensional Datasets. PLOS Biology 14:€1002340. DOI: https://doi.org/10.
1371/journal.pbio.1002340, PMID: 26727152

Beyer EC, Berthoud VM. 2009. The Family of Connexin Genes. Harris A, Locke D (Eds). Connexins: A Guide.
Humana Press. p. 3-26.

Bloomfield SA, Dacheux RF. 2001. Rod vision: pathways and processing in the mammalian retina. Progress in
Retinal and Eye Research 20:351-384. DOI: https://doi.org/10.1016/s1350-9462(00)00031-8, PMID: 11286897

Bloomfield SA, Vélgyi B. 2009. The diverse functional roles and regulation of neuronal gap junctions in the
retina. Nature Reviews. Neuroscience 10:495-506. DOI: https://doi.org/10.1038/nrn2636, PMID: 19491906

Bolte P, Herrling R, Dorgau B, Schultz K, Feigenspan A, Weiler R, Dedek K, Janssen-Bienhold U. 2016.
Expression and Localization of Connexins in the Outer Retina of the Mouse. Journal of Molecular Neuroscience
58:178-192. DOI: https://doi.org/10.1007/s12031-015-0654-y, PMID: 26453550

Carter-Dawson LD, LaVail MM. 1979. Rods and cones in the mouse retina. |. Structural analysis using light and
electron microscopy. The Journal of Comparative Neurology 188:245-262. DOI: https://doi.org/10.1002/cne.
901880204, PMID: 500858

Connors BW. 2017. Synchrony and so much more: Diverse roles for electrical synapses in neural circuits.
Developmental Neurobiology 77:610-624. DOI: https://doi.org/10.1002/dneu.22493, PMID: 28245529

Dacey DM, Lee BB. 1994. The “blue-on” opponent pathway in primate retina originates from a distinct
bistratified ganglion cell type. Nature 367:731-735. DOI: https://doi.org/10.1038/367731a0, PMID: 8107868

Dang L, Pulukuri S, Mears AJ, Swaroop A, Reese BE, Sitaramayya A. 2004. Connexin 36 in photoreceptor cells:
studies on transgenic rod-less and cone-less mouse retinas. Molecular Vision 10:323-327 PMID: 15152186.,

Demb JB, Singer JH. 2012. Intrinsic properties and functional circuitry of the All amacrine cell. Visual
Neuroscience 29:51-60. DOI: https://doi.org/10.1017/50952523811000368, PMID: 22310372

DeVries SH, Qi X, Smith R, Makous W, Sterling P. 2002. Electrical coupling between mammalian cones. Current
Biology 12:1900-1907. DOI: https://doi.org/10.1016/s0960-9822(02)01261-7, PMID: 12445382

Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S.
2010. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision.
Neuron 67:49-60. DOI: https://doi.org/10.1016/j.neuron.2010.05.023, PMID: 20624591

Efron B. 1979. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7:1-26. DOI: https://
doi.org/10.1214/a0s/1176344552

Efron B, Tibshirani RJ. 1993. An Introduction to the Bootstrap. Springer. DOI: https://doi.org/10.1007/978-1-
4899-4541-9

Feigenspan A, Teubner B, Willecke K, Weiler R. 2001. Expression of neuronal connexin36 in All amacrine cells of
the mammalian retina. The Journal of Neuroscience 21:230-239. DOI: https://doi.org/10.1523/jneurosci.21-01-
00230.2001, PMID: 11150340

Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Séhl G, Willecke K, Ammermidiller J,
Weiler R. 2004. Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. The
Journal of Neuroscience 24:3325-3334. DOI: https://doi.org/10.1523/JNEUROSCI.5598-03.2004, PMID:
15056712

Field GD, Greschner M, Gauthier JL, Rangel C, Shlens J, Sher A, Marshak DW, Litke AM, Chichilnisky EJ. 2009.
High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. Nature
Neuroscience 12:1159-1164. DOI: https://doi.org/10.1038/nn.2353, PMID: 19668201

Field GD, Uzzell V, Chichilnisky EJ, Rieke F. 2019. Temporal resolution of single-photon responses in primate rod
photoreceptors and limits imposed by cellular noise. Journal of Neurophysiology 121:255-268. DOI: https://
doi.org/10.1152/jn.00683.2018, PMID: 30485153

Goodman LA. 1962. The Variance of the Product of K Random Variables. Journal of the American Statistical
Association 57:54. DOI: https://doi.org/10.2307/2282440

Haverkamp S, Wassle H, Duebel J, Kuner T, Augustine GJ, Feng G, Euler T. 2005. The primordial, blue-cone
color system of the mouse retina. The Journal of Neuroscience 25:5438-5445. DOI: https://doi.org/10.1523/
JNEUROSCI.1117-05.2005, PMID: 15930394

Helmstaedter M, Briggman KL, Denk W. 2011. High-accuracy neurite reconstruction for high-throughput
neuroanatomy. Nature Neuroscience 14:1081-1088. DOI: https://doi.org/10.1038/nn.2868, PMID: 21743472

Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the
inner plexiform layer in the mouse retina. Nature 500:168-174. DOI: https://doi.org/10.1038/nature 12346,
PMID: 23925239

Hornstein EP, Verweij J, Schnapf JL. 2004. Electrical coupling between red and green cones in primate retina.
Nature Neuroscience 7:745-750. DOI: https://doi.org/10.1038/nn1274, PMID: 15208634

Ishibashi et al. eLife 2022;11:e73039. DOI: https://doi.org/10.7554/eLife.73039 32 of 41


https://doi.org/10.7554/eLife.73039
https://doi.org/10.7554/eLife.01386
http://www.ncbi.nlm.nih.gov/pubmed/24399457
https://doi.org/10.1017/S0952523817000037
http://www.ncbi.nlm.nih.gov/pubmed/28965521
https://doi.org/10.7554/eLife.20041
http://www.ncbi.nlm.nih.gov/pubmed/27885985
https://doi.org/10.1371/journal.pbio.1002340
https://doi.org/10.1371/journal.pbio.1002340
http://www.ncbi.nlm.nih.gov/pubmed/26727152
https://doi.org/10.1016/s1350-9462(00)00031-8
http://www.ncbi.nlm.nih.gov/pubmed/11286897
https://doi.org/10.1038/nrn2636
http://www.ncbi.nlm.nih.gov/pubmed/19491906
https://doi.org/10.1007/s12031-015-0654-y
http://www.ncbi.nlm.nih.gov/pubmed/26453550
https://doi.org/10.1002/cne.901880204
https://doi.org/10.1002/cne.901880204
http://www.ncbi.nlm.nih.gov/pubmed/500858
https://doi.org/10.1002/dneu.22493
http://www.ncbi.nlm.nih.gov/pubmed/28245529
https://doi.org/10.1038/367731a0
http://www.ncbi.nlm.nih.gov/pubmed/8107868
http://www.ncbi.nlm.nih.gov/pubmed/15152186
https://doi.org/10.1017/S0952523811000368
http://www.ncbi.nlm.nih.gov/pubmed/22310372
https://doi.org/10.1016/s0960-9822(02)01261-7
http://www.ncbi.nlm.nih.gov/pubmed/12445382
https://doi.org/10.1016/j.neuron.2010.05.023
http://www.ncbi.nlm.nih.gov/pubmed/20624591
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1523/jneurosci.21-01-00230.2001
https://doi.org/10.1523/jneurosci.21-01-00230.2001
http://www.ncbi.nlm.nih.gov/pubmed/11150340
https://doi.org/10.1523/JNEUROSCI.5598-03.2004
http://www.ncbi.nlm.nih.gov/pubmed/15056712
https://doi.org/10.1038/nn.2353
http://www.ncbi.nlm.nih.gov/pubmed/19668201
https://doi.org/10.1152/jn.00683.2018
https://doi.org/10.1152/jn.00683.2018
http://www.ncbi.nlm.nih.gov/pubmed/30485153
https://doi.org/10.2307/2282440
https://doi.org/10.1523/JNEUROSCI.1117-05.2005
https://doi.org/10.1523/JNEUROSCI.1117-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/15930394
https://doi.org/10.1038/nn.2868
http://www.ncbi.nlm.nih.gov/pubmed/21743472
https://doi.org/10.1038/nature12346
http://www.ncbi.nlm.nih.gov/pubmed/23925239
https://doi.org/10.1038/nn1274
http://www.ncbi.nlm.nih.gov/pubmed/15208634

e Llfe Research article

Neuroscience

Hsu A, Smith RG, Buchsbaum G, Sterling P. 2000. Cost of cone coupling to trichromacy in primate fovea. Journal
of the Opttical Society of America. A, Optics, Image Science, and Vision 17:635-640. DOI: https://doi.org/10.
1364/josaa.17.000635, PMID: 10708045

Ingram NT, Sampath AP, Fain GL. 2019. Voltage-clamp recordings of light responses from wild-type and mutant
mouse cone photoreceptors. The Journal of General Physiology 151:1287-1299. DOI: https://doi.org/10.1085/
jg9p.201912419, PMID: 31562185

Jin NG, Chuang AZ, Masson PJ, Ribelayga CP. 2015. Rod electrical coupling is controlled by a circadian clock
and dopamine in mouse retina. The Journal of Physiology 593:1597-1631. DOI: https://doi.org/10.1113/
jphysiol.2014.284919, PMID: 25616058

Jin NG, Ribelayga CP. 2016. Direct Evidence for Daily Plasticity of Electrical Coupling between Rod
Photoreceptors in the Mammalian Retina. The Journal of Neuroscience 36:178-184. DOI: https://doi.org/10.
1523/JNEUROSCI.3301-15.2016, PMID: 26740659

Jin N, Zhang Z, Keung J, Youn SB, Ishibashi M, Tian LM, Marshak DW, Solessio E, Umino Y, Fahrenfort |,

Kiyama T, Mao CA, You Y, Wei H, Wu J, Postma F, Paul DL, Massey SC, Ribelayga CP. 2020. Molecular and
functional architecture of the mouse photoreceptor network. Science Advances é:eaba7232. DOI: https://doi.
org/10.1126/sciadv.aba7232, PMID: 32832605

Jin N, Tian LM, Fahrenfort |, Zhang Z, Postma F, Paul DL, Massey SC, Ribelayga CP. 2022. Genetic elimination of
rod/cone coupling reveals the contribution of the secondary rod pathway to the retinal output. Science
Advances 8:eabm4491. DOI: https://doi.org/10.1126/sciadv.abm4491, PMID: 35363529

Johnson JE, Perkins GA, Giddabasappa A, Chaney S, Xiao W, White AD, Brown JM, Waggoner J, Ellisman MH,
Fox DA. 2007. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon
synapses. Molecular Vision 13:887-919 PMID: 17653034.,

Kamasawa N, Furman CS, Davidson KGV, Sampson JA, Magnie AR, Gebhardt BR, Kamasawa M, Yasumura T,
Zumbrunnen JR, Pickard GE, Nagy JI, Rash JE. 2006. Abundance and ultrastructural diversity of neuronal gap
junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and mouse retina. Neuroscience
142:1093-1117. DOI: https://doi.org/10.1016/j.neuroscience.2006.08.020, PMID: 17010526

Kantor O, Benks Z, Enzsély A, David C, Naumann A, Nitschke R, Szabd A, Pélfi E, Orbéan J, Nyitrai M, Németh J,
Szél A, Lukéts A, Volgyi B. 2016. Characterization of connexin36 gap junctions in the human outer retina. Brain
Structure & Function 221:2963-2984. DOI: https://doi.org/10.1007/s00429-015-1082-z, PMID: 26173976

Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vazquez-Reina A,
Kaynig V, Jones TR, Roberts M, Morgan JL, Tapia JC, Seung HS, Roncal WG, Vogelstein JT, Burns R,

Sussman DL, Priebe CE, Pfister H, et al. 2015. Saturated Reconstruction of a Volume of Neocortex. Cell
162:648-661. DOI: https://doi.org/10.1016/j.cell.2015.06.054

Kolb H. 1977. The organization of the outer plexiform layer in the retina of the cat: electron microscopic
observations. Journal of Neurocytology 6:131-153. DOI: https://doi.org/10.1007/BF01261502

Kothmann WW, Massey SC, O'Brien J. 2009. Dopamine-stimulated dephosphorylation of connexin 36 mediates
All amacrine cell uncoupling. The Journal of Neuroscience 29:14903-14911. DOI: https://doi.org/10.1523/
JNEUROSCI.3436-09.2009

Kouyama N, Marshak DW. 1992. Bipolar cells specific for blue cones in the macaque retina. The Journal of
Neuroscience 12:1233-1252. DOI: https://doi.org/10.1523/JNEUROSCI.12-04-01233.1992

Koval M, Molina SA, Burt JM. 2014. Mix and match: investigating heteromeric and heterotypic gap junction
channels in model systems and native tissues. FEBS Letters 588:1193-1204. DOI: https://doi.org/10.1016/].
febslet.2014.02.025, PMID: 24561196

Lasseigne AM, Echeverry FA, ljaz S, Michel JC, Martin EA, Marsh AJ, Trujillo E, Marsden KC, Pereda AE,

Miller AC. 2021. Electrical synaptic transmission requires a postsynaptic scaffolding protein. eLife 10:e66898.
DOI: https://doi.org/10.7554/eLife.66898, PMID: 33908867

Li W, DeVries SH. 2004. Separate blue and green cone networks in the mammalian retina. Nature Neuroscience
7:751-756. DOI: https://doi.org/10.1038/nn1275, PMID: 15208635

Li Wei, Chen S, DeVries SH. 2010. A fast rod photoreceptor signaling pathway in the mammalian retina. Nature
Neuroscience 13:414-416. DOI: https://doi.org/10.1038/nn.2507, PMID: 20190742

Li PH, Verweij J, Long JH, Schnapf JL. 2012. Gap-junctional coupling of mammalian rod photoreceptors and its
effect on visual detection. The Journal of Neuroscience 32:3552-3562. DOI: https://doi.org/10.1523/
JNEUROSCI.2144-11.2012, PMID: 22399777

Li H, Zhang Z, Blackburn MR, Wang SW, Ribelayga CP, O’Brien J. 2013. Adenosine and dopamine receptors
coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. The Journal of
Neuroscience 33:3135-3150. DOI: https://doi.org/10.1523/JNEUROSCI.2807-12.2013, PMID: 23407968

Li S, Mitchell J, Briggs DJ, Young JK, Long SS, Fuerst PG. 2016. Morphological Diversity of the Rod Spherule: A
Study of Serially Reconstructed Electron Micrographs. PLOS ONE 11:e0150024. DOI: https://doi.org/10.1371/
journal.pone.0150024, PMID: 26930660

Li W. 2020. Ground squirrel - A cool model for A bright vision. Seminars in Cell & Developmental Biology
106:127-134. DOI: https://doi.org/10.1016/j.semcdb.2020.06.005, PMID: 32593518

Marandykina A, Palacios-Prado N, Rimkuté L, Skeberdis VA, Bukauskas FF. 2013. Regulation of connexin36 gap
junction channels by n-alkanols and arachidonic acid. The Journal of Physiology 591:2087-2101. DOI: https://
doi.org/10.1113/jphysiol.2013.250910, PMID: 23420660

Marc RE, Liu WLS, Muller JF. 1988. Gap junctions in the inner plexiform layer of the goldfish retina. Vision
Research 28:9-24 PMID: 3414003.,

Ishibashi et al. eLife 2022;11:e73039. DOI: https://doi.org/10.7554/eLife.73039 33 of 41


https://doi.org/10.7554/eLife.73039
https://doi.org/10.1364/josaa.17.000635
https://doi.org/10.1364/josaa.17.000635
http://www.ncbi.nlm.nih.gov/pubmed/10708045
https://doi.org/10.1085/jgp.201912419
https://doi.org/10.1085/jgp.201912419
http://www.ncbi.nlm.nih.gov/pubmed/31562185
https://doi.org/10.1113/jphysiol.2014.284919
https://doi.org/10.1113/jphysiol.2014.284919
http://www.ncbi.nlm.nih.gov/pubmed/25616058
https://doi.org/10.1523/JNEUROSCI.3301-15.2016
https://doi.org/10.1523/JNEUROSCI.3301-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/26740659
https://doi.org/10.1126/sciadv.aba7232
https://doi.org/10.1126/sciadv.aba7232
http://www.ncbi.nlm.nih.gov/pubmed/32832605
https://doi.org/10.1126/sciadv.abm4491
http://www.ncbi.nlm.nih.gov/pubmed/35363529
http://www.ncbi.nlm.nih.gov/pubmed/17653034
https://doi.org/10.1016/j.neuroscience.2006.08.020
http://www.ncbi.nlm.nih.gov/pubmed/17010526
https://doi.org/10.1007/s00429-015-1082-z
http://www.ncbi.nlm.nih.gov/pubmed/26173976
https://doi.org/10.1016/j.cell.2015.06.054
https://doi.org/10.1007/BF01261502
https://doi.org/10.1523/JNEUROSCI.3436-09.2009
https://doi.org/10.1523/JNEUROSCI.3436-09.2009
https://doi.org/10.1523/JNEUROSCI.12-04-01233.1992
https://doi.org/10.1016/j.febslet.2014.02.025
https://doi.org/10.1016/j.febslet.2014.02.025
http://www.ncbi.nlm.nih.gov/pubmed/24561196
https://doi.org/10.7554/eLife.66898
http://www.ncbi.nlm.nih.gov/pubmed/33908867
https://doi.org/10.1038/nn1275
http://www.ncbi.nlm.nih.gov/pubmed/15208635
https://doi.org/10.1038/nn.2507
http://www.ncbi.nlm.nih.gov/pubmed/20190742
https://doi.org/10.1523/JNEUROSCI.2144-11.2012
https://doi.org/10.1523/JNEUROSCI.2144-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22399777
https://doi.org/10.1523/JNEUROSCI.2807-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23407968
https://doi.org/10.1371/journal.pone.0150024
https://doi.org/10.1371/journal.pone.0150024
http://www.ncbi.nlm.nih.gov/pubmed/26930660
https://doi.org/10.1016/j.semcdb.2020.06.005
http://www.ncbi.nlm.nih.gov/pubmed/32593518
https://doi.org/10.1113/jphysiol.2013.250910
https://doi.org/10.1113/jphysiol.2013.250910
http://www.ncbi.nlm.nih.gov/pubmed/23420660
http://www.ncbi.nlm.nih.gov/pubmed/3414003

e Llfe Research article

Neuroscience

Marc RE, Sigulinsky CL, Pfeiffer RL, Emrich D, Anderson JR, Jones BW. 2018. Heterocellular Coupling Between
Amacrine Cells and Ganglion Cells. Frontiers in Neural Circuits 12:90. DOI: https://doi.org/10.3389/fncir.2018.
00090, PMID: 30487737

Marder E, Gutierrez GJ, Nusbaum MP. 2017. Complicating connectomes: Electrical coupling creates parallel
pathways and degenerate circuit mechanisms. Developmental Neurobiology 77:597-609. DOI: https://doi.org/
10.1002/dneu.22410, PMID: 27314561

Miller A.C, Pereda AE. 2017. The electrical synapse: Molecular complexities at the gap and beyond.
Developmental Neurobiology 77:562-574. DOI: https://doi.org/10.1002/dneu.22484, PMID: 28170151

Miller AC, Whitebirch AC, Shah AN, Marsden KC, Granato M, O’'Brien J, Moens CB. 2017. A genetic basis for
molecular asymmetry at vertebrate electrical synapses. eLife 6:e25364. DOI: https://doi.org/10.7554/elife.
25364, PMID: 28530549

Mills SL, O'Brien JJ, Li W, O'Brien J, Massey SC. 2001. Rod pathways in the mammalian retina use connexin 36.
The Journal of Comparative Neurology 436:336-350. DOI: https://doi.org/10.1002/cne. 1071, PMID:
11438934

Nadal-Nicolas FM, Kunze VP, Ball JM, Peng BT, Krishnan A, Zhou G, Dong L, Li W. 2020. True S-cones are
concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 9:e56840.
DOI: https://doi.org/10.7554/eLife.56840, PMID: 32463363

Nagy JI, Pereda AE, Rash JE. 2018. Electrical synapses in mammalian CNS: Past eras, present focus and future
directions. Biochimica et Biophysica Acta. Biomembranes 1860:102-123. DOI: https://doi.org/10.1016/j.
bbamem.2017.05.019, PMID: 28577972

Nelson R. 1977. Cat cones have rod input: A comparison of the response properties of cones and horizontal cell
bodies in the retina of the cat. The Journal of Comparative Neurology 172:109-135. DOI: https://doi.org/10.
1002/cne.901720106, PMID: 838876

O’Brien JJ, Chen X, Macleish PR, O'Brien J, Massey SC. 2012. Photoreceptor coupling mediated by connexin36
in the primate retina. The Journal of Neuroscience 32:4675-4687. DOI: https://doi.org/10.1523/JNEUROSCI.
4749-11.2012, PMID: 22457514

O'Brien J. 2014. The ever-changing electrical synapse. Current Opinion in Neurobiology 29:64-72. DOI: https://
doi.org/10.1016/j.conb.2014.05.011, PMID: 24955544

Pallotto M, Watkins PV, Fubara B, Singer JH, Briggman KL. 2015. Extracellular space preservation aids the
connectomic analysis of neural circuits. eLife 4:e08206. DOI: https://doi.org/10.7554/eLife.08206, PMID:
26650352

Paridaen J, Wilsch-Brduninger M, Huttner WB. 2013. Asymmetric inheritance of centrosome-associated primary
cilium membrane directs ciliogenesis after cell division. Cell 155:333-344. DOI: https://doi.org/10.1016/j.cell.
2013.08.060, PMID: 24120134

Quraishi S, Gayet J, Morgans CW, Duvoisin RM. 2007. Distribution of group-Ill metabotropic glutamate
receptors in the retina. The Journal of Comparative Neurology 501:931-943. DOI: https://doi.org/10.1002/cne.
21274, PMID: 17311335

Raviola E, Gilula NB. 1973. Gap junctions between photoreceptor cells in the vertebrate retina. PNAS 70:1677-
1681. DOI: https://doi.org/10.1073/pnas.70.6.1677, PMID: 4198274

Reale E, Luciano L, Spitznas M. 1978. Communicating junctions of the human sensory retina. A freeze-fracture
study. Albrecht von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. Albrecht von Graefe’s
Archive for Clinical and Experimental Ophthalmology 208:77-92. DOI: https://doi.org/10.1007/BF00406984,
PMID: 310266

Ribelayga C, Cao Y, Mangel SC. 2008. The circadian clock in the retina controls rod-cone coupling. Neuron
59:790-801. DOI: https://doi.org/10.1016/j.neuron.2008.07.017, PMID: 18786362

Ribelayga C, Mangel SC. 2010. Identification of a circadian clock-controlled neural pathway in the rabbit retina.
PLOS ONE 5:€11020. DOI: https://doi.org/10.1371/journal.pone.0011020, PMID: 20548772

Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J,
Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T,
Kainmueller D, et al. 2020. A connectome and analysis of the adult Drosophila central brain. elLife 9:e57443.
DOI: https://doi.org/10.7554/eLife.57443, PMID: 32880371

Scheffer LK, Meinertzhagen |IA. 2021. A connectome is not enough - what is still needed to understand the brain
of Drosophila? The Journal of Experimental Biology 224:jeb242740. DOI: https://doi.org/10.1242/jeb.242740,
PMID: 34695211

Schneeweis DM, Schnapf JL. 1995. Photovoltage of rods and cones in the macaque retina. Science (New York,
N.Y.) 268:1053-1056. DOI: https://doi.org/10.1126/science.7754386, PMID: 7754386

Sigulinsky CL, Anderson JR, Kerzner E, Rapp CN, Pfeiffer RL, Rodman TM, Emrich DP, Rapp KD, Nelson NT,
Lauritzen JS, Meyer M, Marc RE, Jones BW. 2020. Network Architecture of Gap Junctional Coupling among
Parallel Processing Channels in the Mammalian Retina. The Journal of Neuroscience 40:4483-4511. DOI:
https://doi.org/10.1523/JNEUROSCI.1810-19.2020, PMID: 32332119

Smith RG, Freed MA, Sterling P. 1986. Microcircuitry of the dark-adapted cat retina: functional architecture of
the rod-cone network. The Journal of Neuroscience 6:3505-3517. DOI: https://doi.org/10.1523/jneurosci.
06-12-03505.1986, PMID: 3794785

Sohl G, Odermatt B, Maxeiner S, Degen J, Willecke K. 2004. New insights into the expression and function of
neural connexins with transgenic mouse mutants. Brain Research. Brain Research Reviews 47:245-259. DOI:
https://doi.org/10.1016/j.brainresrev.2004.05.006, PMID: 15572175

Ishibashi et al. eLife 2022;11:e73039. DOI: https://doi.org/10.7554/eLife.73039 34 of 41


https://doi.org/10.7554/eLife.73039
https://doi.org/10.3389/fncir.2018.00090
https://doi.org/10.3389/fncir.2018.00090
http://www.ncbi.nlm.nih.gov/pubmed/30487737
https://doi.org/10.1002/dneu.22410
https://doi.org/10.1002/dneu.22410
http://www.ncbi.nlm.nih.gov/pubmed/27314561
https://doi.org/10.1002/dneu.22484
http://www.ncbi.nlm.nih.gov/pubmed/28170151
https://doi.org/10.7554/eLife.25364
https://doi.org/10.7554/eLife.25364
http://www.ncbi.nlm.nih.gov/pubmed/28530549
https://doi.org/10.1002/cne.1071
http://www.ncbi.nlm.nih.gov/pubmed/11438934
https://doi.org/10.7554/eLife.56840
http://www.ncbi.nlm.nih.gov/pubmed/32463363
https://doi.org/10.1016/j.bbamem.2017.05.019
https://doi.org/10.1016/j.bbamem.2017.05.019
http://www.ncbi.nlm.nih.gov/pubmed/28577972
https://doi.org/10.1002/cne.901720106
https://doi.org/10.1002/cne.901720106
http://www.ncbi.nlm.nih.gov/pubmed/838876
https://doi.org/10.1523/JNEUROSCI.4749-11.2012
https://doi.org/10.1523/JNEUROSCI.4749-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22457514
https://doi.org/10.1016/j.conb.2014.05.011
https://doi.org/10.1016/j.conb.2014.05.011
http://www.ncbi.nlm.nih.gov/pubmed/24955544
https://doi.org/10.7554/eLife.08206
http://www.ncbi.nlm.nih.gov/pubmed/26650352
https://doi.org/10.1016/j.cell.2013.08.060
https://doi.org/10.1016/j.cell.2013.08.060
http://www.ncbi.nlm.nih.gov/pubmed/24120134
https://doi.org/10.1002/cne.21274
https://doi.org/10.1002/cne.21274
http://www.ncbi.nlm.nih.gov/pubmed/17311335
https://doi.org/10.1073/pnas.70.6.1677
http://www.ncbi.nlm.nih.gov/pubmed/4198274
https://doi.org/10.1007/BF00406984
http://www.ncbi.nlm.nih.gov/pubmed/310266
https://doi.org/10.1016/j.neuron.2008.07.017
http://www.ncbi.nlm.nih.gov/pubmed/18786362
https://doi.org/10.1371/journal.pone.0011020
http://www.ncbi.nlm.nih.gov/pubmed/20548772
https://doi.org/10.7554/eLife.57443
http://www.ncbi.nlm.nih.gov/pubmed/32880371
https://doi.org/10.1242/jeb.242740
http://www.ncbi.nlm.nih.gov/pubmed/34695211
https://doi.org/10.1126/science.7754386
http://www.ncbi.nlm.nih.gov/pubmed/7754386
https://doi.org/10.1523/JNEUROSCI.1810-19.2020
http://www.ncbi.nlm.nih.gov/pubmed/32332119
https://doi.org/10.1523/jneurosci.06-12-03505.1986
https://doi.org/10.1523/jneurosci.06-12-03505.1986
http://www.ncbi.nlm.nih.gov/pubmed/3794785
https://doi.org/10.1016/j.brainresrev.2004.05.006
http://www.ncbi.nlm.nih.gov/pubmed/15572175

e Llfe Research article

Neuroscience

Srinivas M, Rozental R, Kojima T, Dermietzel R, Mehler M, Condorelli DF, Kessler JA, Spray DC. 1999. Functional
properties of channels formed by the neuronal gap junction protein connexin36. The Journal of Neuroscience
19:9848-9855. DOI: https://doi.org/10.1523/JNEUROSCI.19-22-09848.1999, PMID: 10559394

Szoboszlay M, Lorincz A, Lanore F, Vervaeke K, Silver RA, Nusser Z. 2016. Functional Properties of Dendritic Gap
Junctions in Cerebellar Golgi Cells. Neuron 90:1043-1056. DOI: https://doi.org/10.1016/j.neuron.2016.03.029,
PMID: 27133465

Teubner B, Degen J, S6hl G, Guldenagel M, Bukauskas FF, Trexler EB, Verselis VK, De Zeeuw Cl, Lee CG,

Kozak CA, Petrasch-Parwez E, Dermietzel R, Willecke K. 2000. Functional Expression of the Murine Connexin
36 Gene Coding for a Neuron-Specific Gap Junctional Protein. The Journal of Membrane Biology 176:249—
262. DOI: https://doi.org/10.1007/s00232001094

Tsukamoto Y, Morigiwa K, Ueda M, Sterling P. 2001. Microcircuits for night vision in mouse retina. The Journal of
Neuroscience 21:8616-8623. DOI: https://doi.org/10.1523/jneurosci.21-21-08616.2001

Veruki ML, Hartveit E. 2002. Electrical synapses mediate signal transmission in the rod pathway of the
mammalian retina. The Journal of Neuroscience 22:10558-10566. DOI: https://doi.org/10.1523/JNEUROSCI.
22-24-10558.2002

Whitaker CM, Nobles G, Ishibashi M, Massey SC. 2021. Rod and Cone Connections With Bipolar Cells in the
Rabbit Retina. Frontiers in Cellular Neuroscience 15:29. DOI: https://doi.org/10.3389/FNCEL.2021.662329

Wolter KIM. 1985. Taylor Series Methods. Introduction to Variance Estimation. Springer.

Xu CS, Hayworth KJ, Lu Z, Grob P, Hassan AM, Garcia-Cerdan JG, Niyogi KK, Nogales E, Weinberg RJ, Hess HF.
2017. Enhanced FIB-SEM systems for large-volume 3D imaging. eLife 6:e25916. DOI: https://doi.org/10.7554/
elife.25916

Zhang J, Wu SM. 2004. Connexin35/36 gap junction proteins are expressed in photoreceptors of the tiger
salamander retina. The Journal of Comparative Neurology 470:1-12. DOI: https://doi.org/10.1002/cne. 10967,
PMID: 14755521

Zhang Z, Li H, Liu X, O'Brien J, Ribelayga CP. 2015. Circadian clock control of connexin36 phosphorylation in
retinal photoreceptors of the CBA/CaJ mouse strain. Visual Neuroscience 32:E009. DOI: https://doi.org/10.
1017/50952523815000061, PMID: 26241696

Ishibashi et al. eLife 2022;11:e73039. DOI: https://doi.org/10.7554/eLife.73039 35 of 41


https://doi.org/10.7554/eLife.73039
https://doi.org/10.1523/JNEUROSCI.19-22-09848.1999
http://www.ncbi.nlm.nih.gov/pubmed/10559394
https://doi.org/10.1016/j.neuron.2016.03.029
http://www.ncbi.nlm.nih.gov/pubmed/27133465
https://doi.org/10.1007/s00232001094
https://doi.org/10.1523/jneurosci.21-21-08616.2001
https://doi.org/10.1523/JNEUROSCI.22-24-10558.2002
https://doi.org/10.1523/JNEUROSCI.22-24-10558.2002
https://doi.org/10.3389/FNCEL.2021.662329
https://doi.org/10.7554/eLife.25916
https://doi.org/10.7554/eLife.25916
https://doi.org/10.1002/cne.10967
http://www.ncbi.nlm.nih.gov/pubmed/14755521
https://doi.org/10.1017/S0952523815000061
https://doi.org/10.1017/S0952523815000061
http://www.ncbi.nlm.nih.gov/pubmed/26241696

eLife

Neuroscience

Appendix 1

Comparison of photoreceptor gap junctions
For comparison, we have summarized the evidence for rod/cone, cone/cone, and rod/rod gap
junctions in the mouse retina.

Rod/cone gap junctions

1.
2.

Cones contact all rods.
Cx36 labeling at the base of each rod spherule; no other connexins expressed by photore-
ceptors (Jin et al., 2020).

. Cx36 labeling dramatically reduced in either rod- or cone-specific Cx36 KOs, consistent with the

predominance of rod/cone gap junctions and the requirement for Cx36 on both sides of a rod/
cone gap junction (Jin et al., 2020).

. FIB-SEM shows gap junctions at the base of each rod spherule, coincident with cone contacts

and Cx36 immunoreactivity.

. Paired recordings show a large conductance between rod/cone pairs (resting state, dark-

adapted), mean 300 pS (Jin et al., 2020).

. Rod/cone coupling abolished in either the rod- or cone-specific Cx36 KO (Jin et al., 2020).
. Rod signals transmitted to cones via rod/cone gap junctions (Jin et al., 2020).
. Rod signals transmitted to ganglion cells via the secondary rod pathway are eliminated in either

the rod- or cone-specific Cx36 KO, consistent with the predominance of rod/cone gap junctions
and the requirement for Cx36 on both sides of a rod/cone gap junction (Jin et al., 2022).

. Rod/cone gap junctions are common in several mammalian species (O’Brien et al., 2012; Smith

et al., 1986).

We conclude that all rods are coupled to cones.

Cone/cone gap junctions

. Some cone/cone contacts, mostly between telodendria.
. While Cx36 is colocalized with the cone telodendrial network, most Cx36 clusters are rod/cone

gap junctions. We were unable to identify cone/cone Cx36 clusters in the mouse retina.

. FIB-SEM shows some contacts between adjacent cones but no membrane density at contact

points.

. Paired recordings show weak cone/cone coupling, a fraction of rod/cone coupling, ~60 pS in

mouse (Jin et al., 2020), but ~250 pS in ground squirrel where Cx36 between cones is promi-
nent (DeVries et al., 2002).

. Cone/cone coupling was preserved in the rod-specific Cx36 KO, suggesting cone/cone coupling

is direct.

In the rod-specific KO, which should reveal cone/cone coupling, a few Cx36 clusters left, signif-
icantly different from cone-specific Cx36 KO or pan Cx36 KO (Jin et al., 2020).

Cone/cone coupling reported in other species, such as ground squirrel and primate.

In the rod-less, cone-only mouse, there is a large increase in Cx36 labeling in the OPL (Dang
et al., 2004).

The evidence for cone/cone coupling is weak for the mouse retina. Despite the fact that we were
unable to identify cone/cone gap junctions, there is physiological evidence for weak cone/cone
coupling (Jin et al., 2020). While the presence of cone/cone coupling in the mouse is equivocal,
there is strong evidence for cone/cone coupling in other species such as primate and ground squirrel
(DeVries et al., 2002; O'Brien et al., 2012).

Rod/rod

1.
2.

Few rod/rod contacts despite spherule packing in the OPL.
No Cx36 labeling at rod/rod contacts.
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3. In the cone-specific Cx36 KO, which should reveal rod/rod coupling, there was no remaining
Cx36 labeling in the OPL above a very low background (Jin et al., 2020).

4. FIB-SEM of rod/rod contacts shows no dense staining typical of a gap junction.

5. Paired recordings show apparent rod/rod coupling was abolished in the cone-specific Cx36 KO,
indicating indirect or network coupling, rod/cone/rod (Jin et al., 2020).

6. Cx36 in the ONL is very weak, indistinguishable from nonspecific background labeling. If any
immunolabeling represents gap junctions, as opposed to nonspecific noise, these very low
numbers are not enough to account for coupling between the multitude of rods.

We conclude that there is no direct rod/rod coupling in the mouse retina.

In summary, the evidence for the predominant role of rod/cone gap junctions is strong and
straightforward. In contrast, we found no evidence for rod/rod gap junctions and the distribution of
Cx36 does not match the location of rod/rod contacts. We were also unable to detect cone/cone
gap junctions by immunofluorescence or EM, but there is at least some supporting physiological
evidence in favor of cone/cone gap junctions. It may seem unsatisfactory that we were unable to
detect rod/rod or cone/cone gap junctions, but it does not change the main result: that rod/cone
coupling accounts for the vast majority of photoreceptor gap junctions.
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Appendix 2

Appendix 2—table 1. Analysis of photoreceptors by serial blockface-scanning electron microscopy
(SBF-SEM) from e2006.

All cones Central cones p-Value
N of cones 29 13
N of rods 811 361
Rods/cone 28.0 27.8
Convergence
Mean + SD 43.0 £ 5.40 41.7 +4.19 0.40
Median (Q1-Q3) 43 (39-46) 43 (38-45)
Divergence 1.54 £ 0.628 1.89 +0.639 2.5 % 107"
Conv./div. 28.0 221
Cone coverage area*
Mean + SD 104 +20.2 102 £ 14.5
Median (Q1-Q3) 100 (86.7-117) 99.9 (93.0-111)
Area covered by cones* 1920 890
Cone densityt 0.0151 0.0146
Coverage 1.56 1.49
N of shared rods
Mean + SD 6.23+4.67 (N=79) 5.85+4.42 (N = 61) 0.63
Median (Q1-Q3) 4 (2-8) 5(2-9)

Unit is *(um?) and t(/pm?).

Appendix 2—table 2. Comparison of blue and green cones.

Blue cones Green cones p-Value
N of cones 5 31
Convergence
Mean + SD 39.8+5.11 43.0 + 6.86 0.31
Median (Q1-Q3) 39 (39-41) 43 (39-46)
Cone coverage area*®
Mean + SD 85.1 £ 18.6 104 £ 21.8 0.081
Median (Q1-Q3) 83.4 (76.4-98.0) 105 (84.8-120)
N of shared rods
Mean + SD 6.56 + 6.34 (N =16) 6.26 +4.14 (N = 69) 0.86
Median (Q1-Q3) 6(3-9) 3.5(2-10.8)

Unit is *(um?.

Appendix 2—table 3. Focused ion beam-scanning electron microscopy (FIB-SEM) analysis.

N of rods 42

N of gap junction/rod

Mean + SD 3.21+1.23

Appendix 2—table 3 Continued on next page
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Appendix 2—table 3 Continued

Median (Q1-Q3) 3(2-4)

Gap junction position*

Mean = SD 0.686 + 0.635
Median (Q1-Q3) 0.435 (0.345-0.703)
Synaptic mouth radius* 0.138 £ 0.121

Gap junction width*

Mean + SD 0.123 £ 0.0320
Median (Q1-Q3) 0.120 (0.103-0.138)

Gap junction length*
Mean = SD 0.477 = 0.227
Median (Q1-Q3) 0.419 (0.332-0.568)

Total gap junction length/rod*

Mean + SD 1.53 +£0.439
Median (Q1-Q3) 1.52(1.33-1.85)
Unit is *(um).
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Calculations of open probability for rod/cone gap junctions with

cumulative errors
Error propagation

The variability of our estimates of the fraction of opened channels under the different conditions
tested (rest, w/quinpirole, w/spiperone) was calculated using the Taylor expansion method for the
moments of functions of random variables and the Goodman formula (*). We used the means and
respective SEMs of our data or of published data to calculate the mean and standard errors (SEs)
of the estimates. A bootstrapping approach was necessary to derive means and SEMs from the
nonparametrically distributed values of rod/cone transjunctional conductances (**).

E1 - mean length of an FIB-SEM rod/cone gap junction: 477 = 19.5 nm (n = 135, from
Appendix 2—table 3)
E2 — mean Cx36 channel-to-channel spacing: 9.45 nm + 0.296 (***)

From E1 and E2, we calculated:

E3 — mean number of Cx36 channels/rod/cone gap junction: 477/9.45 + [(19.5/9.45)* +
(477/9.45)? x (0.296/9.45)*] = 50.5 = /(4.26 + 2548 x 0.000981) = 50.5 + 2.60

E4 — mean number of gap junctions/rod spherule: 3.21 + 0.190 (n = 42, from Appendix 2—
table 3)

E5 — mean number of cone contacts/rod spherule (rod/cone divergence): 1.89 + 0.0337 (n =
361, from Appendix 2—table 3)

From E4 and E5, we calculated:

E6 — mean number of gap junctions between a rod/cone pair: 3.21/1.89 + +[(0.190/1.89)? +
(3.21/1.89)% x (0.0337/1.89)?] = 1.70 = 1/(0.0101 + 2.88 x 0.000318) = 1.70 + 0.105

From E3 and Eé, we calculated:

E7 — mean number of Cx36 connexons between a rod/cone pair: 50.5 x 1.70 = 50.5 x 1.70 x
V[(2.60%/50.52 + 1) x (0.105%/1.70% + 1)-1] = 85.9 £ +/[(0.00265 + 1) x (0.00382 + 1)-1] = 85.9
6.91

E8 — mean unitary conductance of a Cx36 channel: 14.3 + 0.8 pS (n = 92, from Teubner et al.,
2000; number is in accordance with Srinivas et al., 1999 [~15 pS])

From E7 and E8, we calculated:

E9 — maximal conductance between a rod/cone pair if all Cx36 channels were open: 85.9 x 14.3
+ 85.9 x 14.3 x [(6.91%/85.92 + 1) x (0.8%/14.3% + 1) — 1] = 1228 + [(0.00647 + 1) x (0.00313
+1)-1]1= 1228 + 120 pS

E10 — mean rod/cone conductance measured at rest (darkness): 307 pS = 2.31 pS (n = 500,
bootstrapping from data in Jin et al., 2020, **)

From E9 and E10, we calculated:

E11-mean fraction of open channels at rest (darkness): 307/1228 ++/[(2.31/1228)? + (307/1228)?
x (120/1228)% = 0.250 = 1/(0.00000354 + 0.0626 x 0.00955) = 0.250 + 0.0245 = 25.0% =+ 2.45%
E12 — mean rod/cone conductance measured in the presence of quinpirole: 35.5 + 0.968 pS (n
= 500, bootstrapping from data in Jin et al., 2020, **)

From E9 and E12, we calculated:

E13 — mean fraction of open channels w/quinpirole: 35.5/1228 + +/[(0.968/1228)? + (35.5/1228)?
x (120/1228)%] = 0.0289 + /(0.000000621 + 0.000836 x 0.00955) = 0.0289 + 0.00293 = 2.89%
+0.293%

E14 — mean rod/cone conductance measured in the presence of spiperone: 1312 = 22.8 pS (n
= 500, bootstrapping from data in Jin et al., 2020, **)

From E9 and E14, we calculated:

E15 — mean fraction of open channels w/spiperone: 1312/1228 + /[(22.8/1228)% + (1312/1228)?
x (120/1228)%] = 1.07 + +/(0.000345 + 1.14 x 0.00955) = 1.07 £ 0.106 = 107% =+ 10.6%
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We can calculate 95% confidence intervals [lower limit, upper limit] (****) for E11, E13, and E15:

E11 - mean open fraction (%) of open channels at rest (darkness): [20.2, 29.8]
E13 — mean open fraction (%) of open channels w/quinpirole: [2.32, 3.46]
E15 — mean open fraction (%) of open channels w/spiperone: [86.2, 128]

Notes:

(*) Formulas to calculate SEs of our estimates:

Taylor expansion method for the moments of functions of random variables (Wolter, 1985):

E(X) or E(Y) is the mean and SEM(X) or SEM(Y) is the standard error of the mean (SEM). Assuming
that X and Y are random variables (independent), x and a are used to estimate E(X) and SEM(X), and
y and b are for E(Y) and SEM(Y), we can calculate the SE of the ratio x/y according to the formula:

SE(x/y) = l(a/y)* + (x/y)* x (b/y)]

The SE of a product of wo independent variables can be calculated from a simplification of the
Goodman formula (Goodman, 1962):

SE(xy) = xy x V[(@%/x% + 1) x (b¥y? + 1)-1]

(**) Bootstrapping:

We used a classical method of bootstrapping (Efron, 1979, Efron and Tibshirani, 1993) to
estimate the mean and SEM of nonparametric distributions of rod/cone gap junction conductances.
Resampling with replacement from the original dataset was performed with a sample size of 2/3 of
the original dataset (rounded to the closest whole number), 550 simulated datasets were generated,
and the calculations were done on the last 500.

(***) Estimation of Cx36 channel center-to-center spacing distance:

One reasonable way to calculate the spacing distance in Cx36 channels is from the channel
density of crystalline plaques, which consist of regular hexagonal arrays. From Szoboszlay et al.,
2016, the maximum connexon packing density is 12,940 + 405 channels/pm? (n = 12), a value in
close agreement with other studies (see, for instance, Kamasawa et al., 2006 [~12,000 channels/
pm?]). Assuming that the channels do not overlap, we can calculate a spacing value based on the
formula for the area of a regular hexagon: channel density = 2/(v/3 x r?), where the channel density
is the number of channels/um? and r is the center-to-center spacing in pm.

Solving the equation for a density = 12,940 channels/um? gives r = 0.00945 pm = 9.45 nm,
with SEM = 9.45 x 405/12940 = 0.296. Thus, mean center-to-center spacing of Cx36 channels in
crystalline plaques is 9.45 + 0.296 nm.

(****) 95% Cl of an estimate, such as ratio or product of means:

[estimate - 1.96 x SE, estimate + 1.96 x SE]
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