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a b s t r a c t 

The devastating outbreak of Coronavirus Disease (COVID-19) cases in early 2020 led the world to face 

health crises. Subsequently, the exponential reproduction rate of COVID-19 disease can only be reduced 

by early diagnosis of COVID-19 infection cases correctly. The initial research findings reported that ra- 

diological examinations using CT and CXR modality have successfully reduced false negatives by RT-PCR 

test. This research study aims to develop an explainable diagnosis system for the detection and infec- 

tion region quantification of COVID-19 disease. The existing research studies successfully explored deep 

learning approaches with higher performance measures but lacked generalization and interpretability for 

COVID-19 diagnosis. In this study, we address these issues by the Covid-MANet network, an automated 

end-to-end multi-task attention network that works for 5 classes in three stages for COVID-19 infec- 

tion screening. The first stage of the Covid-MANet network localizes attention of the model to the rel- 

evant lungs region for disease recognition. The second stage of the Covid-MANet network differentiates 

COVID-19 cases from bacterial pneumonia, viral pneumonia, normal and tuberculosis cases, respectively. 

To improve the interpretation and explainability, three experiments have been conducted in exploration 

of the most coherent and appropriate classification approach. Moreover, the multi-scale attention model 

MA-DenseNet201 proposed for the classification of COVID-19 cases. The final stage of the Covid-MANet 

network quantifies the proportion of infection and severity of COVID-19 in the lungs. The COVID-19 cases 

are graded into more specific severity levels such as mild, moderate, severe, and critical as per the score 

assigned by the RALE scoring system. The MA-DenseNet201 classification model outperforms eight state- 

of-the-art CNN models, in terms of sensitivity and interpretation with lung localization network. The 

COVID-19 infection segmentation by UNet with DenseNet121 encoder achieves dice score of 86.15% out- 

performing UNet, UNet ++ , AttentionUNet, R2UNet, with VGG16, ResNet50 and DenseNet201 encoder. 

The proposed network not only classifies images based on the predicted label but also highlights the 

infection by segmentation/localization of model-focused regions to support explainable decisions. MA- 

DenseNet201 model with a segmentation-based cropping approach achieves maximum interpretation of 

96% with COVID-19 sensitivity of 97.75%. Finally, based on class-varied sensitivity analysis Covid-MANet 

ensemble network of MA-DenseNet201, ResNet50 and MobileNet achieve 95.05% accuracy and 98.75% 

COVID-19 sensitivity. The proposed model is externally validated on an unseen dataset, yields 98.17% 

COVID-19 sensitivity. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronavirus disease 2019 (COVID-19), has been declared a 

lobal epidemic by WHO in early March 2020. Globally, as of 11 

ugust 2021, a corpus of 204,644,849 confirmed cases including 

323,139 deaths have been reported to WHO because of COVID- 

9 infection caused by SARS CoV-2 [1] . Still, these numbers are 

ncreasing and predicted to grow rapidly [12] in the upcoming 
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onths because of the higher reproduction rate of the disease. 

herefore , it is essential to lessen the spread of virus which is 

ossible only by early detection, treatment, and isolation of virus 

ases. 

In general, three major screening methods used for early diag- 

osis of COVID-19 include, reverse transcriptase-polymerase chain 

eaction (RT-PCR) , Chest X-ray (CXR) and Chest computed tomog- 

aphy (CT) [2] . The standard COVID-19 diagnosis RT-PCR method 

etects virus RNA from nasopharyngeal swab or sputum but it re- 

uires expert personnel, specific material, and laboratories for test- 

ng and is a time-consuming process. Another alternative to the 

T-PCR test is the rapid antigen test, which gives a faster and 

https://doi.org/10.1016/j.patcog.2022.108826
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108826&domain=pdf
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Fig. 1. Example sample images; (a) COVID-19 (b) Normal (c) BP (d) VP (e) TB classes. 
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ess expensive diagnosis compared to PCR but has poor sensitiv- 

ty to COVID-19 [3] . In particular, radiological examinations were 

ound very useful in the diagnosis and assessment of COVID-19 

isease progression. Some recent research studies were conducted 

y expert radiologists on sensitivity analysis of COVID-19 by RT- 

CR, CT, and CXR scans. Since preliminary 3-days clinical practice 

erformed on CT and RT-PCR test involving 51 patients describes 

ith CT images a sensitivity of 98% outperforming RT-PCR having 

1% sensitivity [4] . However, due to the rapid surge in COVID-19 

ases, routine use of chest CT is not feasible because of its porta- 

ility and expensive setup. Another study by wong et al. [12] , in- 

olving 64 participants, reported lower sensitivity of 69% using 

he CXR modality compared to RT-PCR having 91% initial sensi- 

ivity. Despite having low sensitivity, more than 9% of negatively 

eported RT-PCR tests have shown certain abnormalities of COVID- 

9 in CXR radiographs. Although the evaluation by CXR is less ac- 

urate in the early studies compared to CT and RT-PCR. Still, it is 

onsidered an efficient and standard screening tool because of its 

ow-cost, minimally-invasive, quick results, and requires simpler lo- 

istics for its implementation [16] . In addition to COVID-19, other 

ommon lung diseases like viral pneumonia, bacterial pneumonia, 

nd tuberculosis possess almost similar symptoms as observed in 

OVID-19 pneumonia. Thus, it is essential to develop a system that 

niquely identifies COVID-19 patients among these common lung 

iseases. Fig. 1 displays example samples for each disease class 

onsidered in this study. 

Specifically, in this decade (2011–2021) deep learning ap- 

roaches have been successfully explored for image classification 

nd segmentation tasks. These approaches play a vital role in an- 

lyzing CXR radiographs as a standard tool for the early classifica- 

ion of COVID-19 disease. In 2012, the first advanced deep learn- 

ng model AlexNet [5] was proposed that introduces overlap pool- 

ng, ReLU, dropout, large 11 ×11, and 5 × 5 kernels. In the mean- 

ime, evolution in deep learning approaches rapidly increases after 

lexNet won the ImageNet [10] challenge with a 16.4% error rate. 

ome advanced deep learning architectures proposed include VGG 

6] in 2014 uses a small 3 × 3 kernel, GoogleNet [6] in 2015 intro-

uced the block concept, split and merge idea with different kernel 

izes. Inception [7] in 2015 modified the GoogleNet model and in- 

roduced the split, transform and merge concept with asymmetric 

lters. ResNet [7] in 2016 introduced residual learning with skip 

onnections, MobileNet [6] in 2017 introduced depth-wise convo- 

ution [8] followed by pointwise convolution [9] , and DenseNet 

11] in 2017 introduced cross-layer connections for information 
fi

2 
ow. The evolution of these deep learning models [12] improve 

he classification ability continuously when tested on benchmark 

atasets [13] . Some application areas [14] where these CNN models 

ave been successfully employed for early diagnosis include cancer 

15] classification [16] , skin lesions classification [17] , and the dia- 

etic retinopathy diagnosis [18] , etc. 

.1. Literature review 

Recently, researchers proposed numerous AI-based methods for 

he detection of COVID-19 using chest x-ray and CT images. Even 

hough the usage of deep learning approaches gave promising re- 

ults having higher statistical scores. Still, these works need de- 

irable improvements at the model development stage to achieve 

n explainable diagnosis for classification and infection region 

egmentation. For instance, the first research work proposed by 

ang et al. [19] indicates that the application of deep learn- 

ng models successfully identifies COVID-19 signs in CXR scans. 

odels successfully predict 80% correct results for the COVID- 

9 class. However, the reduction of false negatives is essential 

n building a reliable diagnosis system. In research work [20] , 

he author projected COVID-SDNet methodology that tends to im- 

rove false negatives and classify COVID-19 into different sever- 

ty labels such as mild, moderate, severe, normal-PCR + . Models 

omposed COVIDGR-1.0 dataset available publicly and introduced 

egmentation-based cropping by discarding areas outside lung re- 

ions without lung segmentation in the raw image. In addition, 

ransformation and augmentations of CXR scans based on the 

AN model improved ResNet50 performance with an accuracy of 

7.72%, 86.90% in severe, moderate cases. COVID-DeepNet, [21] hy- 

rid multimodal model proposed for COVID-19 diagnosis using CXR 

mages. Image-preprocessing with CLAHE and Butterworth band- 

ass filter eliminates noise and enhances contrast. Results of CNN 

nd deep belief networks are fused for final class prediction among 

wo classes with COVID-19 sensitivity of 99%. In the study [22] , 

hamsi proposed a transfer learning-based deep uncertainty aware 

odel for CT and CXR analysis. The proposed study extracts feature 

y four DL approaches , InceptionResNetV2, ResNet50, VGG16, and 

enseNet121, each passed to eight machine learning models for 

ecognition of COVID-19. The statistical analysis reported SVM and 

eural net have higher accuracy and sensitivity ranging from 88% 

o 97% for the two-class problem. Research study by Wang et al. 

23] proposed a classification model involving two stages of classi- 

cation, named as Discrimination-DL stage extracting lung features 
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nd Localization-DL stage to localize features in left, right lungs re- 

ions. This network reported 98.71% accuracy of Discrimination-DL 

nd 93.01% for localization network. In a study [24] , the author 

eveloped a Graph-based approach for COVID-19 disease identi- 

cation with minimal supervision required. This semi-supervised 

earning framework deals with vast unlabelled samples by pseudo- 

abeling. Results outperformed the supervised framework with bet- 

er identification based on attention maps. In the reference study 

25] , the ConvNet model is developed based on fuzzy logic and 

eep learning models. Model improved learning when features ex- 

racted by a hybrid of deep and fuzzy logic approach given to mul- 

ilayer perceptron for classification achieve 81% accuracy. 

Further developments in the state-of-the-art involve lung seg- 

entation, image enhancement, and the creation of localization 

aps by Grad-CAM to make models explainable. In a research 

tudy [26] , the author explored the effect of image enhance- 

ent on COVID-19 diagnosis using CXR data. Various techniques 

ike CLAHE, histogram equalization (HE), gamma correction, image 

omplement, and BCET were tested on raw and segmented im- 

ges. It created a dataset of 18,479 images with classes as normal, 

OVID-19, and pneumonia. The experimental study uses Incep- 

ionV3, ChexNet, ResNet50, ResNet101, and DenseNet201 as CNN 

odels, where ChexNet and DenseNet201 achieve 96.29% accuracy 

hen applied with gamma correction. Another model developed 

y author [27] CMTNet for recognition of COVID-19 patients and 

nding regions infected by a disease. The proposed model follows 

GG19 backbone network for the encoder model. Two separate de- 

oder branches for lung and disease segmentation shares a com- 

on encoder branch. The study compiled an annotated dataset 

f 90 0 0 CXR for lung segmentation and 200 for disease localiza- 

ion. Statistical analysis gains 87.20% sensitivity and 96.80% preci- 

ion. In [28] , the author improved false negatives and interpreta- 

ion of the COVID-Net model by tuning existing parameters. The 

tudy recognizes 87% of COVID-19 samples correctly among pneu- 

onia and normal classes. This modified model is tested on a large 

orpus of 8573 COVID-19 samples. The statistical analysis shows 

mprovement in accuracy and interpretation after lung segmenta- 

ion to 91% with 87% sensitivity. In such epidemic situation, data 

ollection is the biggest challenge to train deep learning models. 

n research work [29] , the author proposed a transfer learning, 

esNet model with modified patch-wise training and lung segmen- 

ation approach to mitigate limited dataset challenge. The model 

as trained to classify 5 classes i.e., COVID-19, normal, viral pneu- 

onia, bacterial pneumonia, and TB. Lung contours are segmented 

ith the FC-DenseNet model and ResNet-18 to classify segmented 

ungs among one of the pathology classes with 89% accuracy and 

5% sensitivity, respectively. Ghoshal and Tucker, [30] explored the 

ncertainty of deep learning models based on Spearman correla- 

ion and bayesian uncertainty. Usage of bayesian CNN with drop 

eights and ResNet50v2 improved diagnostic interest and explain- 

bility of class activation maps. Shi et al. [31] developed EXAM, 

n explainable attention-based model generating results explain- 

ng the diagnostic interest of models for classification by Grad-CAM 

or 3-classes. EXAM developed attention by merging spatial and 

hannel-wise features with DenseNet models. Kumar and Singh 

t al., [32] proposed a deep learning model for distinguishing three 

lasses COVID-19, normal, and pneumonia. Image segmentation, 

nd image enhancement techniques are used to develop a stacked 

nsemble of four CNN models using Naïve Bayes as a meta learner 

nd Grad-CAM is used for qualitative interpretation investigation. 

n the study [44] , Mangal et al., proposed an explainable CovidAID 

odel diagnosing COVID-19 from viral pneumonia, bacterial pneu- 

onia, and normal cases using the backbone model DenseNet121 

utperforming COVID-Net with an accuracy of 90.5% and sensitiv- 

ty of 100% with 182 PA view COVID-19 samples. Another research 

ork done by Wang et al. [33] makes a standardized DL pipeline 
3 
or the classification of COVID-19 pneumonia and lesion visual- 

zation for diagnosis. The standardization stage discards irrelevant 

eatures outside lung regions by capturing lung regions. The statis- 

ical analysis measures AUC score of the system ranges from 0.87 

o 0.97 for COVID and other or viral pneumonia,0.87 for non-severe 

nd severe COVID-19, between 0.94–0.98 for viral and other pneu- 

onia types. 

In the study [34] , Tahir et al. proposed a model for infec- 

ion quantification and grading of COVID-19 pneumonia. The study 

ompiled a large dataset of 33,920 samples having 11,956 COVID- 

9 samples in original and augmented form. Statistical analy- 

is compared results of segmented, non-segmented lungs and 

nfection by state-of-the-art UNet, UNet ++ , and FPN (Feature 

yramid learning) models. These models utilize ResNet, VGG19, 

enseNet121, etc. as the backbone of encoder-decoder networks. 

odel localized COVID-19 infection regions with an overall Dice 

core of 88%. Signoroni et al. [35] proposed BS-Net model provid- 

ng a deep learning-based framework for the diagnosis of COVID-19 

n CXR. Model localize infection regions by assigning quantitative 

coring to lung regions based on the Brixia scoring system. Weakly 

upervised learning is used to achieve tasks such as segmentation, 

core-estimation, and spatial alignment. BS-Net tested on 50 0 0 

XR segmented images based on the UNet variant model with a 

4% IoU score. Research work proposed by Gidde et al. [36] de- 

eloped CovBaseAI explainable decision system by an ensemble of 

hree deep learning models for COVID-19 diagnosis. Model valida- 

ion is performed by 2 datasets having a corpus of 471 and 1401 

or COVID-19/Normal CXR scans. The statistical analysis achieved 

n accuracy of 87% accuracy with 98% negative predictive value. 

In addition to standard CXR modality, some research models 

ave been developed using CT, ultrasound modality, or using mul- 

imodal data involving CXR and CT images both. But in real prac- 

ice testing using CT images lacks portability and is expensive 

ompared to the CXR modality. In this context, Owais et al. 

37] proposed a lightweight deep learning ensemble network by 

ombining FCNet, ShuffleNet, and MobileNet for COVID-19 diagno- 

is. Localization and activation map visualization enables radiolo- 

ists to diagnose infection focused by model. However, the model 

s tested with a collection of CXR and CT datasets with a mean 

1-score of 95.94% and 94.60%. The area under curve achieved is 

7.99% and 97.50%, respectively. Another model [38] proposed for 

iagnosing community-acquired pneumonia from 3D CT volumes 

sing a dual-sampling attention network. Dual sampling resolves 

lass imbalance issue and attention mechanism better identifies in- 

ection in CT volumes with 3D CNN model outperforming state-of- 

he-art UNet model. The study processed a corpus of 2186 CT scans 

ith labels COVID-19/NORMAL by 5-fold cross-validation. Statisti- 

al analysis attained AUC, F1-score, and accuracy of 0.944, 82%, and 

7.5%, respectively. The majority of research studies involve CXR 

nd CT modalities for the diagnosis of COVID-19 by application 

f transfer learning models. However, HORRY and CHAKRABORTY 

39] research work developed a multimodal model for diagnosis 

mong multiple modalities by similar transfer learning approaches. 

n addition to CT and CXR scans, ultrasound modality has also 

roven useful in the diagnosis process but has portability and cost 

ssues for large masses. Study optimized VGG19 model, compared 

ith other popular CNN models DenseNet, Inception, VGG16, and 

esNe50 for statistical analysis. Statistical measures reveal Ultra- 

ound modality gives superior results when compared with CT and 

XR images for the 3-class classification problem. Precision values 

chieved are 86% for X-ray, 84% for CT, and 100% for ultrasound 

alues having F1-score of 99%. However, the model is a black 

ox lacking explanations and localization visualization maps using 

hole slide images. Another explainable research model [40] JCS 

roposed for the diagnosis of COVID-19 in chest CT images. 

CS framework involves joint segmentation and classification to 
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dentify COVID-19 infection in CT images. The proposed work com- 

iled a large dataset of 144,167 CT images from 350 normal CT 

cans and 400 COVID-19 patients. For infection quantification, 3855 

T images are annotated named COVID-CS dataset. Joint diagnosis 

chieves sensitivity and specificity of 95% and 93%, respectively, for 

lassification whereas 78.5% dice score for infection segmentation. 

.2. Issues affecting results in the literature 

In this section, we discuss certain shortcomings after criti- 

ally analyzing state-of-the-art developments associated with ex- 

sting diagnosis approaches. Despite having good results of exist- 

ng methodologies still, these approaches lack explainable diagno- 

is since the interpretation of the model’s decision is not correlated 

o lung regions. The major challenge with existing methodologies 

ies in weaker interpretation and low explainability of models for 

he classification of disease. Some state-of-the-art models created 

nly backbox, not explaining whether the model focused on rel- 

vant lung regions for classification. In the beginning, models ap- 

lied directly on whole slide CXR radiographs gave poor interpreta- 

ion enabling classification based on out-of-lungs region. Some ex- 

sting studies performed segmentation of lungs based on the UNet 

odel, shows improvement in interpretation but there is a minor 

ccuracy drop in these approaches. However, most of the works 

how a good correlation to disease but signify weaker diagnos- 

ic interest to lung regions. Indeed, the proposed segmentation- 

ased cropping approach represents the strong correlation of dis- 

ase classification to the lung regions. 

Secondly, most studies revolve around the classification of two 

r three classes distinguishing COVID-19 from normal and pneu- 

onia classes [19] . However, tuberculosis and virus pneumonia 

ave similar symptoms as seen in COVID-19 but after extensive 

earches, only two studies were found involving five classes for 

lassification. These studies lack interpretation and explainable na- 

ure [22] of models working with limited example datasets. How- 

ver, in clinical practice, explainable diagnostic system essentially 

ave infection region quantification and severity assessment capa- 

ility in addition to detection that is missing. 

Additional experimental issues in the state-of-the-art as per 

ecommendations of work published in nature [41] have been con- 

idered to avoid pitfalls in classification tasks. The proposed study 

trictly considers both mandatory and non-mandatory recommen- 

ations for deep learning modeling to pass the quality screening 

rocedure. The major issues responsible for the failure of quality 

creening procedure are; no explanations provided for final model 

election, lack of image pre-processing steps, no clear specifica- 

ions for training approach, class imbalance, absence of robustness 

nd sensitivity analysis, no external validation, lack of performance 

nalysis on confidence threshold intervals, interpretation and gen- 

ralization. In brief, some published works present unclear imple- 

entation details such as; initial preprocessing steps [23] for con- 

ersion of the dataset into a uniform format and the range is ei- 

her missing or not specified. In addition, specifications of training 

arameters like an optimizer, learning rate, loss function [31] , and 

eason for selection of the best model are missing [54] . In the lit-

rature survey, all the studies involve two or more classes but few 

erformed class-wise sensitivity analysis [35] for better behavior 

nalysis of the model [36] for each of the classes. Despite class 

mbalance majority of studies uses categorical class entropy loss 

36] that may prioritize the learning of the majority class [55] only. 

n the proposed research work, we consider all these challenges 

o develop a final multi-task model improving interpretation and 

eneralization by segmentation-based cropping, explainable diag- 

osis by infection quantification model, localization map by Grad- 

AM, and class imbalance by the multilabel classification loss func- 

ion. The model robustness is maintained by a clear experimen- 
4 
al setup, pre-processing steps, class-wise sensitivity analysis, con- 

dence analysis, and external validation. 

.3. Research contributions 

The early success of deep learning methods for COVID-19 diag- 

osis motivates us to further investigate CNN to minimize existing 

ssues and improve the interpretation and explainability of diag- 

osis. We propose the Covid-MANet model that enables diagnosis 

nd progression of the disease by analyzing relevant features in 

ung regions extracted using segmentation masks. Covid-MANet is 

 three-stage deep learning model that benefits from lung local- 

zation, segmentation-based classification, data-augmentation, pre- 

rocessing, post-processing, and multi-label loss to curtail any 

ariances and imbalance among CXR radiographs collected from 

ifferent repositories. Covid-MANet works for the 5-way classifica- 

ion problem, differentiating COVID-19 from bacterial pneumonia 

BP), viral pneumonia (VP), normal, and tuberculosis (TB) cases. 

recisely, the first stage in Covid-MANet takes Raw CXR radio- 

raphs as inputs, uses a segmentation model, makes a prediction 

f CXR lung masks and performs the post-processing of predicted 

asks for localization of the lung region. This forces model to at- 

ention more on segmented regions resulting in improved inter- 

retation and generalization. In addition, segmentation models are 

rained with new pseudo RANZCR dataset in combination with ex- 

sting datasets to enable better segmentation of VP and BP cases. In 

he second stage, the MA-DenseNet201 detection model improves 

ts generalization by concentrating more on relevant lung regions 

xtracted by the first stage. Segmentation-based cropping is con- 

ucted to further improve the interpretation of models. The fi- 

al stage of the Covid-MANet model performs quantification and 

everity assessment of COVID-19 infection in the lungs that as- 

ist doctors to understand the progression of the disease. The 

everity levels assigned to the disease are mild, moderate, severe, 

nd critical as per the RALE scoring system. In the end, Grad- 

AM is used to interpret the features focused by the model for 

he classification of an image to a particular class in each ex- 

eriment. To accomplish segmentation, UNet, UNet with residual 

lock, and UNet with Dense block are used but UNet with dense 

lock achieves better segmentation of lung regions compared to 

he other two. To perform classification in these experiments, the 

roposed model is compared with state-of-the-art CNN models, 

GG16, VGG19, InceptionV3, MobileNet, ResNet50, NASNetMobile, 

enseNet121, DenseNet201 based on performance in the existing 

ethodologies and ImageNet database. The proposed infection seg- 

entation system uses UNet with DenseNet121 encoder for quan- 

ification of infection region in COVID-19 classified samples. The 

ajor contributions of this study are summarized as follows: 

1) The Covid-MANet is a single generic multi-task framework for 

automated COVID-19 diagnosis, infection region quantification 

and severity assessment of COVID-19 into more specific levels 

as mild, moderate, severe, and critical. 

2) The proposed work provides an enhanced segmentation-based 

classification model with dense blocks where modified UNet ar- 

chitecture is investigated with two other SOTA models for au- 

tomated segmentation of lung regions in CXR images. The large 

dataset is created by the inclusion of the RANZCR dataset that 

provides better segmentation of unseen VP and BP images. 

3) The Covid-MANet model improves generalization and in- 

terpretability for COVID-19 classification by introducing 

segmentation-based cropping and classification by the MA- 

DenseNet201 model with multiscale attention network outper- 

forming state-of-the-art networks. In addition, this end-to-end 

framework not only classifies but also segment infection region 

aimed at screening the progression of the disease. 
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4) The proposed work investigates the class-wise sensitivity anal- 

ysis in three experiments. Based on prior awareness of various 

class level accuracies, we propose a weighted average ensem- 

ble approach (WAE) that outperforms state-of-the-art models 

for all the classes. 

5) Finally, a gradient-weighted class activation mapping (Grad- 

CAM) is used for explainable diagnosis to generate a localiza- 

tion map for each disease type investigates model interpreta- 

tion in addition to COVID-19 infection map. The segmentation- 

based cropping approach reduces all biases and develops a gen- 

eralizable model more stable as compared to whole slide and 

segmented images. 

The structure of the whole research study is organized as; 

ection 2 discusses the detailed framework of the proposed model 

nvolving lung segmentation, classification and infection segmenta- 

ion. Section 3 discusses the dataset resources utilized, experimen- 

al setup, and evaluation metrics for segmentation and classifica- 

ion. Section 4 discusses the quantitative and qualitative analysis 

f the proposed methodology and Section 5 ends with a conclu- 

ion. 

. Covid-MANet multi-task framework 

This section presents the methodology of the Covid-MANet net- 

ork developed for the diagnosis and infection quantification of 

OVID-19 in CXR samples. The primary focus of the multi-task net- 

ork is to develop an explainable diagnosis system representing a 

igher correlation of disease classification to the lungs region. In 

he first task, the segmentation network localizes lung areas ready 

or input to the classification model based on segmentation-based 

ropping. Then, the proposed classification model classifies the im- 

ge into one of pathology class and the infection segmentation net- 

ork quantifies the severity of COVID-19 infection into mild, mod- 

rate, severe, or critical. The detailed discussion of the multi-task 

etwork and loss functions for segmentation and classification is 

xplained in the following sections: 

.1. Lung segmentation network and data processing 

The first task of the Covid-MANet network is to segment out 

ung regions since the relevant disease information lies only in 

he lung regions. Recall that the proposed model works for five 

lasses, differentiates COVID-19 from other lung diseases. However, 

o public dataset available in all five classes in one dataset. So, 

 compilation of the dataset by the fusion of the COVID-19 class 

ith other lung disease resources may possess different acqui- 

ition conditions and artifacts that affect classification results. 

lassification based on lung segmentation resolves all these biases, 

herefore resulting in higher interpretation and generalization of 

he model. The automated lung segmentation task achieved by 

Net and its variants inspired by ResNet and DenseNet model. 

ig. 2 shows the generic architecture of the segmentation network 

nd its blocks. Fig. 2 (a) represents a general encoder-decoder 

odel for segmentation where skip connections connect encoded 

eatures to the decoder. Three segmentation models can be con- 

tructed by replacing the 3 × 3 block of a general model with 

tructural blocks (b–d). Fig. 2 (b) displays 2 convolutional layers of 

he UNet block [42] , Fig. 2 (c) represents a basic block of ResUNet 

odel [43] , Fig. 2 (d) displays the building block [43] of DenseUNet 

odel. The training of segmentation models is achieved by hybrid 

egmentation loss function [45] and the best model selection 

y IoU and Dice coefficient metrics. The references for compila- 

ion of a larger dataset compared to other models specified in 

ection 3.1 , containing images and labeled lung annotated masks 

or supervision. However, the lung masks for COVID-19, TB, and 
5 
ormal classes are publicly available, but VP and BP classes have 

o annotated masks. So, another publicly available RANSCR dataset 

s utilized that has a similar UID compared to VP and BP, enabling 

etter lung localization of unsupervised BP and VP classes. 

.1.1. Pre-processing and post-processing 

Pre-processing is an essential step to achieve uniformity of each 

nput class required for modeling since the dataset compiled by 

 fusion of different classes that may represent non-uniformity 

n size, range, or datatype. Pre-processing operations applied be- 

ore segmentation includes resizing of input to 320 by 320, change 

f datatype to float32, and range consistency by normalization to 

0,1]. The augmentation operations are applied to increase the size 

f the dataset and avoid overfitting. These operations are, image 

hifting range [ −5.25%, −5.25%] vertically and horizontally, image 

otation by [ −15, 15] angle, Zoom by [0.05, 0.05] range. Augmen- 

ation operations are considered while training the model whereas 

odel evaluation is free from augmentation. The proposed Dense- 

Net model outperformed ResUNet and UNet model in lung local- 

zation task with higher dice and IoU score. DenseUNet model is 

onsidered best for lung localization of unseen classification task. 

n addition, post-processing operations are applied to eliminate 

inor defects in the prediction of unseen images inside or outside 

OI to improve lung localization. Three post-processing operations 

pplied in a sequence using the Scikit-image library. These oper- 

tions include first labeling the predicted mask, discarding small 

bjects inside or outside the lungs by keeping the two largest lung 

egions, and finally preserving edges by dilation operation with a 

 × 5 kernel. Fig. 3 shows lung localization maps for each class, 

here predicted lung masks are post-processed to eliminate arti- 

acts out-of-lung region. 

.2. Classification network and data processing 

The second stage of the Covid-MANet network aims to clas- 

ify the input CXR sample into one of five pathology classes based 

n the correct interpretation to the lung localization area. To im- 

rove interpretation and generalization three experiments have 

een conducted with and without lung segmentation. The classifi- 

ation network adopted the proposed multi-scale attention model 

amed MA-DenseNet201 using DenseNet201 [11] as a backbone ar- 

hitecture that acts as a feature extractor. The reason for using a 

re-trained backbone network is to avoid overfitting, better train- 

ng and extraction of features even from small datasets. The pro- 

osed model is compared with state-of-the-art pre-trained deep 

earning networks such as VGG16, VGG19, MobileNet, ResNet50, 

nceptionV3, DenseNet121, DenseNet201, and NASNetMobile [6] in 

ach of the experiment. Once lung segmentation masks of the clas- 

ification dataset are ready to use after post-processing are masked 

ith the corresponding classification image to obtain the region 

f lungs. These lung segmented images are given to the classifica- 

ion network with and without a segmentation-based cropping ap- 

roach. The classification network aims to improve interpretability 

nd generalization by training and evaluation based on three dis- 

inct experiments. The qualitative analysis measuring the interpre- 

ation of each class type based on the best model in each experi- 

ent is shown in Fig. 5 . 

The detailed analysis of experiments and processing steps fol- 

owed to improve interpretation is discussed as follows; 

.2.1. Experiment 1: raw data 

In experiment 1, classification models are trained on whole 

lide images without the involvement of the lung localization 

odel. The input to the classification model is pre-processed, 

here images are resized and normalized to a fixed range (0,1). 

he visualization map generated by Grad-CAM explains result of 
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Fig. 2. Architecture of lung segmentation network, (a) basic UNet type model where 3 × 3 block is replaced by block b, c or d (b) Convolutional block of UNet (c) Residual 

convolutional block of ResUNet (d) Dense convolutional block of DenseUNet model. 

Fig. 3. Example of segmented CXR samples, (a) COVID-19, (b) Normal, (C) BP, (d) VP, (e) TB, where rows correspond to the original pre-processed image, predicted lung 

masks, post-processed lung masks and final segmented lung contour. 

6 
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his experiment are least interpretable as the model focuses more 

n artifacts or information present outside lung regions. 

.2.2. Experiment 2: lung localization 

The second experiment has been conducted to resolve the dif- 

culty that arises in the first experiment by the addition of a lung 

ocalization model. The lung localization model eliminates artifact 

utside the lungs enabling better classification based on the in- 

eresting region of the lungs. To achieve this, classification data is 

rst given to the stage 1 lung localization model generating post- 

rocessed lung masks. The post-processed masks are masked with 

orresponding raw images to zero out information outside lung re- 

ions, generating lung segmented images. These segmented images 

re given to classification models for training, after resizing and 

ormalization to a consistent range. However, some models are 

rained with three different versions in search of the best suitable 

pproach. Initially, lung localization images are directly given as in- 

ut to the classification model. Secondly, the application of the at- 

ention module CBAM involves channel attention followed by spa- 

ial attention applied before classification layers in a residual man- 

er. Finally, the image enhancement approach gamma correction is 

pplied to segmented images before being given to the classifica- 

ion model. Experiment 2 improved the interpretation of models, 

ut few images make incorrect interpretations considering the re- 

ion outside the lungs. 

.2.3. Experiment 3: segmentation based cropping 

The proposed experimental approach resolves the difficulties 

f experiment 2 with maximum interpretation among all three 

xperiments. This approach uses post-processed lung localization 

aps generated by stage 1, masked with original images, and finds 

 convex hull to completely discard edges. Generation of best-fit 

onvex hull delimits left, top, right, and bottom regions of seg- 

ented lungs. The convex hull is computed by first converting the 

egmented image to a grayscale image, applying thresholding op- 

ration to the grayscale image, and detecting extreme points by 

ontour detection. Finally, extreme points are utilized to crop seg- 

ented lungs ready for classification. Cropped images are given to 

he classification model for disease identification just after nor- 

alization in the range (0,1). Similarly, this approach is trained 

n four different versions explained as; Initially, cropped images 

re directly given to classification models. Secondly, cropped im- 

ges are enhanced by gamma correction before given to the clas- 

ification model. In the third version, attention mechanism with 

BAM is applied in addition to gamma correction before the clas- 

ification layers. Finally, cropped images are denoised using a to- 

al variation filter followed by gamma correction to generate data 

or classification. After extensive experiments, we found proposed 

egmentation-based cropping approach gives maximum interpreta- 

ion as shown by Grad-CAM activation maps. The Grad-CAM local- 

zation maps indicate better interpretation in experiment 3 corre- 

ponding to all the classes involved in the study. 

.3. Multiscale attention-based classification model 

Attention and multiscale feature extraction has been used in 

everal studies to converge model attention to more relevant re- 

ions and discard less important features. We developed an en- 

anced classification model considering attention maps of different 

cales, guiding the model in the feedforward process. Multiscale 

ybrid attention module with transfer learning backbone makes 

etter decisions based on high-level feature maps. DenseNet201 

odel is considered as backbone because of its deep feature ex- 

raction ability for better COVID-19 diagnosis. 

The proposed hybrid attention generation model aims at ex- 

racting attention maps from multiple-scale feature maps. From 
7

he DenseNet201 pre-trained model, feature maps of shapes 

4 ×14 ×1024, 7 × 7 ∗1856, and 7 × 7 ∗1920 are used to make a

orpus of 32 attention maps. The schematic representation of the 

A-DenseNet201 model and multiscale hybrid attention generator 

s shown in Fig. 4 . Multiscale hybrid attention generator module 

xtracts feature maps f1, f2, f3 from backbone model, generates 

ttention A1, A2, A3 by 1 × 1 convolution operation. All the fea- 

ure maps are downsampled to 7 × 7 feature maps. These atten- 

ion maps connect residually to generate hybrid attention map A of 

ize 32. The feature maps generated by the DenseNet201 backbone 

etwork concatenate with a multiscale hybrid attention generator. 

inally, the output map is processed by a 1 × 1 convolution layer. 

he classification layers added on top of this network include flat- 

en layer, dense layer followed by a dropout layer, and final dense 

ayer with 5 neurons and a softmax activation function. 

.4. COVID-19 infection quantification and severity assessment 

In clinical diagnosis, end-to-end explainable model develop- 

ent not only requires blackbox classification. But it is desirable 

o have an automated infection segmentation module measuring 

he progression of COVID-19 disease [34] . However, COVID-19 in- 

ection segmentation in the lungs is much more complex com- 

ared to lung segmentation. For infection region segmentation, we 

dopted UNet based encoder-decoder model [42] with a dense 

ackbone network. UNet model with DenseNet121 backbone acts 

s an infection segmentation model, which is compared with seven 

ther models involving UNet, Attention-UNet, UNet ++ , R2UNet 

45] by considering backbone architecture as VGG19 with UNet ++ , 

esNet50, and DenseNet201 with UNet. Similar to classification, 

he infection segmentation model is tested on two scenarios as of 

lassification. 

Furthermore, for a better understanding of the progression of 

nfection in the lungs, COVID-19 infection is quantified based on 

he predicted lungs region. The quantification of infection in the 

ungs is computed by the sum of predicted disease pixels divided 

y the total number of pixels in the lungs. In addition, infection 

uantification in left and right lungs is computed separately. Fi- 

ally, infection score assignment and severity assessment module 

re introduced based on RALE [35] scoring system. According to 

he RALE scoring system, lungs are divided into two separate re- 

ions left and right lungs. Each lung is assigned a score between 

 and 4 based on the percentage of infection found. The score 0 

s assigned for no infection involvement, score 1 for infection less 

han 25%, score 2 for infection between 25% to 50%, score 3 for 

nfection between 50% −75%, and score 4 for more than 75% in- 

olvement. In addition, the severity level [20] assigned as mild if 

he score is 1 or 2, moderate for a score between 2 and 5, severe

f the score is more than 4 and infection less than 90%, critical if 

he infection is more than 90%. 

The detailed overview of the Covid-MANet multi-task classifi- 

ation and infection segmentation system for COVID-19 diagno- 

is is shown in Fig. 6 . Firstly, a binary lung mask is generated

or each class using an encoder-decoder lung segmentation model. 

hen the predicted lung mask is superimposed with the input im- 

ge to zero out the region outside the lungs generating a lung seg- 

ented image. This segmented image is given to the classification 

odel by discarding irrelevant regions outside the lungs based on 

egmentation-based cropping. The classification model predicts the 

mage into one pathology class based on higher output probabil- 

ty. For infection segmentation, the original image corresponding 

o the predicted COVID-19 image is given to the infection segmen- 

ation model that predicts the infection mask. Then for COVID di- 

gnosed cases, quantification of the infection region is highlighted 

hen the predicted infection mask and lung mask are superim- 

osed with the original image. The infection masks are predicted 
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Fig. 4. The architecture of MA-DenseNet201 model adding multiscale hybrid attention module to DenseNet201 backbone. 

a

m

A

e

f

d

t

a

d

l

c

2

i

t

e

c

l

s

o

s

d

c

o

f

s

i

e

{

a

f

c  

a

E

a

f

a

S

t a threshold value of 0.5 and masked with corresponding lung 

asks to ensure infection regions outside the lungs are discarded. 

ccordingly, a COVID-19 positive sample is graded as mild, mod- 

rate, severe, and critical based on the proportion of pixels in- 

ected by the disease. Another case occurs when the model pre- 

icts the sample as COVID-19, but the infection segmentation sys- 

em does not predict any disease pixel such a case is considered 

n Asymptomatic COVID-19 infection case. In addition, for each pre- 

icted class, an explainable diagnosis is achieved by generating the 

ocalization map focused by Grad-CAM [29] showing the region fo- 

used by model for classification. 

.5. Segmentation loss function 

The loss function is one of the useful components in the train- 

ng of segmentation and classification models. The primary objec- 

ive of our study is to differentiate COVID-19 from other lung dis- 

ases and localize the COVID-19 infection region. The primary fo- 

us is on the lungs region, so firstly segmentation loss aims to 

earn the lung segmentation task and secondly infection region 

egmentation task. Because of higher class imbalance, we devel- 
8

ped a hybrid loss function suitable for lung as well as infection 

egmentation. The segmentation loss is computed as the mean of 

ice loss and the intersection over union loss. Both dice coeffi- 

ient and intersection over union almost measure the overlapping 

f predicted mask and ground truth whereas the segmentation loss 

unction computes the error. The objective of lung and infection 

egmentation models is to minimize segmentation loss by learn- 

ng differentiation between foreground and background class pix- 

ls. Corresponding to lung segmentation task classes belongs to 

lung, background} and for COVID-19 disease segmentation these 

re {disease lesion, background} [34] . Moreover, segmentation loss 

or lung and infection segmentation models in the forward pass is 

omputed as the mean of dice and IoU loss using Eq. (1) . The dice

nd intersection over union loss are computed using Eq. (2) and 

q. (3) [45] , respectively. Here y i and p(y i ) represents ground truth 

nd predicted mask output by the final layer. In addition, the loss 

unction is updated in subsequent epochs by the backpropagation 

nd gradient descent process. 

egmentation Loss ( S ) = 

1 

DCL ( y , p ( y ) ) + 

1 

IoU Loss ( y , p ( y ) ) (1) 

2 2 
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Fig. 5. Visualization of Grad-CAM maps for each class, where the first row corresponds to input images. The second, third and fourth rows show Grad-CAM activation 

visualization produced by the best classification model in each of the experiment indicating proposed segmentation-based cropping approach has better interpretable results. 

Fig. 6. The framework of Covid-MANet methodology for classification and infection segmentation of COVID-19. 
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CL ( y , p ( y ) ) = 1 − 2 

∑ N 
i y i .p ( y i ) ∑ N 

i | y i | 2 + 

∑ N 
i | p(y i ) | 2 

(2) 

oU Loss ( y , p ( y ) ) = 1 −
∑ N 

i y i .p ( y i ) ∑ N 
i ( y i + p ( y i ) − y i ∗ p ( y i ) ) 

(3) 
9

.6. Classification loss function 

The classification dataset has a large class imbalance that may 

ffect the results of the minority class. To eliminate this problem 

lassification models are trained using a weighted cross-entropy 

oss function instead of simple cross-entropy loss. The weighted 

oss function alters weights assigned to each training example 

hile computation of loss. If classes are balanced, every sample 
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Table 1 

Summary of segmentation dataset resources. 

Dataset Classes #Images 

3 JSRT [47] / SCR [48] Normal/Nodule 247 
2 Montgomery [49] Normal/TB 138 
2 Shenzhen [49] Normal/TB 566 
1 Cohen et al. [50] COVID-19 202 
4 RANZCR clip [51] — 6150 

Total — 7303 
5 QaTa-COV19 [34] COVID-19 Infection segmentation 2951 
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Table 2 

Summary of classification dataset resources. 

Dataset used Classes # Of images Total 

1 Cohen et al. [50] COVID-19 476 476 
6 Kermany et al. [52] BP 2780 2780 

VP 1493 1493 

Normal 1583 1986 
2 Montgomery [49] Normal 80 
2 Shenzhen [49] Normal 323 
2 Montgomery [49] TB 58 394 
2 Shenzhen [49] TB 336 

Total – – 7129 
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ontributes equally to loss function but based on importance mi- 

ority class samples are assigned more weights that show signif- 

cant effect in training. In our case, we consider an equal con- 

ribution to all the classes. These are balanced by assigning new 

eights to all the classes such that positive and negative exam- 

les in each class contribute equally to the loss function computed 

sing Eq. (4) [46] . Finally, these weights are fused to the classi- 

cation loss that reduce false positives of the minority class. The 

ulti-label classification loss function used for the training of the 

lassification model is computed using Eq. (5) . 

 

k 
pos = 

total nega tive samp les 

N 

and w 

k 
neg = 

total posi tive samp les

N 

(4) 

 = − 1 

N 

K ∑ 

k =1 

N ∑ 

n =1 

[
w 

k 
pos ∗ y k n ∗ log ( h θ ( x m 

, k ) ) 

+ w 

k 
neg ∗ (1 − y k n ) ∗ log ( 1 − h θ ( x m 

, k ) ) 
]

(5) 

. Experimental details 

In this section, we summarize detailed specifications of datasets 

sed for lung segmentation, infection segmentation and classifica- 

ion of COVID-19 from other lung diseases. In addition, implemen- 

ation details concerning model development, environment setup, 

nd evaluation measures used for segmentation and diagnosis have 

een discussed in detail. 

.1. Dataset description and setup 

This study aims to develop an automated deep learning model 

hat assists radiologists in the early diagnosis and infection re- 

ion quantification of COVID-19. To accomplish this study, we com- 

iled well-known publicly available datasets following proper pre- 

rocessing guidelines established and used in almost all the re- 

earch studies for the segmentation and classification of COVID-19. 

he classification dataset is compiled by merging covid-chestxray- 

ataset, chest-xray-pneumonia, and Tuberculosis ChestXrayImage 

ataSets for distinguishing COVID-19 from normal and abnormal 

ungs having Tuberculosis, viral/bacterial pneumonia. For infection 

egmentation, QaTa-COV19 dataset is used whereas detailed char- 

cteristics and references of these publicly available datasets are 

ummarized as follows: 

.1.1. Lung and infection segmentation dataset 

Table 1 specifies detailed resources of lung and infection seg- 

entation datasets. The supervision dataset for lung segmentation 

ontains a corpus of 7303 image masks pairs, compiled by merg- 

ng five datasets corresponding to three classes only. The com- 

iled dataset includes a corpus of 247 PA view images from the 

SRT [47] dataset and their corresponding lung masks in the SCR 

48] database. Montgomery Country and Shenzhen No.3 People’s 

ospital [49] datasets having a corpus of 138 PA view, 566 chest 
10 
adiographs with their corresponding lung masks of TB, and nor- 

al classes are used. These are created by the U.S. National Li- 

rary of Medicine (USNLM), Maryland, USA in collaboration with 

he Department of Health and Human Services and Shenzhen No.3 

eople’s Hospital [49] at Guangdong Medical College in Shenzhen, 

hina. For COVID-19, Chest X-ray-dataset created by Cohen et al. 

50] is utilized having a corpus of 202 lung segmented image-mask 

airs available publicly. Also, we consider 6150 pseudo lung masks 

f the RANZCR dataset [51] with almost similar UID compared to 

P and VP cases. Supervision with this dataset enables better lung 

egmentation of unseen VP and BP in addition to other classes. 

In a real scenario, it is desirable to find the COVID-19 infec- 

ion region and severity of the disease. To supervise the model 

or infection region segmentation, we utilized QaTa-COV19-v1[34] 

ataset compiled by Tampere University and Qatar University. The 

ataset comprises 2951 CXR images and corresponding ground 

ruth masks for COVID-19 infection out of 4603 total COVID sam- 

les. 

.1.2. Classification dataset 

Table 2 specifies detailed resources of classification datasets or- 

anized into five classes; COVID-19, normal, VP, BP, and TB. Specif- 

cally, a corpus of 476 COVID-19 CXR images of PA, AP, and AP 

upine view are collected from a similar dataset created by Co- 

en et al. [50] . For Comparison of COVID-19 with other lung dis- 

ases such as TB, VP, BP, and abnormal samples are collected from 

eferences [ 49 , 52 ]. Normal and pneumonia samples having a cor- 

us of 1583 and 4273 images, taken from chest-xray-pneumonia 

ataset [52] . Because of the similarity between viral pneumo- 

ia and COVID-19, more specific categorization of pneumonia into 

483 viral and 2780 bacterial pneumonia are considered. In addi- 

ion, more normal samples are taken from the Montgomery and 

henzhen dataset with a total sum of 1986 images. The tuberculo- 

is samples are taken from reference with a corpus of 394 samples. 

.2. Implementation setup 

The implementation details for segmentation and classification 

etworks summarized in this section. The lung segmentation task 

s accomplished using UNet and its two variants. These variants 

se ResNet and DenseNet blocks in place of two convolution layers 

f UNet. Each model is trained for a minimum of 70 epochs with 

 batch size of 16. The loss function is minimized using adam op- 

imizer [ 53 ] with an initial learning rate of 0.0 0 0 01 and an early

topping strategy. The learning rate is reduced by a factor of 10 if 

he loss is not reduced for 5 consecutive epochs. Models trained 

ith input size 320 × 320 × 1 and the dataset split for training 

nd testing is 90% and 10%, respectively. 

The classification model classifies input into one of five classes 

ased on maximum predicted probability by a softmax activation 

unction. The classification models trained for a maximum of 50 

ackpropagation epochs with a mini-batch size of 32. Again, adam 
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[50] 1 https://github.com/ieee8023/covid-chestxray-dataset 

[49] 2 https://lhncbc.nlm.nih.gov/LHC-publications/pubs/Tuberculosis 

ChestXrayImageDataSets.html 

[47] 3 http://db.jsrt.or.jp/eng.php 

[51] 4 https://www.kaggle.com/raddar/ranzcr- clip- lung- contours 

[34] 5 https://www.kaggle.com/aysendegerli/qatacov19-dataset 

[52] 6 https://www.kaggle.com/paultimothymooney/chest- xray- pneumonia 
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Table 4 

Lung segmentation networks performance. 

Model Dice. IOU Recall PPV 

Without RANZCR UNet 94.51 89.62 92.82 96.30 

ResUNet 95.20 90.89 94.81 95.62 

DenseUNet 95.49 91.40 94.26 96.78 

With RANZCR UNet 96.04 92.40 95.00 97.14 

ResUNet 96.29 92.86 94.56 98.15 

DenseUNet 96.70 93.64 95.62 97.82 
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d

ptimizer with an initial learning rate of 0.0 0 0 01 is used to mini-

ize a weighted cross-entropy loss function. This supports an early 

topping strategy with a patience value of 15 and the learning rate 

s reduced by a factor of 10 if the loss is not reduced for 7 con-

ecutive epochs. The classification models are trained with input 

ize 224 × 224 × 3 except for InceptionV3, which is trained with 

99 × 299 × 3. In addition, the distribution statistics of the dataset 

nto the training, testing, and validation set follow the guidelines 

o ensure that no patient overlap exists in the train, test, and vali- 

ation set. The distribution of each class into training, testing, and 

alidation set is specified in Table 3 . However, normal, BP, and VP 

lasses were already labeled into training and testing set but the 

alidation set contains only 8 samples. To ensure the validity of the 

odel, we increase the validation set by splitting training samples 

nto a validation set. 

The infection segmentation network is trained on QaTa-Cov19 

ataset to localize the COVID-19 infection region. Models trained 

ith an input size of 224 × 224 × 3 for 50 backpropagations 

pochs and a mini-batch size of 4. The dataset split into the pro- 

ortion of 80–20% for training and testing, whereas 10% of the 

raining dataset is used for validation. Similar segmentation loss 

nd adam optimizer is used for training with an initial learning 

ate of 0.0 0 01. All these tasks are implemented in python using 

VIDIA Tesla P100 GPU. Other libraries used for implementation 

nclude Keras, TensorFlow, and scikit-image. 

.3. Statistical measures 

We statistically analyzed the segmentation and classification 

odels based on metrics computed using a confusion matrix. Lung 

nd infection segmentation models follow pixel-level classification 

here negative class corresponds to the background and positive 

lass related to the lung or infection pixel. Similarly, classifica- 

ion models based on sample statistics where COVID-19 classified 

amples are considered as positive and non-COVID as a negative 

lass [ 56 ]. Specifically, lung and infection segmentation models are 

valuated using dice similarity coefficient, Intersection over union 

IoU), Sensitivity, and Precision computed [14] as per equations; 

6–10). Classification models are evaluated by Accuracy, Recall, Pre- 

ision, and F1-score computed as per equations; (6,9,10, and 11). 

oreover, COVID-19 sensitivity and COVID-19 precision are also 

aken into consideration since the correct classification of COVID- 

9 infected samples are more desirable. These are computed in the 

ame way as recall and precision computed for a particular class. 

n short, accuracy refers to the ratio of correctly classified sam- 

les/pixels to the total corpus of samples/pixels. IoU and DSC quan- 

itatively measure the overlap between predicted lung/infection 

egmentation masks and ground-truth masks. However, the only 
Table 3 

Distribution of images for classification in five infection types. 

Set COVID-19 Normal VP BP TB 

Training 354 1586 1220 2348 311 

Testing 80 233 148 242 45 

Validation 42 170 125 190 38 

Total 476 1986 1493 2780 394 

Training: 5816, Validation: 565, Testing: 748, Total: 7129 
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11 
ifference is that the latter one (DSC) considers the double weight 

f true positive pixels. 

ccuracy = 

T P + T N 

T P + T N + F P + F N 

(6) 

ntersection ov er Union ( IoU ) = 

T P 

T P + F P + F N 

(7) 

ice Similarity Coe f f icient ( DSC ) = 

2 T P 

2 T P + F P + F N 

(8) 

The sensitivity refers to the rate of correctly classified positive 

lass samples to the total number of positive class samples. The 

recision (PPV) refers to the proportion of correctly classified posi- 

ive class samples to all the samples classified as positive. F1-score 

omputes the harmonic mean of recall and precision. The segmen- 

ation model having a higher dice similarity coefficient and IoU 

core is considered as the best model. Similarly, for classification 

odel higher accuracy, sensitivity, and COVID-19 sensitivity is de- 

irable. 

ecall = 

T P 

T P + F N 

(9) 

 recision ( P P V ) = 

T P 

T P + F P 
(10) 

 1 score = 2 ∗ P recision ∗ Recall 

P recision + Recall 
(11) 

. Results and analysis 

In this section, we discuss results attained in all three tasks of 

he Covid-MANet network i.e., lung segmentation, disease recog- 

ition, and disease segmentation. The model development process 

erformed an extensive number of experiments for improving the 

nterpretation and recognition based on lung localization regions. 

he sensitivity analysis of each class has been discussed in search 

f a suitable model for each class separately. In addition, infection 

everity assessment and model robustness are cross-validated on 

n unseen dataset. Finally, the Grad-CAM technique is used to an- 

lyze the interpretation and explainability of models. 

.1. Results for segmentation 

The Covid-MANet network accomplishes the primary aim of 

isease classification by analyzing segmented lungs. The perfor- 

ance achieved by the lung localization network with and without 

he involvement of RANZCR dataset on the test subset is shown in 

able 4 . Recall that no public dataset has annotated masks of vi- 

al and bacterial pneumonia classes. The majority of previous stud- 

es analyzed segmentation for three classes by Shenzhen CXR and 

ontgomery dataset masks. The addition of RANZCR dataset en- 

bles better lung localization of classification data not only for vi- 

al and bacterial pneumonia classes but upright for all the classes. 

mong all models, it has been seen that dense connectivity of en- 

oder blocks outperformed other blocks because of decisions based 

https://github.com/ieee8023/covid-chestxray-dataset
https://lhncbc.nlm.nih.gov/LHC-downloads/dataset.html?_ga=2.223513816.21832296.1654667932-1066378578.1654667932
http://db.jsrt.or.jp/eng.php
https://www.kaggle.com/raddar/ranzcr-clip-lung-contours
https://www.kaggle.com/aysendegerli/qatacov19-dataset
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Fig. 7. Comparison of ground truth and predicted lung masks by the lung segmentation models. 
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n the collective knowledge from previous layers. DenseUNet holds 

 leading position in the lung localization task with a dice score of 

6.70 and IoU of 93.64%. The quantitative results indicate improve- 

ent in the overlapping of ground truth and predicted lung mask 

y 2.20% with the pseudo-generated RANZCR dataset. The output 

f lung localization models is compared in Fig. 7 with ground truth 

egmentation masks. Results indicate model reliably localize lungs 

egion of different severity levels of COVID-19 including mild, mod- 

rate, and critical in addition to non-COVID-19 cases. However, the 

hallenge with previous approaches lacks segmentation of critical 

nd severe cases accurately because Montgomery and Shenzhen 

ataset comprises TB and the normal cases of medium and high 

uality only. Our compiled benchmark dataset benefits to over- 

ome the challenge of lung localization for viral, bacterial, and low- 

uality COVID-19 pneumonia cases. Post-processed lung segmenta- 

ion mask is masked with the corresponding image to generate a 

ung localization map ready for disease recognition by the classifi- 

ation model of the Covid-MANet network. 

.2. Results of classification 

The performance comparison of state-of-the-art classification 

odels with the proposed model in each experiment is shown in 

able 5 . In the exploration of the most coherent approach, different 

odel variants are evaluated on an independent test set, where the 

odel selection process relies on accuracy, F1-score, and Covid-19 

ensitivity. Recall that the proposed multi-scale hybrid classifica- 

ion model MA-DenseNet201 is compared with eight other deep 

earning models. Image enhancement and attention mechanism are 

valuated in combination with comparative deep learning models. 
12 
he light attention module CBAM adds 0.9 M additional trainable 

arameters to these networks. 

The performance of comparative models in experiment 1 along 

ith the proposed model on whole slide images indicates VGG19 

as higher accuracy and F1 score. VGG19 having an accuracy of 

3.85% is followed by DenseNet121 and MobileNet with 92.72% 

nd 92.51% scores. Despite having higher accuracy values, VGG19 

as less interpretation and COVID-19 sensitivity, whereas Mo- 

ileNet, DenseNet121, and the proposed model have higher sen- 

itivity for COVID-19. In addition, the layers of the VGG19 model 

ffer less confident analysis with low accuracy for COVID-19 cases 

t higher threshold values compared to the proposed MobileNet 

odel as shown in Fig. 10 . The MA-DenseNet201 model is better 

or COVID-19 in this experiment but confusion still exists between 

iral and bacterial pneumonia cases. 

Considering experiment 2, the performance and interpretation 

f the proposed model improved by classification based on lung 

ocalization regions. The performance measures of the DenseNet, 

obileNet, and ResNet50 model improved after localization of 

ungs considering more reliable features for diagnosis whereas the 

GG model decreases. Moreover, the proposed MA-DenseNet201 

odel outperformed all other models in terms of accuracy, F1 

core, and COVID sensitivity with a score of 93.45%, 93.59%, and 

7.50%, respectively. MA-DenseNet201 model is followed by the 

obileNet model with accuracy and F1 score of 92.91% and 92.57%. 

lass-wise sensitivity and accuracy comparison at different thresh- 

ld values insights that the proposed model is reliable even at 

igher threshold values. Compared to the previous experiment, the 

roposed model with a lung localization network enables reliable 

lassification much focused on lung segmented regions and re- 
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Table 5 

Comparison of proposed model performance with state-of-the-art variants in considered experiments. 

Experiment no. Model Accuracy (%) Recall (%) Precision (%) F1-score (%) COVID-19 Sen. (%) COVID-19 (PPV) (%) 

Experiment 1 ResNet50 76.34 76.34 78.41 75.93 77.50 86.11 

VGG16 92.78 92.78 93.03 92.76 96.25 97.45 

VGG19 93.85 93.85 93.93 93.88 97.50 98.73 

NASNetMobile 90.91 90.91 91.05 90.76 97.50 97.50 

MobileNet 92.51 92.51 92.74 92.38 98.75 98.75 

InceptionV3 90.64 90.64 90.82 90.60 96.25 96.25 

DenseNet121 93.72 93.72 93.92 93.67 98.75 100 

DenseNet201 90.78 90.78 91.05 90.69 98.75 98.75 

MA-DenseNet201 91.84 91.84 92.16 91.69 98.75 98.75 

Experiment 2 ResNet50 (S) 87.83 87.83 88.18 87.68 80.00 94.12 

ResNet50 (CBAM) 88.24 88.24 88.86 88.02 83.75 94.37 

ResNet50 (GC) 89.04 89.04 89.28 88.91 87.50 95.89 

VGG16 91.44 91.44 92.47 91.65 96.25 93.90 

VGG19 (S) 92.11 92.11 92.34 92.19 92.50 97.37 

VGG19 (CBAM) 91.84 91.84 92.36 91.99 95.00 96.20 

VGG19 (GC) 92.51 92.51 92.79 92.60 95.00 96.20 

NASNetMobile 89.57 89.57 90.49 89.84 92.50 100 

MobileNet 92.91 92.91 93.61 93.07 93.75 97.40 

MobileNet (CBAM) 92.25 92.25 93.02 92.42 95.00 97.44 

MobileNet (GC) 92.51 92.51 92.72 92.57 93.75 93.75 

InceptionV3 88.77 88.77 89.95 89.05 96.25 96.25 

InceptionV3 (CBAM) 89.71 89.71 90.79 89.96 95.00 97.44 

InceptionV3 (GC) 89.57 89.57 89.97 89.69 93.75 97.40 

DenseNet121 91.84 91.84 92.65 91.99 95 98.70 

DenseNet20 90.91 90.91 91.86 91.13 96.25 95.06 

DenseNet201 (CBAM) 91.71 91.71 92.08 91.83 95.00 97.44 

DenseNet201 (GC) 91.71 91.71 92.51 91.91 96.25 97.47 

MA-DenseNet201 93.45 93.45 94.07 93.59 97.50 98.70 

Experiment 3 ResNet50 86.23 86.23 86.69 89.95 77.50 95.38 

ResNet50 (GC) 87.83 87.83 88.07 87.77 83.75 93.06 

ResNet50 (TVF + GC) 88.90 88.90 89.22 88.96 82.50 95.65 

ResNet50 (GC + CBAM) 88.37 88.37 88.58 88.04 86.25 95.83 

VGG16 89.17 89.17 90.35 89.38 96.25 97.47 

VGG19 90.11 90.11 90.79 90.28 92.50 93.67 

VGG19 (GC) 90.24 90.24 90.90 90.41 96.25 93.90 

VGG19 (TVF + GC) 90.37 90.37 91.16 90.57 92.50 96.10 

VGG19 (GC + CBAM) 89.84 89.84 90.43 90.00 93.75 96.15 

NASNetMobile 87.83 87.83 88.66 88.08 93.75 93.16 

MobileNet 90.78 90.78 91.68 90.99 95.00 96.20 

MobileNet (GC) 90.78 90.78 91.41 90.45 95.00 96.20 

MobileNet (TVF + GC) 90.64 90.64 91.10 90.78 93.75 96.15 

MobileNet (GC + CBAM) 90.78 90.78 91.18 90.90 95.00 95.00 

InceptionV3 90.78 90.78 91.50 90.95 95 97.44 

InceptionV3 (GC) 90.78 90.78 91.12 90.89 95 97.44 

InceptionV3 (TVF + GC) 90.91 90.91 91.07 90.97 93.75 97.40 

InceptionV3 (GC + CBAM) 90.51 90.51 90.80 90.61 93.75 96.15 

DenseNet121 91.84 91.84 92.24 91.97 96.25 96.25 

DenseNet201 92.11 92.11 92.31 92.18 93.75 97.40 

DenseNet201 (GC) 91.98 91.98 92.15 92.04 95.00 96.20 

DenseNet201 (TVF + GC) 91.84 91.84 92.08 91.93 95.00 97.44 

DenseNet201(GC + CBAM) 92.38 92.38 92.68 92.47 95.00 96.20 

MA-DenseNet201 92.78 92.78 93.67 92.95 97.50 97.50 

∗Italics text represents best model; GC stands for Gamma correction and TVF stands for Total variation filter. 
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uces the confusion between viral and bacterial pneumonia cases 

y improving the sensitivity of viral pneumonia. 

To improve interpretation, we proposed experimental analysis 

ased on segmentation-based cropping, discarding regions outside 

egmented lungs. Similar to the previous experiment, the MA- 

enseNet201 outperformed all other model variants with accuracy, 

1 score, and COVID-19 sensitivity of 92.78%, 92.95%, and 97.50%, 

espectively. The proposed model is followed by the DenseNet201 

nd DenseNet121 models with accuracy of 92.38 and 91.84%. More- 

ver, the sensitivity and accuracy of the Covid-MANet approach at 

arious threshold values are higher compared to other state-of-the- 

rt models. In addition, interpretation of the proposed approach is 

aximum among all the experiments indicating the model’s ro- 

ustness in recognition of mild, moderate, and severe cases. 

Fig. 8 shows the confusion matrix of the MA-DenseNet201 

odel. The training and validation growth of models correspond- 

ng to these experiments are also shown in the second row of this 
13 
gure. The schematic representation of ROC curve indicates AUC of 

ach class for the top four performing networks as shown in Fig. 9 .

hese results reveal that the proposed model attains better AUC 

or all the classes after lung localization. Moreover, the validation 

ccuracy in experiment 1 ranges between 80 and 85%, whereas it 

anges from 90 to 94% in the second and third experiments. 

.2.1. Sensitivity and confidence-score analysis 

In disease diagnosis, it is desirable to have higher sensitiv- 

ty since it measures the proportion of correctly classified posi- 

ive samples to ensure maximum cases of COVID-19 are predicted 

orrectly. Fig. 10 shows the sensitivity of models corresponding 

o each class in three classification experiments. Sensitivity anal- 

sis helps to build an ensemble model based on class-varied ac- 

uracies of the best suitable model for each class. From the re- 

ults of the classification scenario, we conclude that the proposed 

odel has higher sensitivity for COVID-19, Normal, viral pneumo- 
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Fig. 8. The first row shows confusion matrix of proposed model and second row representing learning curves in each best model. 

Table 6 

Accuracy comparison of models in each experiment at different confidence threshold values. 

%age Accuracy Threshold ResNet50 VGG16 VGG19 NASNet Mobile Inception V3 DenseNet121 DenseNet201 MobileNet Proposed 

Without 

Segmentation 

0.5 89.17 97.19 97.54 96.47 96.44 97.45 96.25 97.03 96.71 

0.7 82.35 96.09 96.25 96.12 96.01 95.98 95.82 96.73 96.57 

0.85 80.45 92.94 91.71 94.83 93.95 94.30 95.50 96.39 96.25 

0.95 80 87.62 85.80 91.22 89.91 91.04 94.09 95.50 95.05 

With 

Segmentation 

0.5 95.72 96.55 97.03 95.88 95.85 96.73 96.68 97.16 97.37 

0.7 95.48 95.58 95.85 95.05 95.77 96.71 96.65 96.76 97.35 

0.85 93.26 93.07 93.04 93.36 94.62 95.40 95.50 96.39 97.05 

0.95 89.30 89.41 88.47 90.58 92.45 93.12 94.01 95.42 96.76 

Segmentation 

based 

cropping 

0.5 95.26 95.74 96.36 94.91 96.36 96.71 96.84 96.33 97.11 

0.7 94.49 94.86 96.01 93.82 96.01 96.17 96.76 96.49 97.16 

0.85 93.23 92.08 95.32 91.06 95.32 94.65 95.88 95.90 97.08 

0.95 89.33 87.54 92.88 87.37 92.88 92.08 94.03 94.54 96.71 
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Table 7 

Performance comparison of infection segmentation models. 

Model Acc. Dice IOU Recall PPV 

UNet 94.89 81.86 69.59 81.35 82.75 

Attention UNet 94.57 80.19 67.93 80.05 81.72 

UNet ++ 94.34 79.28 66.65 78.72 81.44 

R2UNet 95.16 82.16 70.69 82.63 82.82 

UNet ++ + VGG19 95.36 83.03 71.90 83.65 83.49 

UNet + ResNet50 95.77 84.49 74 85.16 84.80 

UNet + DenseNet121 97.01 86.15 76.94 86.29 86.92 

UNet + DenseNet201 96.93 85 75.69 86.01 86.94 
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ia, and tuberculosis ranging from 93 to 100%. But ResNet50 is bet- 

er in recognition for bacterial pneumonia. The maximum sensi- 

ivity score of 96.69% is achieved for bacteria class by ResNet50, 

hereas the proposed model achieved 87% for BP. In addition, 

esNet50 has the least sensitivity for other classes, whereas the 

roposed model attained 97.5% for COVID-19, 94.85% for normal, 

3.92% for VP, and 100% for TB classes. The proposed model im- 

roves the sensitivity of VP cases after lung segmentation, thus re- 

ucing the risk of overlapping with COVID-19. 

To further explore the robustness of the proposed model, we 

omputed sensitivity and accuracy at different confidence thresh- 

ld values of 0.5, 0.7, 0.85, and 0.95. The second row of Fig. 10 and

able 6 show the sensitivity and accuracy of experimental analysis 

t different confidence threshold intervals. Schematic representa- 

ion insights that the sensitivity of the proposed model is stable 

ven at higher threshold values as compared with other models. 

imilarly, from these observations, we conclude that the proposed 

odel outperformed other comparative models after segmentation, 

ut MobileNet better before segmentation. 

.3. Results of covid infection segmentation 

The results of the infection segmentation models are shown 

n Table 7 . The evaluation of the infection quantification model 
14 
s tested in two configurations: serial and parallel scenarios. In 

he serial scheme, segmented lungs by lung localization model 

iven to classification are directly fed into the infection segmen- 

ation model, if the sample is diagnosed as COVID-19. In the par- 

llel scheme, an original CXR image of diagnosed COVID-19 sam- 

le is given to the infection segmentation model for quantifica- 

ion and severity assessment of COVID-19. UNet and UNet with 

enseNet201 encoder evaluated on both the schemes. Results re- 

eal that the parallel scheme has a better dice score of 81.86% and 

5% compared to 80.84% and 83.86% of the serial scheme. There- 

ore, the parallel scenario is preferred to train and evaluate the re- 

aining experiments in search of a coherent approach for infection 

egmentation. Similar to lung localization, the infection segmenta- 
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Fig. 9. Visualization of ROC map for top four performing models representing area under curve for each of class. 
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ion network achieves higher dice and IoU score in both scenar- 

os with the DenseNet model as an encoder. The UNet model at- 

ains the highest performance when DenseNet121 is used as an en- 

oder with a dice score of 86.15%. Besides this UNet and UNet with 

enseNet201 encoder has dice scores of 81% and 85%, respectively. 

ig. 11 shows the qualitative comparison of top-performing infec- 

ion segmentation networks compared with ground truth infection 

asks. This reveals the robustness of UNet with DenseNet121 and 

enseNet201 encoder networks in COVID-19 infection segmenta- 

ion of mild, severe, moderate, and critical severity levels. 

.3.1. Computational complexity analysis 

In this section, we discuss the complexity analysis of lung and 

nfection segmentation networks in terms of trainable parameters 

nd inference time. The number of trainable parameters associ- 

ted with lung segmentation models, UNet, ResUNet, and Dense- 

Net is 7.7 M, 10.9 M, and 25 M, respectively. The number of train-
15 
ble parameters for infection segmentation models AttentionUNet, 

2UNet, UNet ++ , UNet ++ with VGG19 has 8.7 M, 26.2 M, 8.6 M,

3.4 M, whereas the inference time for each batch is 14 ms, 18 ms, 

4 ms, 15 ms, 30 ms, respectively. Besides, UNet with encoder 

esNet50, DenseNet121, and DenseNet201 has trainable parameters 

f 32.5 M, 12.1 M, 26.3 M, and inference time of 24 ms, 35 ms,

5 ms. The UNet with DenseNet201 backbone has the highest in- 

erence time of 14 ms per sample and ResNet50 has the highest 

rainable parameters of 32.5 M. The overall worst inference time 

or disease recognition and segmentation is 150 ms whereas the 

ystem can process multiple batches in a second. 

.4. Hybrid classification model 

In the comparison of experimental analysis, we view that de- 

pite having higher accuracy values of experiment 1 and exper- 

ment 2, has the least interpretation and generalization. These 
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Fig. 10. The sensitivity comparison of models where first row shows result of class-wise sensitivity analysis by each of model in 1st , 2nd and 3rd experiment and the second 

row shows sensitivity comparison at different confidence threshold values. The red marked bracket indicates the proposed model is better in all cases after lung localization 

approach. 
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Table 8 

Classification performance of Covid-MANet ensemble classification model. 

Classes Recall Precision F1-score Support 

COVID 98.75 97.53 98.15 80 

Normal 93.99 98.64 96.02 233 

VP 96.62 81.71 88.54 148 

BP 92.97 99.11 95.94 242 

TB 100 100 100 45 

Weighted Avg 95.05 95.40 95.19 748 
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1

odels classify images by considering irrelevant features other 

han the lungs. But the segmentation-based cropping approach 

chieves comparable performance measures and higher explain- 

bility by making attention to relevant lung regions. Based on 

lass-wise sensitivity analysis, we conclude that the Covid-MANet 

pproach is best suitable for COVID-19, normal, TB, and virus 

lasses compared to other models. It is seldom to have a model 

hat is equally good for all five classes. Based on the class- 

evel awareness, we make an ensemble model on a segmentation- 

ased classification approach by combining the prediction ability 

f the proposed MA-DenseNet201 model with ResNet50 and Mo- 

ileNet model. The best weights assigned to respective models 

re w1 = 0.1 (ResNet50), w2 = 0.2 (MobileNet) and w3 = 0.3 

MA-DenseNet201), respectively. Since, Resnet50 improves sensi- 

ivity for bacteria class, whereas MA-DenseNet201 model is bet- 

er for COVID, normal, virus, and TB classes. However, the Mo- 

ileNet model follows depthwise separable convolutions followed 

y pointwise convolutions helpful in a different set of feature ex- 

raction. The proposed Covid-MANet ensemble network attains ac- 

uracy, precision, sensitivity, F1-score, and COVID-19 sensitivity of 

5.05%, 95.40%, 95.05%, 95.19%, and 98.75%, respectively. Table 8 

hows the result of an ensemble approach improving the respec- 

ive evaluation metrics for respective classes. 

From a global perspective, the proposed study aims to de- 

elop an end-to-end clinical system having higher interpretation 

n distinguishing COVID-19 cases from healthy and other lung dis- 

ases with similar symptoms. The Covid-MANet multi-task model 
p

16 
chieves the desired goal by three tasks; Task 1: lung segmen- 

ation, Task 2: COVID-19 detection from healthy/other lung dis- 

ases, and Task 3: Infection segmentation. DenseUNet model is 

est selected for lung localization, whereas for infection segmenta- 

ion UNet with DenseNet121 encoder outperformed other compar- 

tive models. The proposed classification model MA-DenseNet201 

chieves better results even at higher confidence intervals with 

ung segmentation, whereas MobileNet is better without lung seg- 

entation followed by the MA-DenseNet201 model. The interpre- 

ation and explainability are maximum with the segmentation- 

ased cropping approach. Also, we observed that shallow CNN 

odels have the least interpretation and explainability compared 

o deep CNN models. The preliminary class-wise sensitivity analy- 

is shows that MA-DenseNet201 has higher sensitivity for COVID- 

9, normal, VP, and tuberculosis. But the recognition of bacterial 

neumonia is better by the ResNet50 model. Finally, to avoid mis- 
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Fig. 11. The qualitative comparison of ground truth masks to the masks predicted by infection segmentation models where column 1 shows ground truth infection mask 

and column 2–7 shows masks predicted by infection segmentation models, respectively. 
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lassification and overlapping, the ensemble Covid-MANet model 

s developed based on class varied sensitivity analysis achieving 

OVID-19 sensitivity of 98.75%. In addition, the infection quantifi- 

ation and severity assessment module assist radiologists with a 

etter treatment plan based on the progression of the disease. 

The proposed Covid-MANet model ensures correct diagnostic 

nterest to classify images based on relevant lung regions because 

f the dual attention mechanism. Since relevant information lies 

n the lungs, firstly lung localization and secondly segmentation- 

ased cropping impose model attention more on lungs rather than 

ackground information. We ensure the robustness of our pro- 

osed model on the basics of evaluation measures, interpretation, 

OC curve, learning curves, class-wise sensitivity analysis, and at- 

ention map visualization. The proposed model outperforms other 

omparative models in accuracy and sensitivity with maximum in- 

erpretation by a segmentation-based cropping approach. The ROC 

urve reveals similar results showing the maximum AUC achieved 

y the proposed model in the segmentation-based cropping ap- 

roach. Class-wise sensitivity analysis shows better performance of 

he model for COVID-19, Viral, TB, and normal cases but ResNet50 

etter recognizes bacterial infection in all the experiments. The 

roposed model is highly stable having better sensitivity and ac- 

uracy even at a higher confidence interval of 85% and 95%. The 

earning curve shows that the proposed model reached an early 

topping condition with maximum training in fewer epochs. The 

eason for maximum interpretation and explainability with the 

roposed model is because of its multi-scale deep feature extrac- 

ion ability by the DenseNet201 model given relevant lung ar- 

as. In addition, the robustness and generalization of the proposed 

odel are cross-validated in more detail on the unseen QaTa- 

OV19 dataset in Section 4.5 . 

.5. External validation on unseen CXR images 

Precisely, to demonstrate the generalization of the proposed 

ystem in a real-world scenario, additional results on the un- 
17 
een QaTa-COV19 dataset has been reported. Initially, lung local- 

zation maps are generated on QaTa-COV19 dataset to report re- 

ults with and without segmentation. The dataset used for the 

xternal validation contains 2951 CXR samples of COVID-19 with 

round truth infection segmentation masks. Out of 2951 COVID in- 

ected samples, COVID-19 sensitivity on unseen plain CXR samples 

chieved by top-performing models such as MobileNet has 96.54% 

2849 correctly classified), VGG19 has 96.98% (2862 correctly clas- 

ified), DenseNet201 has 95.89% (2830 correctly classified) and 

A-DenseNet201 has 91.83% (2710 correctly classified). With lung 

egmentation MobileNet achieves 96.13% (2837 correctly classi- 

ed), VGG19 has 89.96% (2655 correctly classified), DenseNet201 

as 95.83% (2828 correctly classified) and MA-DenseNet201 has 

8.17% (2897 correctly classified) sensitivity. Finally, with lung lo- 

alization and segmentation-based cropping, MobileNet achieves 

7.15% (2867 correctly classified), VGG19 has 96.23% (2840 cor- 

ectly classified), DenseNet201 has 97.25% (2870 correctly classi- 

ed) and MA-DenseNet201 has 97.32% (2872 correctly classified) 

ensitivity. However, the ensemble model gives covid-19 sensitivity 

f 98.20%. The results on the cross-validation dataset show simi- 

ar patterns after localization of lungs as seen in preliminary ex- 

eriments. These interesting observations insight that even with 

 limited high-quality training dataset, the proposed model gives 

romising results on much larger test datasets. Moreover, vari- 

bility of the dataset does not affect the results of the proposed 

ethodology since decision making of the proposed methodology 

ocused on relevant lung regions by lung localization scheme. In 

ontrast, whole slide images always come with some processing 

rtifacts such as marker lines, tissue folds, and uneven section- 

ng that results in out-of-focus regions. The training of models on 

hese images will produce unexpected results when encountered 

n test images. 

The output of the infection segmentation network on the un- 

een classification dataset is shown in Fig. 12 . The infection diag- 

osis system predicts the given sample into one pathology class 

nd quantifies the percentage of infection found in the left and 
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Fig. 12. The infection segmentation and severity grading results by the proposed model on COVID-19 classified samples graded as mild, moderate, severe, and critical, where 

the first row shows both lung and infection mask contours giving intuition for infection quantification. 
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ight lung separately to assist the doctor in a better treatment 

lan. Finally, COVID-19 diagnosed sample is assigned a severity 

evel such as; mild/moderate/severe or critical based on the score 

ssigned according to the RALE scoring system. However, our pro- 

osed system not only classifies COVID-19 but quantifies the sever- 

ty of COVID-19 infection, more useful in real-time clinical applica- 

ions to understand the progression of the disease. Moreover, the 

roposed system can be used in real clinical practice, since the in- 

erence time in the worst case takes less than 150 ms per sample. 

his means number of samples can be tested in a second. 

The proposed model successfully distinguishes COIVD-19 cases 

rom healthy and other lung diseases having similar symptoms 

s COVID-19. The comparative results of existing state-of-the-art 

ethods on our dataset split under a uniform approach as the pro- 

osed model with 85% and 95% confidence threshold values are 

hown in Table 9 . The proposed Covid-MANet system constitutes 

f four tasks; Task 1 (T1) is semantic lung segmentation, Task 2 

T2) COVID-19 detection with and without lung segmentation and 

egmentation-based cropping (SBC), Task 3 (T3) is infection quan- 

ification and severity assessment, and Task 4 (T4) as the multi- 
Table 9 

Accuracy and sensitivity comparison of proposed model with existing SOTA a

Model 

Accuracy@Y% 

Y = 95 Y = 85 

VGG19 + FC [27] 92.88 95.32 

ResNet50 + FC [20] 89.33 93.23 

InceptionV3 + FC [26] 92.88 95.32 

MobileNet + FC [37] 94.54 95.90 

DenseNet121 + FC [44] 92.08 94.65 

DenseNet201 + FC [26] 94.03 95.88 

MA-DenseNet201 + T2 95.05 96.25 

MA-DenseNet201 + T1 + T2 96.76 97.05 

MA-DenseNet201 + T1 

+ T2 + SBC 

96.71 97.08 

18 
abel loss to curtail class imbalance. Each task plays an important 

ole in improving the behavior of the model. MA-DenseNet201 di- 

ectly applied on the whole slide image (task 2) shows less accu- 

acy and sensitivity. The performance measures improve by lung 

egmentation i.e., Task 1 (T1) and Task 2 (T2) . The accuracy, sensi- 

ivity, and COVID-19 sensitivity of the MA-DenseNet201 model are 

igher than other SOTA models. The segmentation-based cropping 

SBC) approach gives comparable accuracy and sensitivity values. 

ut the major advantage of the proposed approach lies in inter- 

retation improvement as explained in the next paragraph. In ad- 

ition, parallel analysis of COVID-19 is based on the direct infec- 

ion segmentation module (Task 1 and Task 3) where the sam- 

le is classified as COVID-19 if at least one pixel is classified as 

 disease. This task leads to more false positives and generaliza- 

ion errors where most VP, BP, and TB samples are diagnosed as 

OVID-19 with mild symptoms. This shows a certain similarity of 

OVID-19 infection to other lung diseases. Moreover, the proposed 

ovid-MANet model can better recognize the patterns of each dis- 

ase type thus reducing false positives. We can say that lung seg- 

entation and segmentation-based cropping play a pivotal role in 
pproaches. 

Sensitivity@Y% COVID-19 Sen.@Y% 

Y = 95 Y = 85 Y = 95 Y = 85 

44.38 68.71 58.8 76.2 

47.32 68.04 58.8 76.2 

65.24 79.14 60 78.7 

77.6 83.56 90 93.8 

61.49 75.93 81.2 86.2 

71.72 81.81 86.2 92.5 

78.47 85.56 97.5 97.5 

86.09 89.3 96.5 97.5 

86.36 90 95 96.5 
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mproving the interpretation and explainability of models. This ap- 

roach adds more weights to lung regions thus providing stable 

esults not affected by the variability of the dataset as mentioned 

n Section 4.5 . The infection segmentation model finds the percent- 

ge proportion of infection and assigns severity levels showing the 

rogression of the disease to radiologists. Multi-label loss reduces 

iasness with minority class COVID-19 because of imbalance and 

mproves the sensitivity of minority class. 

The Grad-CAM analysis shows that the model focuses more 

n relevant lung regions for the classification of samples in each 

lass after segmentation-based cropping. After a critical analy- 
Fig. 13. Interpretation of disease map focused using Grad-CAM for each disease type

19 
is, MobileNet is considered the best model in experiment 1. It 

chieves better performance measures at higher threshold values 

s compared to VGG19. Considering experiment 2 with lung lo- 

alization network, MA-DenseNet201 outperforms other compara- 

ive models. In experiment 3, with segmentation-based cropping 

A-DenseNet201 is considered the best model based on higher 

ensitivity, accuracy, and interpretation analysis. The quantitative 

nd qualitative analysis for the COVID-19 class shows MobileNet 

ives 42% correct interpretation with whole slide images. But 

he interpretation improved by MA-DenseNet201 with lung seg- 

entation network (Task 1 and Task 2) to 74%, which was 72% 
 by Covid-MANet improved after supervision by segmentation-based cropping. 
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ith MobileNet. The maximum interpretation achieved by the MA- 

enseNet201 model is 96% after joint analysis by lung localization 

nd segmentation-based cropping in experiment 3. Also, the multi- 

abel classification loss function improves covid-19 sensitivity from 

3.75% to 97.15%. Fig. 13 shows the infection map and localization 

ap generated for each disease type by the Grad-CAM visualiza- 

ion tool, explaining the visual decisions focused by the classifica- 

ion model. For COVID-19 disease, the Grad-CAM map correlates 

ith the infection segmentation map. The localization map shows 

hat Covid-MANet focuses more on the relevant lungs region for 

he classification of each disease type. The proposed model can be 

seful in real clinical scenarios since the annotation of lungs, dis- 

ase, and understanding the progression of the disease is a chal- 

enging and time-consuming task. 

. Conclusions and future work 

In the state of exponential reproduction rate of the COVID-19 

andemic, the only solution to lessen its growth rate is to per- 

orm mass screening, early diagnosis, isolation, and correct treat- 

ent plan. However, several countries face a shortage of testing 

its, laboratories, and medical professionals to deal with the sit- 

ation within time. At that difficult time, researchers around the 

orld presented CXR as the standard screening tool for findings of 

OVID-19 in a time-efficient and cost-effective way. In this paper, 

e present an “explainable solution” for the recognition of COIVD- 

9 pneumonia from other common lung diseases using CXR radio- 

raphs. The proposed Covid-MANet model not only classifies dis- 

ase but also quantifies infection that intuitions the progression 

f disease in the lungs. This is the most generic three-stage clas- 

ification model developed so far works for five classes involving 

ung segmentation, COVID-19 detection, infection quantification, 

nd severity assessment. The experiments conducted give promis- 

ng results showing the robustness of the proposed model over ex- 

sting studies on CXR radiographs. The Covid-MANet is a highly in- 

erpretable and generalizable model that benefits from lung seg- 

entation and segmentation-based cropping. Moreover, internal 

nd external validation reveals that the proposed methodology is 

ore stable, and not affected by the variability of the dataset since 

odel decision-making focused on relevant lung regions. In con- 

rast, the results on the whole slide images lack generalization 

nd interpretability because of some processing artifacts such as 

arker lines, uneven sectioning, and tissue folds that result in fo- 

us out-of-lungs. The advantage of the proposed methodology lies 

n following the real scenario of classification and infection seg- 

entation of COVID-19 by recognition among five classes. Some 

tudies directly classify COVID-19 based on infection detected by 

egmentation that works fine for healthy/COVID-19 cases but lacks 

hen VP, BP, and TB samples having similar symptoms as COVID- 

9 occurs. Precisely, Covid-MANet can be applicable for clinical ap- 

lications. The features of the proposed methodology are lung seg- 

entation, proper documentation of pre-processing, training pa- 

ameters, loss functions for reproducibility, explainable five-class 

lassification model, higher interpretation, generalization, quantifi- 

ation, and severity grading as mild, moderate, severe, and critical 

ased on RALE scoring system. We believe that the promising re- 

ults of the proposed Covid-MANet system can guide radiologists 

n understanding the progression of the disease and better treat- 

ent plans in the early stages. Moreover, the Covid-MANet model 

an be deployed at airports, bus stands, railway stations, etc., for 

creening of large masses in less time. 

In future work, we will extend our proposed framework to 

odalities other than CXR images such as ultrasound and CT im- 

ges for explainable diagnosis and localization of COVID-19 infec- 

ion. We believe that the proposed model is beneficial in improv- 

ng the sensitivity of COVID-19 with these modalities. In addition, 
20 
o extend work on CXR images, we plan to increase the corpus 

f the COVID-19 class by collecting samples from different insti- 

utions and exploring more public repositories. Also, we annotate 

P and BP samples and increase the corpus of annotated COVID-19 

amples under the guidance of radiological experts. 
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