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Abstract

Cognitive control is guided by learning, as people adjust control to meet changing task demands. 

The two best-studied instances of “control-learning” are the enhancement of attentional task 

focus in response to increased frequencies of incongruent distracter stimuli, reflected in the list-

wide proportion congruent (LWPC) effect, and the enhancement of switch-readiness in response 

to increased frequencies of task switches, reflected in the list-wide proportion switch (LWPS) 

effect. However, the latent architecture underpinning these adaptations in cognitive stability and 

flexibility – specifically, whether there is a single, domain-general, or multiple, domain-specific 

learners – is currently not known. To reveal the underlying structure of control-learning, we had 

a large sample of participants (N = 950) perform LWPC and LWPS paradigms, and afterwards 

assessed their explicit awareness of the task manipulations, as well as general cognitive ability 

and motivation. Structural equation modeling was used to evaluate several preregistered models 

representing different plausible hypotheses concerning the latent structure of control-learning. 

Task performance replicated standard LWPC and LWPS effects. Crucially, the model that best fit 

the data had correlated domain- and context-specific latent factors. Thus, people’s ability to adapt 

their on-task focus and between-task switch-readiness to changing levels of demand was mediated 

by distinct (though correlated) underlying factors. Model fit remained good when accounting for 

speed-accuracy trade-offs, variance in individual cognitive ability and self-reported motivation, as 

well as self-reported explicit awareness of manipulations and the order in which different levels of 

demand were experienced. Implications of these results for the cognitive architecture of dynamic 

cognitive control are discussed.
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1. Introduction

Reading this paper likely required you to select a link in a table-of-contents from among 

several other links competing for your attention; subsequently, you had to shift your mental 

set from searching through article titles to opening and reading this particular text. Getting 

here has thus involved the use of several “cognitive control” processes.

Cognitive control (which we here use interchangeably with “executive function”) is an 

umbrella term that denotes a collection of cognitive mechanisms allowing us to impose 

internal goals on how we process stimuli and select responses (Egner, 2017; Miller 

& Cohen, 2001). While there is no universally accepted ontology of cognitive control 

(Lenartowicz et al., 2010), the example above involves two broadly agreed-upon, and much-

investigated, core capacities: (1) the ability to selectively focus attention on task-relevant 

stimuli in the face of competition from conflicting, task-irrelevant stimuli (conflict-control, 
also known as interference resolution, supporting cognitive stability, Botvinick et al., 2001); 

and (2) the ability to switch between different sets of rules (“task sets”) that guide how 

stimuli are evaluated and responded to (task-switching, supporting cognitive flexibility, e.g., 

Monsell, 2003).

Crucially, adaptive behavior not only requires that we have the basic capacity for resolving 

conflict from distracters and for changing task sets, but also that these abilities be deployed 

strategically, i.e., in a context-sensitive manner. For instance, we need to adjust our level 

of attentional focus in line with changing traffic density during the morning commute, 

and we need to be more or less ready to switch between multiple tasks during different 

phases of our workday. Accordingly, the question of how functions like conflict-control 

and task-switching are dynamically regulated to meet changing demands – which we here 

refer to as the process of control-learning – has been the focus of a burgeoning literature 

over the past two decades (for reviews on regulating conflict-control, see Abrahamse et al., 

2017; Bugg, 2017; Bugg & Crump, 2012; Chiu & Egner, 2019; Egner, 2014; for reviews on 

regulating task-switching, see Braem & Egner, 2018; De Baene & Brass, 2014; Dreisbach & 

Fröber, 2019).

The most fundamental insight derived from this literature is that humans learn about the 

statistics of their environment, such as changes in demand over time or in relation to 

contextual cues, and accordingly adapt the degree to which they engage different control 

processes. Consider, for example, performance on the Stroop task (Stroop, 1935), a classic 

probe of conflict-control, where participants are asked to name the ink color of printed 

color words where the meaning can be congruent (e.g., the word BLUE in blue ink) or 

incongruent (e.g. the word RED in blue ink) with that color. Participants are asked to 

ignore the word meaning, but they display reliably slower and more error-prone responses to 

incongruent than congruent stimuli (the “congruency effect”), reflecting a behavioral cost of 

conflicting word information (reviewed in MacLeod, 1991). Importantly, many studies have 

documented that people are better at overcoming interference from conflicting (incongruent) 

distracter stimulus features in blocks of trials where incongruent distracters are frequent 

than in blocks where they are rare – an effect known as the list-wide proportion congruent 
(LWPC) effect (e.g., Bejjani, Tan, et al., 2020; Bugg & Chanani, 2011; Logan & Zbrodoff, 
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1979; reviewed in Bugg & Crump, 2012; Bugg, 2017). This suggests that people learn about 

the likelihood of encountering conflicting distracters and regulate their attentional selectivity 

(focusing more or less strongly on the target feature) to match demands, with more frequent 

conflict leading to a higher level of conflict-control (Botvinick et al., 2001; Jiang et al., 

2014).

Similar evidence for learning processes guiding the titration of control settings has also 

been obtained in the context of task-switching studies. Here, the measure of interest is the 

“switch cost,” the canonical finding of slower and more error-prone responses on trials 

where participants are cued to switch from one task to another as opposed to repeating the 

same task (reviewed in Kiesel et al., 2010; Monsell, 2003; Vandierendonck et al., 2010). 

Switch costs are reliably reduced in blocks of trials where switching is required frequently 

than in blocks where switching is rare (Bejjani et al., 2021; Dreisbach & Haider, 2006; 

Monsell & Mizon, 2006; Siqi-Liu & Egner, 2020). This list-wide proportion switch (LWPS) 

effect has been attributed to people learning about the relative likelihood of encountering 

task switches (or repetitions) in a given context or task, and accordingly adjusting their 

readiness to switch (Braem & Egner, 2018; Dreisbach & Fröber, 2018).

Thus, substantial literatures have provided support for control-learning processes in the 

domains of on-task conflict-control (the LWPC effect) and between-task-switching (the 

LWPS effect). However, it is not presently known how these learning phenomena relate 

to each other. For example, given the basic similarity of the data patterns between the 

LWPC and LWPS effects, adapting to the frequency of conflicting distracters and to the 

frequency of cued task switches may be mediated by a single, domain-general learning 

mechanism. On the other hand, conflict-control and task-switching serve distinct functions 

– protecting an ongoing task set from distraction versus changing to another task set – 

which have often been conceptualized as antagonistic to each other (that is, as promoting 

either cognitive stability or flexibility; Dreisbach & Wenke, 2011; Goschke, 2003). This 

antagonistic relationship may suggest that contextual adaptations of these functions would 

likely be supported by distinct underlying learning mechanisms. In order to address the 

fundamental question of how the dynamic regulation of on-task focus and readiness to 

switch tasks is organized, the current study aimed to elucidate the latent structure of control-

learning. In particular, we pursued this goal by applying structural equation modeling of 

several preregistered models on a large online sample of participants (N=950) performing 

both a LWPC and a LWPS protocol, both of which were designed to isolate confound-free 

markers of dynamic control-learning (Braem et al., 2019).

1.1. Latent Variable Research on Cognitive Control

Previous individual difference research in this area has focused on exploring the nature of 

executive function (EF) by using structural equation modeling to determine latent factors 

underlying performance on a variety of tasks assumed to require some form of control. 

This literature has primarily been concerned with the questions of which executive functions 

there are (Friedman et al., 2004, 2008; Miyake et al., 2000, 2002; Miyake & Friedman, 

2012), whether a specific assumed executive function, such as inhibition, is really a unitary 

construct (e.g., Rey-Mermet et al., 2018), and to what degree specific executive control 
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constructs correlate with conceptually closely related constructs, with a particular focus 

on the relationship between attentional control and working memory capacity (e.g., Rey-

Mermet et al., 2019; reviewed in Kane et al., 2008). The first line of work has focused 

on modeling individual differences in performance on a wide range of tasks thought to tap 

into cognitive control processes (including the Stroop task, an N-back task, a set-shifting 

task, etc.), and identifying common sources of variance that help explain associations 

between tasks. This research suggests that executive function tasks share enough common 

variance to be organized into different domains such as the shifting of mental sets, the 

monitoring and updating of working memory representations, and the inhibition of prepotent 

responses. Specifically, these three latent factors were identified as having separable, diverse 

components associated with their specific domains, but also sharing variance via a unifying 

common EF factor that potentially reflected the same underlying mechanisms or cognitive 

ability. These factors display high heritability, and reliable individual differences in neural 

activation, gray matter volume, and connectivity (Friedman & Miyake, 2017). Research 

into these cognitive control domains has been widespread (reviewed in Karr et al., 2018), 

including clinical studies aiming to identify deficits in different control domains relating to 

individual differences in mental health (Friedman et al., 2020) and developmental studies 

aiming to identify the stability of the domains across the lifespan (Friedman et al., 2016).

The current study pursues a question that is complementary to this prior work. Specifically, 

we adopt the basic insight from the above models and the theoretical literature at large – that 

conflict-control and task-switching represent different basic control functions – and we build 

on it by asking the question of how the dynamic, contextual regulation (control-learning) 

of these functions is organized. This can be thought of as investigating the nature of 

meta-control, the strategic nudging up or down of control processes. Thus, we are here 

not seeking to detect commonalities among different probes of cognitive control (for a 

recent review, see Bastian et al., 2020), but to assess the relationship between the learning 

mechanisms that drive adaptation in two core control domains. Some prior work has pursued 

related questions within the domain of conflict-control, by assessing whether trial-by-trial 

adjustments in control (“conflict adaptation effects”, reviewed in Egner, 2007) correlate 

across different conflict tasks (e.g., Keye et al., 2009; Whitehead et al., 2019), and/or 

by applying structural equation modeling to conflict task data (e.g., Keye et al., 2009, 

2013). The latter latent variable analyses suggested that response time variance in these 

tasks could be attributed to three sources, general response speed, conflict, and context, 

which here refer to the congruency of the previous trial (i.e., conflict adaptation) (Keye 

et al., 2009; 2013). However, as noted previously (Meier & Kane, 2013), these results 

cannot be interpreted unambiguously because they stem from task designs that confounded 

trial-wise adjustment to conflict with overlapping stimulus features and responses across 

trials (“feature integration effects”, see Hommel, 2004) and may thus have tapped into 

mnemonic binding rather than conflict-control processes. In the present study, by contrast, 

we (a) assess list-wide (rather than trial-by-trial) effects of context, and (b) relate these 

effects across control domains (conflict-control vs. switching), while (c) fully controlling 

for typical confounds related to memory and learning effects. Moreover, in pursuing this 

question, the present study also seeks to mitigate a few critical issues that have been raised 

in relation to the approach taken by Miyake, Friedman, and colleagues.
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First, at the level of measurement, researchers have highlighted that it can be problematic 

to use difference scores as dependent measures when evaluating individual differences (see 

review by Draheim et al., 2019). For example, when modeling the common variance within 

inhibition or attentional control tasks, such as the Stroop task (Stroop, 1935), researchers 

typically use the congruency effect (the difference between incongruent and congruent trial 

performance) as a dependent measure. As a difference score (i.e., incongruent – congruent), 

this metric may result in more unstable and thus less reliable scores than raw performance 

measures. Poorer reliability has been argued to result in poorer replicability (cf. Draheim et 

al., 2021; Thomas & Zumbo, 2012). To address this concern, in the present study we employ 

condition-specific response time (RT) as indicators; for instance, we use both congruent and 

incongruent trial RT, separately. However, to facilitate comparison with previous work and 

mitigate concerns over conceptual validity, we also used other metrics, including difference 

scores, in additional control analyses.

Second, it has recently been argued that determining how cognitive control “skills” are being 

employed in a goal-directed, context-sensitive fashion is a more fruitful way of accounting 

for individual differences and development than focusing on executive function components 

per se (Doebel, 2020). In other words, the assumption that individual differences in control 

can be satisfactorily captured by “static”, context-insensitive measures, such as a mean 

congruency effect, has been drawn into question. The present study naturally mitigates 

this concern, because we are here interested in evaluating the structure of precisely such 

context-guided, dynamic adaptation in how cognitive control functions are being deployed, 

as represented by the LWPC and LWPS effects.

1.2. Models of Control-Learning

How exactly participants learn context-appropriate attentional control-states and bring about 

strategic processing adjustments remains debated. For instance, with respect to adapting 

conflict-control in line with changing demands, some models have simulated the LWPC 

performance pattern by assuming a learning mechanism that monitors and predicts the 

level of conflict (or control demand) experienced on each trial, and nudges top-down 

attention to the relevant task features up or down as a function of whether conflict was 

higher or lower than expected (Botvinick et al., 2001; Jiang et al., 2014). These models 

can account for the temporal signature of control-learning findings, such as the LWPC 

effect, but face difficulty in explaining “item-specific” effects, whereby particular stimuli 

can become cues of control (Bugg & Hutchison, 2013; Chiu & Egner, 2017; Jacoby et 

al., 2003; Spinelli & Lupker, 2020), because these models do not take into consideration 

the particulars of the stimuli involved and only consider the level of conflict caused 

by the stimuli. In response, other models have assumed that control regulation involves 

the binding of attentional control states to specific stimuli (e.g., an incongruent Stroop 

stimulus), whose reoccurrence reinstates those control states (Blais & Verguts, 2012; Verguts 

& Notebaert, 2008, 2009). These models can thus accommodate findings of item-specific 

control-learning, but have difficulty explaining LWPC effects obtained in the absence of any 

stimulus feature repetitions (e.g., Spinelli et al., 2019).
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More recently, these perspectives have been melded by theories that propose control-

learning can operate at a stimulus-independent level (where it is guided by the temporal 

or episodic context) but that control settings are also bound to specific stimulus or event 

features, whereby stimuli that frequently occur in situations requiring control become 

bottom-up cues for retrieving control (Abrahamse et al., 2016; Egner, 2014). Here, all event 

features, such as task-relevant and -irrelevant stimulus characteristics and motor responses, 

become bound in an associative network with goal representations and control settings 

that are co-activated during the event, allowing for contextually appropriate recruitment of 

control (Abrahamse et al., 2016; Braem & Egner, 2018). Based on the broader literature 

on key characteristics of associative learning, this perspective results in three primary 

predictions about control-learning: one, that control-learning is context-specific, via the 

binding of any active task-relevant and task-irrelevant representations in an associative 

network; two, that these associations can develop outside of explicit awareness and that 

control-learning is primarily implicit, but can also occur when participants are explicitly 

aware; and three, that control-learning is sensitive to reward.

The latter two, in particular, refer to the grounding of cognitive control in reinforcement 

learning principles, a shared feature among control-learning models (Botvinick et al., 2001; 

Blais et al., 2007; Verguts & Notebaert, 2008; Jiang et al., 2014). A basic reinforcement 

learning problem involves a set of environmental states, a set of actions taken at these 

states, a transition function that maps how actions will cause the transition to another 

state, and a reward function that indicates the amount of reward available at each state 

(Sutton & Barto, 1998). The typical assumption is that agents learn a set of actions, or 

a policy, that maximizes overall reward. When applying reinforcement learning models to 

cognitive control data, researchers assume that instead of learning the likelihood of reward, 

participants implicitly learn the likelihood of contextual control-demand and update their 

expectancies based on the control-demand they experience on each trial (for use of this 

modeling approach in neuroscience studies of control-learning, see Chiu et al., 2017; Jiang 

et al., 2015; Muhle-Karbe et al., 2018). This process is then sensitive to implicit or explicit 

reward, because reward is thought to reinforce these learned associations.

A major question arising from this prior work into control-learning and latent variable 

analysis of control then is whether the underlying learning processes governing adaptations 

in conflict-control and task-switching are mediated by a domain-general control learner or 

whether control-learning in different domains relies on distinct abilities. The aforementioned 

models are agnostic to this question, as the formal modeling work was typically conducted 

in a single domain (e.g., conflict-control, but see Brown et al., 2007), and thus did not 

address the issue of domain-specific versus domain-general learning mechanisms. The 

broader cognitive control literature offers examples of both domain-general proposals, like 

Norman and Shallice’s (1986) classic “supervisory attention system”, as well as domain-

specific proposals (e.g., Egner, 2008) and hybrid approaches (e.g., Miyake & Friedman, 

2012). Moreover, as noted above, plausible theoretical arguments can be made in favor of 

either possibility, due to, for example, the pattern similarities versus functional distinctions 

between the LWPC and LWPS effects. In the present study, our aim was therefore to 

adjudicate empirically between different possible structural models of control-learning, 

which we lay out in detail below.
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1.3. The Current Study

In the current study, participants performed consecutive LWPC and LWPS paradigms. Thus, 

the proportion of difficult (incongruent, task-switch) and easy (congruent, task-repeat) trials 

varied temporally over blocks of trials while participants identified the color in which 

color-words were printed (in a Stroop task assessing the LWPC effect) or were cued to 

categorize either letters as consonants or vowels or digits as odd or even (in a task-switching 

protocol assessing the LWPS effect). We refer to the block-level manipulation of the 

proportion of easy-to-hard trials as creating a “context”, such that “context-specificity” 

in our modeling reflects people’s sensitivity to the proportion manipulation. By contrast, 

“domain-specificity” refers to sensitivity to the different task goals or control demands 

(i.e., the Stroop task or the task-switching protocol). We chose task-switching and conflict-

control as target domains of cognitive control, and the list-wide manipulation as a means 

of measuring contextual control-learning, for several reasons. One, these two domains 

(conflict-control, task-switching) are, by some distance, the most well studied with respect 

to control-learning (reviewed in Abrahamse et al., 2016; Bugg & Crump, 2012; Bugg, 

2017; Braem & Egner, 2018; Dreisbach & Froeber, 2019). Two, the specific control-learning 

paradigms we employ here have produced results that have been replicated in multiple 

studies (Bejjani et al., 2021; Bejjani & Egner, 2021; Siqi-Liu & Egner, 2020). Three, these 

studies have also shown these paradigms to have acceptable reliability, with test-retest 

reliability documented in Bejjani and colleagues (2021) and reliability across and within 

blocks identified in Bejjani and Egner (2021). Finally, the list-wide proportion paradigms we 

employ incorporate means of dissociating “pure”, block-level control-learning effects from 

item-specific contributions.

The latter is achieved by distinguishing between “inducer” and “diagnostic” stimuli in the 

design of our tasks (Braem et al., 2019; cf. Bugg et al., 2008). Specifically, in the LWPC 

task, half of the blocks consist mostly of congruent stimuli (MC blocks) and the other 

half mostly of incongruent stimuli (MI blocks). Correspondingly, in the LWPS task, half 

of the blocks consist mostly of task-repeat trials (MR blocks) and the other half mostly 

of task switch trials (MS blocks). Crucially, the manner in which these proportion-biased 

blocks (or contexts) are created involves splitting up the stimulus sets, with one half of 

the stimuli being frequency-biased (“inducer” items), serving to create the block-level bias, 

and the other half frequency-unbiased (“diagnostic” items), serving to measure the effect 

of the block-level bias. For instance, in the LWPC task, the biased, inducer stimuli are 

congruent 90% of the time in the MC blocks and 10% of the time in the MI blocks, 

whereas – importantly – the unbiased, diagnostic items are presented as congruent and 

incongruent stimuli 50% of the time in both the MC and MI blocks. These frequency-

unbiased, diagnostic stimuli are thus influenced by the global control-demand context (i.e., 

being presented in the context of an “easy” or “difficult” block), but are not biased at 

the item level, and this controls for frequency-based stimulus-response learning confounds 

when interpreting control-learning effects (cf. Braem et al., 2019; Somasundaram et al., 

2021). Including these frequency-unbiased stimuli is particularly important because another 

explanation for proportion congruent (and related) effects has been based on the learning of 

event frequency rather than the modulation of control per se (e.g., Schmidt & Besner, 2008).
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In modeling control-learning using these paradigms, our indicators were defined by domain 

(the LWPC and LWPS protocols), context (MC, MI, MR, MS blocks), trial type (congruent, 

incongruent, repeat, switch), and context phase (first versus second half of each context). In 

particular, within each of these conditions, we used mean RT for the frequency-unbiased, 

diagnostic stimuli as reflective indicators, so as to capture generalizable, list-wide control-

learning free from frequency confounds. These means are reflective indicators, because 

changes in statistical learning of the proportion constructs cause or are manifest in changes 

of the indicators (Hoyle, 2012). We make two additional assumptions. First, we assume that 

participants can adjust their control either by relaxing control on easy trials or increasing 

control on difficult trials (or both), but in either case these adjustments are an expression 

of control-learning. This codifies state-based assumptions in costs-benefit frameworks of 

control (e.g., Kool & Botvinick, 2018; Shenhav et al., 2013), where participants learn 

whether relaxing or increasing control is worth the pay-off of the mental effort exerted. 

Second, we assume that adjusting control early (e.g., first MI block) or late (e.g., second 

MI block) within a given context is similar, because participants generally form strong 

expectations of upcoming control-demand early on in a given context yet maintain control-

learning effects across the experiment (Abrahamse et al., 2013; Bejjani, Tan, et al., 2020; 

Bejjani & Egner, 2021). While attention inevitably drifts within blocks (cf.1 Dey & Bugg, 

2021), we have found strong correlations between participant response times on early versus 

late blocks (Bejjani & Egner, 2021), supporting this assumption of consistent learning and 

application of control over time.

To evaluate the latent structure of control-learning, we estimate six preregistered models. 

We first estimate a one-factor model that assumes one domain-general latent variable can 

explain the common variance among the LWPS and LWPC. We then estimate a two-factor 

model that assumes one domain-general latent variable per task goal – that is, there is no 

context-sensitivity (no proportion latent variables), but there is correlated domain-sensitivity, 

with one variable for conflict-control and one for task-switching. Afterwards, we estimate a 

four-factor model that assumes correlated domain- and context-sensitivity, with each latent 

variable tuned to the MI, MC, MS, and MR contexts. The next three models test the strength 

of the within and across domain correlations for these latent variables. Based on prior 

research, we expected the model with correlated domain- and context-sensitivity to yield the 

best (and a good) model fit.

2. Method

2.1. Sample Size

Bejjani and Egner (2021) reported ηp
2 = 0.06 (RT) for the repeated-measures ANOVA 

interaction between congruency and proportion congruent context. With a power of 0.8, 

Type I error of 0.05 and similar experimental procedure, we thus needed to recruit 126 

participants to detect a mean control-learning effect.

The most restricted of our preregistered latent variable models of control-learning had 98 

degrees of freedom, suggesting that for 80% power, the sample size required to reject 

RMSEA (a measure of omnibus fit) less than 0.05 if the true RMSEA is 0.08 is 134 

participants. The median sample size for structural equation modeling (SEM) studies 
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is about 200 participants (Shah & Goldstein, 2006), which is appropriate for normally 

distributed continuous data estimated with maximum likelihood. Together these a priori 
estimates indicated the need for at least 200 participants.

Notably, we expected our control-learning metrics to violate assumptions such as 

multivariate nonnormality, and there have been concerns over the reliability of cognitive 

control metrics (Whitehead et al., 2019; but see also Bejjani et al., 2021; Bejjani & Egner, 

2021). We also wanted to ensure that we could efficiently estimate model parameters, detect 

model misspecification (i.e., a sufficient chi-square test statistic and accurate fit statistics), 

and have no model estimation problems, so we had to recruit more than the median sample 

size in SEM studies. With this knowledge in mind, and because no prior studies have 

performed structural equation modeling of control-learning and this was not the primary 

purpose of our preregistered project, we assumed a target sample size of at least two hundred 

participants per level of the between-participants block order group, attempting to recruit 

close to a thousand participants.

2.2. Participants

One thousand four hundred and ninety-five Amazon Mechanical Turk (MTurk) workers 

consented to participate for $15.601 with the potential for a $3 bonus if they achieved 

greater than 80% accuracy on both cognitive tasks. Sixty-six MTurk workers were excluded 

for poor accuracy (<70%) on the LWPC task, 190 for poor accuracy on the LWPS task, and 

222 for poor accuracy on both tasks. 26 participants were excluded for missing the attention 

check embedded within the Qualtrics (Provo, Utah) questionnaire. An additional 24 workers 

were excluded for being older than 50, since the age eligibility criterion was between 18 and 

50, and 10 were excluded for having IP addresses outside of the United States, despite the 

Location Qualification filter set to the U.S. on MTurk.

These preregistered exclusions resulted in a final sample size of 957 MTurk workers (mean 

age = 31.56 ± 6.35; gender: 427 Female, 524 Male, 1 Nonbinary, 1 Nonbinary Femme, 

4 Trans*; Hispanic origin: 105 Hispanic/Latino (11.0%), 839 Non-Hispanic/Latino, 13 Do 

Not Wish to Reply; race (N = 852 who didn’t reply Hispanic/Latino): 9 American Indian/

Alaska Native (1.1%), 1 Arab-American/Middle Eastern (0.1%), 93 Asian (10.9%), 85 

Black/African American (10.0%), 1 Hebrew American (0.1%), 18 Multiracial (2.1%), 1 

Native Hawaiian/Other Pacific Islander (0.1%), 640 White/Caucasian (75.1%), 4 Do Not 

Wish to Reply). Of these 957 participants, 716 earned the bonus.

MTurk is a web-based platform where experimenters crowdsource paid participants for 

online studies. A large research literature has documented that as long as standard practices 

are followed to ensure good data quality2 (e.g., having ways of excluding inattentive 

participants), effect sizes in cognitive psychology tasks like the ones employed here are 

similar to what they are with in person, lab participants (Bauer et al., 2020; Buhrmester et 

al., 2018; Crump et al., 2013; Hauser et al., 2019; Hunt & Scheetz, 2018; Mason & Suri, 

2012; Robinson et al., 2019; Stewart et al., 2017).

1According to the 32 reviews posted to TurkerView, the payment rate for this study was $12.87/hour.
2The primary author also created a Github organization for this: https://socsciprogramming.github.io/module1.html
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2.3. Overall Procedure

The experimental procedure (Figure 1) consisted of consecutive list-wide proportion 

congruent and switch paradigms (Bejjani, Tan, et al., 2020; Bejjani et al., 2021; Bejjani 

& Egner, 2021; Siqi-Liu & Egner, 2020), followed by a post-task questionnaire.

2.3.1. List-wide proportion congruent (LWPC) task—The first block of the color-

word LWPC (Bejjani, Tan, et al., 2020; Bejjani & Egner, 2021) involved a practice set of 

120 congruent trials to ensure that participants learned the stimulus-response mappings for 

the six color-words (red, orange, yellow, green, blue, and purple). Participants categorized 

the color in which the color-words were printed by pressing the z, x, and c keys with their 

left ring, middle, and index fingers and the b, n, and m keys with their right index, middle, 

and ring fingers. Notably, these trials were split such that the first 30 trials involved the 

buttons for the left hand, followed by 30 trials for the buttons associated with the right 

hand, with response mappings provided on-screen as a reminder. The last 60 trials were still 

split into two blocks of 30 trials each, but the response mappings were no longer on-screen. 

This design was inspired by remote moderated usability testing with participants, addressing 

concerns about the difficulty of learning six response mappings. Performance feedback 

(correct/incorrect; response time-out: respond faster) lasted 1000 ms, following the 1000 ms 

response window for the color-word stimuli. Response mappings were constant, with only 

four of six mappings relevant per block after the practice block.

After the practice block, participants were told that the color in which color-words were 

printed may no longer match the meaning of the color-words. On the 108 trials in each 

of the main four blocks (Figure 1a; Table 1), timing remained the same as in the practice 

block. Critically, we included a proportion congruent (PC) manipulation: four color-words 

were more often congruent (PC-90) or incongruent (PC-10) (“biased” or “inducer” items), 

while two color-words were not biased at the stimulus level (PC-50) and could only be 

influenced by the context in which they were presented (“unbiased” or “diagnostic” items). 

Specifically, each block included 61 trials of the frequent type and 7 trials of the rare type 

for the biased items and 20 of each trial type for the unbiased items. The PC-90 and PC-10 

items thus created an overall list-wide bias of PC-75/25, whereby half of the blocks of 

trials were mostly congruent (MC), using the 2 PC-50 and 2 PC-90 items, and the other 

half mostly incongruent (MI), using the 2 PC-50 and 2 PC-10 items. Note that the PC-90 

and PC-10 items were subject to a combination of potential control-learning effects and 

stimulus-response contingency learning confounds, because they occur more frequently for 

each of their respective trial types and are biased by the context in which they are presented. 

However, the PC-50 items provided a pure index of list-level control-learning effects (cf. 

Braem et al., 2019), because they occurred with the same frequency in the MC and MI 

contexts and had no item-specific biases. Each PC-90 item was only incongruent with the 

other PC-90 item (e.g., if blue and purple were PC-90 items, BLUE was incongruent only in 

purple), and the same was true for the PC-50 and PC-10 items. We randomized color-word 

assignment to the proportion congruent contexts (thus also randomizing response mappings) 

and ensured that at least one color-word of each PC probability was mapped to each hand 

(e.g., z, x, and c represented either PC 90, 50, or 10).
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2.3.2. List-wide proportion switch (LWPS) task—After completing the color-word 

LWPC, participants performed a cued, digit/letter LWPS paradigm (Figure 1b) (Bejjani et 

al., 2021; Siqi-Liu & Egner, 2020). On each trial, participants were cued to perform either 

a letter classification task (cues: Letter, Alphabet), indicating whether a given letter stimulus 

was a vowel or consonant, or a digit classification task (cues: Digit, Number), indicating 

whether a given digit was odd or even. A 2:1 cue-to-task mapping was employed to avoid 

any exact cue repetitions over successive trials (Mayr & Kliegl, 2003). Thus, the cue word 

always changed from one trial to the next. Responses were given via the d and k keys on a 

QWERTY keyboard, and response mappings were counterbalanced across sessions and task 

rules. Each trial began with a blank screen for 1010 ms, followed by a fixation cross for 

450 ms, a task cue of 150 ms, another blank interval for 40 ms, and then the task stimulus 

(one letter and one digit) for 1200 ms. Performance feedback was then displayed for 500 ms. 

To become familiar with the task demands, participants first performed a 61-trial practice 

block with an equal likelihood of task-repeat and switch trials and no predictive relationship 

between any stimuli and switch-likelihood.

Critically, the subsequent main task involved a LWPS manipulation: four blocks were 

comprised mostly of task-switch trials (mostly switch (MS) or 70% proportion switch 

(PS-70)), while the other four were comprised mostly of task-repeat trials (mostly repeat 

(MR) or 30% proportion switch (PS-30)). As in the LWPC protocol, we created this block-

wise manipulation of task-switch likelihood with a biased and unbiased stimulus set. The 

biased stimulus set (4 digits and 4 letters) drove the overall list-wide switch proportion by 

being predictive of task-switches (when presented in the PS-70 blocks) and task-repetitions 

(when presented in the PS-30 blocks), while the unbiased stimulus set (4 digits and 4 letters) 

was associated with an equal number of task repetitions and switches in every block. Unlike 

the LWPC, the biased stimuli predicted the proportion of task-switches only in the current 

block: in PS-70 blocks, the biased items occurred more often as switch trials. In the PS-30 

blocks, the same biased items occurred more often as repeat trials instead. A pseudorandom 

stimulus sequence ensured that, within PS-30 blocks, the eight biased items were presented 

four times as repeat trials and once as switch trials, while the eight unbiased items were 

presented once each as repeat and switch trials, except for two stimuli that were presented 

twice as each trial type. Thus, while the overall switch likelihood was 30% (i.e., 18:42 

switch:repeat trials), the biased stimuli were associated with switch trials 20% of the time 

(8:32) and the unbiased stimuli was equally associated with switch and repeat trials (10:10). 

The corresponding manipulation was applied for the PS-70 blocks.

The eight main task blocks consisted of 61 trials each, ensuring participants encountered 

every stimulus item as both a task-repeat and switch trial at least once within each block. 

Moreover, each task was presented an equal number of times across blocks, whereby 

each categorization task was presented 9 times and 21 times as switch and repeat trials, 

respectively, within the PS-30 blocks, and vice versa for the PS-70 blocks. As with the 

LWPC protocol, all four blocks of each PS context were presented consecutively.

With both the LWPC and LWPS, we counterbalanced for block order, since participants in 

LWPC studies have been found to display larger control-learning effects when they switch 

from an easy, mostly congruent context to a difficult, mostly incongruent context than when 
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those block orders are switched (Abrahamse et al., 2013; Bejjani, Tan, et al., 2020; Bejjani 

& Egner, 2021). Although this effect is not present in the LWPS (Bejjani et al., 2021), we 

nonetheless ensured that there were approximately equal numbers of participants between 

the four block orders: MC (2 blocks) – MI (2) – MR (4) – MS (4); MC (2) – MI (2) – MS 

(4) – MR (4); MI (2) – MC (2) – MR (4) – MS (4); MI (2) – MC (2) – MS (4) – MR (4). 

Notably, participants always completed the LWPC before the LWPS. This was done because 

of potential response congruency concerns (Kiesel et al., 2007), and it was also expected to 

reduce irrelevant variance between participants (Goodhew & Edwards, 2019). Note that the 

LWPC and LWPS have slightly different contingencies for the biased stimuli (PC-90, PC-10, 

PS-80, PS-20) and thus overall proportion contexts (PC-75, PC-25, PS-70, PS-30) because 

of consistency with prior work (Bejjani et al., 2021; Bejjani and Egner, 2021). All stimuli 

and feedback were presented in the center of the screen on a white background.

2.3.3 Post-test questionnaire—After completing both the LWPC and LWPS tasks, 

participants filled out a post-test questionnaire (Figure 1c). First, they answered basic 

demographic questions (gender, age, ethnicity, race, and highest education attained). They 

then were told that we would ask about the task where they categorized color-words, and 

they answered a series of questions designed to assess explicit awareness of the LWPC 

manipulations and repeated this process for the LWPS manipulation (see Explicit Awareness 
section below and in Appendix A, with the Supplementary Text). Afterwards, they were told 

that we would ask about a series of cognitive puzzles and they should not use a calculator 

to solve any of the problems. Here, participants filled out the International Cognitive Ability 

Resource (ICAR; Condon & Revelle, 2014), a sixteen-item public domain intelligence 

questionnaire with four questions each devoted to verbal reasoning, letter and number 

judgments, matrix reasoning, and three-dimensional rotation, the presentation of which were 

randomized and counterbalanced across participants (α = 0.78, 95% CI [0.76, 0.80]). Note 

that counterbalancing of these items may introduce some additional error variance, but that 

reliability overall for the scales was acceptable to good.

Next, participants were asked about their personal and family history of mental health 

symptomatology and other mental health symptoms, which are not the focus of the current 

study.3 Here, we also presented an attention check where we attempted to identify which 

participants were not paying attention to how they were responding. Participants were asked 

to select a specific response during the loop of symptom questions, ensuring they were not 

button-mashing. Afterwards, participants filled out, in a counterbalanced and randomized 

order, the 10-item Emotion Regulation scale (Gross & John, 2003) and the 24-item 

Behavioral Inhibition System (BIS) – Behavioral Activation System (BAS) scale (Carver 

& White, 1994) (BIS subscale: α = 0.87, 95% CI [0.85, 0.88]; BAS reward subscale: α 
= 0.78, 95% CI [0.76, 0.80]). Finally, participants were asked about their experience with 

MTurk, the Stroop task, and task-switching paradigms as well as whether they would want 

to be recontacted for a possible followup study and what their Perceived Stress was over the 

3Interested readers can look at the preregistration for further details. We asked about drug and alcohol use, and psychiatric diagnoses, 
and self-reported mental health symptoms over the past year, in a randomized and counterbalanced order, via 89 of the 126 items from 
the normed adult ASEBA (http://www.aseba.org/adults.html), the 18-item Obsessive Compulsive Inventory-Reduced scale (OCI-R, 
Foa et al., 2002), and the 10-item Psychosis Like Symptoms (PLIKS) scale.
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past year (4-item; Cohen et al., 1983). Because the current paper is focused on the latent 

structure of control-learning, we only report and analyze data related to the main tasks, the 

explicit awareness questions, the ICAR task, and the BIS/BAS questionnaire.

2.4. Data Analysis

We analyzed reaction time (RT) data for correct trials in the main task blocks that were 

neither a direct stimulus repetition from the previous trial within the LWPC task nor the 

first trial of the block within the LWPS task, nor excessively fast (< 200 ms) or slow 

(feedback time-out: > 1000 ms). For the LWPS task, we also removed trials following an 

incorrect response, and for both tasks, we excluded outlier responses in the sample that 

were not within 1.5 times the interquartile RT range of the remaining sample. Finally, 

participants who had fewer than ten trials per cell for the Proportion Context × Trial Type 

interactions were excluded from learning analyses (N = 2 for LWPS; N = 5 for LWPC), 

to avoid unstable estimates and control for missing data. Readers interested in standard 

repeated-measures ANOVAs of LWPC and LWPS task data can find these in Appendix A 

with the Supplementary Text. Briefly, these ANOVAs detected all the expected effects, most 

importantly, main effects of congruency and switching, and the modulation of congruency 

and switch costs by the proportion congruent/switch factors for unbiased/diagnostic stimuli 

across RT and accuracy data.

We planned to test several candidate models that represent different plausible hypotheses 

concerning the latent variable structure of control adaption to changing demands. For these 

models, we treated condition-specific mean RT for the unbiased, diagnostic stimulus items 

as reflective indicators of the latent factors of interest. By using the unbiased items as 

our indicators, we avoided the instability of difference scores and controlled for potential 

frequency-based confounds, since the unbiased items are PC-50 and PS-50 and all the trial 

types are presented equally often. Because these data were expected to be continuous but 

multivariate nonnormal, we selected the maximum likelihood estimator with robust standard 

errors and Satorra-Bentler scaled test statistics when evaluating model fit (Satorra & Bentler, 

1988). We also fixed the variances of the latent factors within our models to 1 so that the 

models are identified, factor measurements are scaled, and any relationships between the 

factors are essentially standardized correlations.

To evaluate model fit, we used several indices: incremental fit indices such as the 

comparative fit index (CFI; Bentler, 1990) and the Tucker-Lewis Index (TLI; Tucker & 

Lewis, 1973), root mean square error of approximation (RMSEA; Steiger & Lind, 1990), 

and the standardized root mean square residual (SRMR; Hu & Bentler, 1999). Incremental 

fit indices compare misfit against a baseline model that only estimates variance, whereas 

RMSEA indicates absolute model misfit per degrees of freedom and SRMR is the average of 

squared values in the residual correlation matrix. We considered good or excellent fit to be 

CFI and TLI values of 0.95 or higher; RMSEA values of 0.05 or lower; and SRMR values 

less than 0.06. Adequate fit is indicated by CFI and TLI values above 0.90 and RMSEA of 

less than 0.08. We also report χ2, which is overpowered in large samples and not usually 

considered an appropriate measure of model fit, because it would validly mark model fit 

only if the specified model is the true model in the population, an assumption that cannot 
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be verifiably proven. Finally, we selected between competing models using nested model 

comparisons.

For the final model, we formally tested measurement invariance with respect to the 

between-participant multi-group factor of block order, which was collapsed to either mostly 

congruent (MC) or mostly incongruent (MI) first. The first level of measurement invariance, 

configural invariance, tests whether the groups have the same factor structure (i.e., number 

of factors and pattern of path loadings). The final model must be configurally invariant to 

be comparable for all block order groups. After configural invariance, metric invariance 
tests whether the constructs have the same meaning by constraining the factor loadings (i.e., 

slopes) across groups. At least partial metric invariance (Byrne et al., 1989) is necessary for 

meaningful comparisons between block order groups. Following metric invariance, scalar 
invariance tests whether the groups have similar baseline responses (and their latent means 

can be compared meaningfully) by constraining the intercepts across groups. Finally, a more 

restrictive form of invariance is strict invariance, with item residual variances constrained 

across all groups. To evaluate these forms of invariance, we used change in CFI when 

moving from weaker to stronger invariance. Differences in CFI of less than 0.01 were 

interpreted as evidence of no reduction in fit when additional invariance constraints are 

added (Cheung & Rensvold, 2002).

One concern with respect to cognitive control domains has been the extent to which the 

latent structure reflects the ability to perform well on cognitive tasks at large rather than 

anything specific to the constructs in question. Therefore, in the next analysis, we ran 

regression models where each indicator was separately predicted by ICAR (our measure 

of general intelligence) and extracted the residuals as a measure of variance that was not 

shared by ICAR (cf. Robinson & Tamir, 2005). We interpret these residualized scores to 

indicate learned control after accounting for baseline intelligence or ability. If model fit 

noticeably decreased for our final model, this would suggest that the constructs we modeled 

do not reflect learned control alone. To account for concerns around processing speed, we 

also estimate a bifactor model with correlated specific factors and a general factor meant to 

represent speed, subsequently examining what the addition of the general factor does to path 

loadings and the across domain correlations.

In addition to examining model fit, we also tested whether participants were explicitly aware 

of the PC manipulations via a series of t-tests and ANOVAs. Analyses were performed in 

a Python Jupyter notebook, via the pandas (Reback et al., 2020) and seaborn (Waskom, 

2021) packages, and RStudio (R version 3.5.1; R Core Team, 2018), via the lavaan (Rosseel, 

2012), semTools (Jorgensen et al., 2021), and semPlot (Epskamp, 2015) packages, as well as 

other data manipulation, analysis, and visualization related packages (e.g., dplyr, Wickham 

et al., 2021; ggplot2, Wickham et al., 2020; afex, Singmann et al., 2021). All analyses, 

unless otherwise indicated as exploratory, were preregistered, with the preregistration plan 

transparently edited at the OSF repository as we respecified candidate models (https://osf.io/

nmwhe/). This plan includes information relevant to the mental health symptomatology 

not mentioned here. All materials (e.g., analysis and experimental code, data) are available 

online at this OSF repository.
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3. Results

Behavioral metrics across the list-wide proportion congruent (LWPC) and list-wide 

proportion switch (LWPS) tasks largely look as expected: we observe larger congruency 

effects and switch costs when incongruent trials and task-switching (PC-25, PS-70) are 

more frequent (vs. PC-75, PS-30) (Table 2; see Supplementary Tables 1-8 for traditional 

ANOVA analyses). Table 2 includes descriptive statistics for RT and additional RT measures 

corrected for accuracy (e.g., inverse efficiency (IE) and linear integrated speed accuracy 

scores (LISAS)) as well as RT difference scores, though only analyses with IE were 

preregistered. Here, with split-halves reliability around acceptable levels for the primary 

RT metric, we replicate our prior work: Bejjani and colleagues (2021) reported a test-retest 

reliability for the LWPS RT conditions used within the current study between 0.69 and 

0.76 as well as 0.47 for RT switch costs, which, unlike the current study, had been 

collapsed across biased and unbiased items for greater trial counts. Bejjani and Egner (2021) 

additionally reported reliability for the LWPC RT conditions between 0.67 and 0.72, similar 

to what is reported in the current study.

A number of tables are displayed in Appendix A for interested readers. Tables 3 and 9-11 

display the correlation matrices for the behavioral metrics of interest in Table 2, and Tables 

12-15 display the path loadings associated with all the Models estimated within the study 

using those metrics. Finally, Table 16 displays the reliabilities for the final latent factor 

models and Table 17 includes fits from an exploratory analysis on the timescales of learning 

between tasks.

3.1 Correlated Domain- and Context-Specificity of Control-Learning

The first model we considered for control-learning harkens back to traditional theories of 

control as a general supervisory system (e.g., Norman & Shallice, 1986): one factor that 

controls attention and might explain all the variance in the behavioral metrics. However, 

Model 1 fit poorly (χ2(104, N = 950) = 5024.97, CFI = 0.618, TLI = 0.559, RMSEA = 

0.245, 90% CI = [0.239, 0.250], SRMR = 0.184). Path loadings (see Supplementary Table 

12 in Appendix A) were positive and high (LWPS: range [0.81, 0.87]; LWPC: range [0.52, 

0.60]), but uniquenesses on the indicators within the LWPC task remained high (0.64-0.73), 

highlighting that variance was not well explained by this model. See Table 2 for descriptive 

statistics on the metrics in this section and Supplementary Table 16 for the reliabilities of the 

final latent factors.

Next, we considered a model in which there was one factor per domain, akin to prior 

“diversity” models of cognitive control (Friedman et al., 2008; Miyake et al., 2000; Miyake 

& Friedman, 2012), and these first-order latent variable domains were allowed to correlate. 

Model 2 fit was adequate (χ2(103, N = 950) = 1366.69, CFI = 0.914, TLI = 0.900, RMSEA 

= 0.117, 90% CI = [0.111, 0.122], SRMR = 0.037) and improved from the one factor 

supervisory model (Δχ2(1) = 281.8, p < 0.001). Path loadings were again high and positive 

(LWPS: range [0.83, 0.88]; LWPC: range [0.76, 0.87]), and domain factors were moderately 

correlated (r = 0.54). This suggests that a model accounting for domain (conflict-control 

vs. task-switching) fits well and domain is a significant source of common variance in 

control-learning.
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We then tested whether model fit could be improved by accounting for context-specificity 

in the form of the proportion manipulations within the conflict and task-switching protocols 

(Egner, 2014). We allowed these first-order latent variables to correlate within and across 

domains, without any constraints. Model 3 fit was good (χ2(98, N = 950) = 748.52, 

CFI = 0.956, TLI = 0.946, RMSEA = 0.086, 90% CI = [0.080, 0.092], SRMR = 0.028) 

and improved from the correlated, two factor domain-specific model (Δχ2(5) = 597.64, 

p < 0.001). Again, path loadings were strong and positive (LWPS: range [0.87, 0.90]; 

LWPC: range [0.79, 0.89]). Interestingly, supporting the domain-specificity suggested 

by the previous model, within domain correlations (0.90, 0.92) were much higher than 

across domain correlations (0.52, 0.51, 0.52, 0.51). However, theoretical accounts of control-

learning do not typically make strong assumptions about how, for example, adapting control 

within the easier, mostly congruent context would relate to adapting control within the 

harder, mostly task-switch context. The attentional states typically are not theorized to be 

similar across these contexts, nor are the specific task goals. Ultimately, this model poses 

little question of causality, since all of the proportion contexts were allowed to freely 

correlate as first order latent variables, so we next tested whether these across domain 

correlations between context-specific proportion latent variables improve model fit and 

matter to construct understanding.

In the fourth model, we fixed to 0 the across domain correlations between the context-

specific proportion latent variables. Model 4 fit was still adequate (χ2(102, N = 950) = 

1036.39, CFI = 0.937, TLI = 0.925, RMSEA = 0.101, 90% CI = [0.095, 0.106], SRMR 

= 0.272), but decreased from the third model (Δχ2(4) = 302.81, p < 0.001). We next 

tested whether there was one second-order, across domain statistical learning latent variable 

that accounted for the correlation between the first-order proportion congruent and switch 

context latent variables. Here, Model 5 fit was no longer adequate (χ2(100, N = 950) = 

1607.58, CFI = 0.898, TLI = 0.877, RMSEA = 0.129, 90% CI = [0.123, 0.135], SRMR 

= 0.146) and significantly decreased from the third model (Δχ2(2) = 1095.3, p < 0.001). 

Because model fit decreased with the fourth and fifth models, these results suggest that 

the across domain correlations observed under model three are important to understanding 

the constructs, and that statistical learning of control demand cannot bridge the gap across 

domains or task goal on its own.

Finally, we tested whether adding two second-order, correlated domain-specific factors that 

were predicted by their respective proportion context variables would improve model fit. 

Model 6 fit was good (Figure 2; χ2(99, N = 950) = 749.30, CFI = .956, TLI = 0.946, 

RMSEA = 0.0854, 90% CI = [0.080, 0.091], SRMR = 0.028) and did not differ from 

the third model (Δχ2(1) = 0.60, p = 0.438). Although Model 6 is nearly equivalent to 

Model 3, where all correlations between proportion latent variables were unconstrained, on 

statistical grounds, Model 6 is more parsimonious (with an additional degree of freedom) 

and fits just as well as Model 3, suggesting that Model 6 ultimately yields the best 

4We recognize that this RMSEA value falls outside of the “adequate” fit guideline, unlike our other metrics of model fit. Smaller 
models with high quality indicators (i.e., high path loadings), like the ones within the current study, may nonetheless yield high 
RMSEA values above standard cutoff values (Shi et al., 2019). In addition, under certain modeling conditions, RMSEA may be 
inconsistent with CFI and inflated for well-fitting models (Lai & Green, 2016).
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fit. However, the theoretical interpretations differ substantially. Since Model 3 allows for 

unconstrained correlations among the proportion latent variables, an explanation for the 

pattern of correlations is not specified. Here, with Model 6, by specifying second-order 

domain-specific factors, we suggest that these factors explain the within-domain correlations 

between PS-70 and PS-30 as well as PC-25 and PC-75, and we then do not specify 

a latent source to explain the correlation among domain-specific adaptation. We thus 

argue that Model 6 is also more representative of the current theoretical understanding 

of control-learning, whereby participants learn the current difficulty of each proportion 

context, learned adaptation of control is specific to the task goal at hand (i.e., the Stroop 

or task-switching protocol), and adapting learned control across domains is distinct yet 

correlated. Nonetheless, whether via Model 6 or Model 3, these results at large support the 

idea of correlated domain- and context-specificity of learned control.

To bolster evidence for Model 6, we inspected its associated reliability statistics, which 

were not all preregistered, but would provide support for the stability of the data. Altogether 

these reliability metrics were high (e.g., range [0.91, 0.94] for the coefficient alpha; see 

Supplementary Table 16 in Appendix A for model reliability), suggesting that the final 

model was stable and that the second-order factors were justifiable. We also examined 

whether the model assumptions held by examining the correlation matrix for the observed 

variables (Table 3). Early indicators were indeed highly correlated with late indicators; 

across domain correlations were smaller than within domain correlations; and proportion 

context variables typically hung together. Thus, although the path loadings were similar for 

each second-order domain latent variable as predicted by the first-order proportion variables, 

the underlying data suggest that these constructs were noticeably different.

Finally, in the preregistration, we initially proposed including a bifactor model with 

a general factor to account for additional common variance, potentially attributable 

to trait individual differences like working memory capacity (Hutchison, 2011) that 

were independent of control adaptation. However, second-order and bifactor models are 

mathematically closely related (Yung et al., 1999), which makes model selection difficult 

(van Bork et al., 2017), and bifactor models with a general factor must justify that the 

data are not unidimensional (Rodriguez et al., 2016), since model fit statistics are biased 

towards bifactor models (Morgan et al., 2015; Murray & Johnson, 2013). Therefore, rather 

than proposing that a bifactor model is the best representation of the data, in the present 

application of a bifactor model, we were primarily concerned about the extent to which 

processing speed played a role in our results.

Because Model 6 included a second-order factor, variance would likely not be parsed 

correctly with a general factor, so we here include a general factor with Model 3, which 

was statistically similar to Model 6, and examine whether the path loadings and covariances 

between latent variables decrease as a result of adding the general factor. As expected, this 

bifactor model fit better than Model 3 without a general factor (χ2(82, N = 950) = 409.51, 

CFI = 0.977, TLI = 0.967, RMSEA = 0.067, 90% CI = [0.061, 0.073], SRMR = 0.015). 

Importantly, however, while the path loadings decreased for the specific factors (range on 

conflict specific factors: [0.43, 0.85], switch specific factors: [0.78, 0.85]; range on general 

factor for conflict indicators: [0.43, 0.79], for switch indicators [0.30, 0.41]; see Figure 2 
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for comparison and Supplementary Table 12), the correlations also decreased (range for 

within domain: [0.79, 0.88]; range for across domain: [0.35, 0.37]), but remained modest in 

strength across domains, supporting the conclusion of correlated, but distinct latent factors. 

Additionally, we again note the worse fit of Model 5 relative to Models 3 and 6: Model 5 

included a higher-order factor that was predicted by the proportion context latent factors, 

presumably to represent a frequency-based learner across domains that controlled context 

adaptation, which would certainly be sensitive to differences in processing speed, were they 

the sole explanation of the data. Moreover, the path loadings were not equal across domains 

– what we might expect if this all represented processing speed – and were strong. Taken 

together with the results of the bifactor model, we believe that this bolsters evidence for 

correlated but distinct latent factors in learning cognitive control even when accounting for 

processing speed.

In sum, we found support for theoretical proposals that learning to adapt cognitive control 

in the conflict and task-switching domains, while controlling for general processing speed, 

is best explained by modeling correlated domain- and statistical context-sensitivity, and that 

factors in this model are highly reliable. In other words, correlated but domain-specific 

statistical learning processes underpin the abilities to adapt to changes in conflict versus 

switch demand.

3.2 Addressing Speed-Accuracy Trade-offs and Conceptual Validity

Similar to the prior analysis with the bifactor model, while using aggregate reaction time 

data for the indicators has advantages related to reliability (as discussed in the Introduction), 

it can be argued that they run the risk of undermining conceptual validity, in that raw RT 

variance may indicate commonality between factors due to generic processing speed rather 

than the learned adaptation in specific control operations we intend to capture. Thus, we here 

examined further whether processing speed may have driven the conclusion of correlated 

but distinct latent factors, by estimating the specified models with metrics that control for 

processing speed.

We use inverse efficiency scores (Townsend & Ashby, 1983), which reflect RT in a given 

condition divided by accuracy in that condition, as well as linear integrated speed accuracy 

score (LISAS) (Vandierendonck, 2017), representing the overall standard deviation of RT 

divided by the overall standard deviation of the proportion of errors, which is subsequently 

multiplied by the proportion of errors in a specific condition and added to the reaction 

time in that condition. To preview, while these accuracy-corrected reaction time scores 

decrease omnibus model fit statistics because of the variability in accuracy, correlations 

among the latent variables remain similar in magnitude (see Supplementary Tables 9 and 10 

for the correlation matrices and Tables 13 and 14 for the inverse efficiency and LISAS path 

loadings, respectively).

Inverse Efficiency (IE) largely followed the same pattern as RT (Table 4), except that fit 

of Model 6 was not acceptable, meeting our a priori criteria only for SRMR (vs. Model 3: 

Δχ2(1) = 0.07, p = 0.787). LISAS followed the same pattern as inverse efficiency, but with 

better fit: Model 6 had acceptable fit (vs. Model 3: Δχ2(1) = 0.00, p = 0.984).
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With all three metrics (RT, IE, LISAS), the correlations between domains at the higher-order 

proportion context latent factors were either 0.56 or 0.57, and the path loadings on these 

factors were all strong (range [0.82, 0.96]). In short, even using corrected speed metrics, the 

control factors were still distinct and correlated moderately with each other.

Finally, to align with previous literature, we estimated the specified models with RT 

difference scores (congruency effect, switch cost) that were divided by their respective 

overall task reaction times as a baseline (cf. Bejjani et al., 2018). Using difference scores 

involved a total of eight, not sixteen, indicators, which subsequently meant that we were 

unable to estimate Models 5 and 6, because they include a higher-level factor that results in 

model misidentification (see path loadings at Supplementary Table 15). As with the bifactor 

model analysis, we use the fit of Model 3 as an estimate for how Model 6 would fare, since 

these models are statistically similar, although we previously mentioned reasons for why we 

believe Model 6 to better represent control-learning theories.

As with RT, Model 3 fit using difference scores was excellent (vs. Model 2: Δχ2(5) = 

28.64, p < 0.001). Interestingly, with Model 3 for difference scores, the across domain 

correlations were all non-significant except for PC-75 to PS-30, i.e., the correlation between 

the two “easy” context latent factors, which were moderately correlated (0.28). We view 

the lack of multiple cross-domain correlations in two ways: first, it may stem in part from 

unreliability due to the nature of difference scores (Tables 2, 16). Accordingly, the two 

factors with the highest reliabilities within their domains (PC-75, PS-30) had a significant 

across domain correlation with each other, and the second highest across domain correlation 

was also with PC-75, which had the highest split-halves reliability (Table 2). Thus, this 

explanation seems plausible and in line with what prior research has reported on difference 

scores (e.g., Draheim et al., 2019). Second, given the converging evidence from RT, LISAS, 

and IE as well as the bifactor model that shows distinct but correlated latent factors, it 

is also possible that variance shared across control domains primarily stems from how 

participants relax control in the easier contexts (cf. Bugg et al., 2015). This is consistent 

with our prior work (Bejjani & Egner, 2021) where we found stronger correlations across 

time regulating congruency differences for the mostly congruent context than the mostly 

incongruent context.

3.3 Timing of Control-Learning Effects

In an exploratory analysis that resulted from the revision process, we reexamined 

assumptions around the early/late indicator designation. We thus re-estimated Models 3 

and 6 with RT, IE, and LISAS collapsed across the early/late metrics, collapsed only for 

the switch task, and collapsed only for the conflict task (see Supplementary Table 17). 

Because these models are non-nested and trained on different sets of indicators, we looked 

at differences in AIC and BIC as well as the omnibus fit statistics for model comparison. 

As stated in the preregistration, per established guidelines (Kass & Raftery, 1995; Schwarz, 

1978), weak evidence is typically qualified as a BIC difference between 0-2, good evidence 

between 2-6, strong evidence between 6-10, and very strong for 10+, and with respect to the 

omnibus fit statistics, we primarily looked for patterns in the data about model fit.
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Of all the models, reaction time difference scores for Model 3 have the smallest AIC and 

BIC values and best omnibus fit statistics. Next are the collapsed early/late models across all 

metrics, but the RMSEA for these models is well outside the acceptable bounds, indicating 

some level of misfit despite the reduced degrees of freedom. In fact, what produces the 

best model fit among the corrected speed metrics (IE, LISAS) – beyond RT difference 

scores, which cannot be collapsed across time due to model misidentification – is the model 

that includes early and late indicators for the task-switching paradigm, but collapses across 

time for the conflict-control paradigm. Here, AIC and BIC values are lower than those of 

the models discussed in the above, and RMSEA values are much closer to the acceptable 

criterion. RT shows a similar pattern, but for the models where early and late indicators are 

present for the conflict-control paradigm and collapsed for the task-switching paradigm.

Of note, we do not believe these results are particular to our experimental design, that is, 

because participants performed the LWPC before the LWPS. Task order is unlikely to fully 

explain these differences because early and late meant early and late within a proportion 

context: if a person experienced the mostly switch context first, early would mean the 

first half of that context and late would mean the second half of the context, and the 

same definition would occur for the mostly repeat context. We would expect the effects 

of exhaustion or fatigue to impact the latter four blocks (i.e., a whole context) rather than 

selectively impact halves of each, and we did not find measurement invariance due to block 

order (see the next section, Section 3.4).

Together these results suggest an intriguing possibility that the two domains could also be 

learned on different timescales.

3.4. Measurement Invariance across Block Order

Here, we tested whether the context that participants experienced first (e.g., MC or MI 

first) systematically shifted the way in which participants learned. In terms of measurement 

invariance across block order groups, the fit of the configural model was good (Table 2; 

χ2(198, N = 950) = 894.46, CFI = .953, TLI = 0.943, RMSEA = 0.088, SRMR = 0.030). 

When factor loadings were constrained to equality across groups, CFI barely decreased 

(0.952), resulting in a CFI difference of 0.001, well below the cutoff (0.01), suggesting 

full metric invariance across block order groups. For the sake of completeness, we report 

the model fit statistics for the tests associated with metric (constrained slopes), scalar 

(constrained intercepts), and strict (constrained item residual variances) invariance in Table 

4, which do not fall within the CFI decision criterion and therefore suggest measurement 

invariance across block order groups. In sum, for Model 6, the factor structure, loadings, 

intercepts, and item residual variances were equivalent across block order groups, allowing 

for means to be compared between groups without concern for whether they represent the 

same construct.

3.5. Specificity of Control-Learning

Here, we tested whether the good model fit for the final model reflects a bias in our 

indicators for participants performing well on cognitive tasks, rather than being specific to 
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the control-learning constructs we specified. To this end, we residualized our indicators on 

ICAR, our measure of general intelligence, and reran the model estimation.

Model fit, using the residualized indicators, remained good (χ2(99, N = 950) = 733.85, CFI 

= 0.957, TLI = 0.947, RMSEA = 0.084, 90% CI = [0.079, 0.090], SRMR = 0.027), with 

strong path loadings (LWPS: range [0.88, 0.90]; LWPC: range [0.79, 0.88]) and a moderate 

correlation across control domains (r = 0.57).

Another question is the extent to which self-reported motivation or trait individual 

differences might also have driven the good model fit for the final model. We therefore 

repeated the same process that we used to residualize indicators on ICAR, but with 

participant scores on the BIS (thought to reflect punishment sensitivity) and the BAS 

reward responsiveness subscale. Thus, the residualized indicators are now residualized on 

both ICAR and reward and punishment sensitivity. Although we preregistered our intent to 

residualize indicators on ICAR, we did not preregister this analysis with BIS/BAS, and this 

is therefore an exploratory analysis.

Model fit was again good (χ2(99, N = 950) = 727.46, CFI = 0.957, TLI = 0.948, RMSEA = 

0.084, 90% CI = [0.078, 0.090], SRMR = 0.027), with strong path loadings (LWPS: range 

[0.87, 0.90]; LWPC: range [0.79, 0.89]) and a moderate correlation across control domains 

(r = 0.56).

In sum, we found good model fit for the final control-learning model, with correlated 

domain- and context-specificity, even when accounting for individual differences in 

performance on intelligence tasks and self-reported reward and punishment sensitivity.

3.6. Explicit Awareness as a Learning Signal

The extent to which explicit awareness plays a role in control-learning remains debated 

(Abrahamse et al., 2016). Here, we assessed explicit awareness of the proportion context 

manipulations with a variety of questions; these results are fully reported in Appendix A 

with the Supplementary Text for interested readers. In short, participants did not accurately 

estimate the causal strength of the item-specific and list-wide proportion manipulations, 

but they could explicitly identify the temporal difficulty associated with blocks and the item-

specific difficulty associated with biased items. Combined with the fact that participants 

misidentified the difficulty of unbiased items, these results may suggest that intermixing 

biased with unbiased items causes an increased awareness of difficulty that may then act as 

a learning signal for generalization of control within a temporal context (cf. Bugg & Dey, 

2018).

3.7. Measurement Invariance across Explicit Awareness

We also ran an exploratory analysis testing whether there is measurement invariance 

across participants who self-report different levels of explicit awareness on these tasks. We 

therefore created a new subgroup of participants who self-reported noticing that some blocks 

of trials were harder than others, when categorizing both color-words and digits/letters (N 
= 278 for “Yes” to both, i.e., level 1, versus N = 672, i.e., level 2). One caveat is that 

self-report delineated this group. It is also possible that participants said “yes” simply due 
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to response bias. However, participants could select “Don’t Know”, and only about 46% of 

participants who reported awareness for the LWPC blocks reported awareness on the LWPS 

blocks, suggesting some level of discriminability.

We found little support for differences in model fit due to explicit awareness or lack thereof. 

Model fit for the configural model remained good (χ2(198, N = 950) = 876.37, CFI = 0.953, 

TLI = 0.943, RMSEA = 0.087, SRMR = 0.028), and differences in CFI never exceeded the 

0.01 decision criterion (Table 5). In sum, we found evidence that factor structure, loadings, 

and intercepts, as well as item residual variances, do not differ as a function of explicit 

awareness, suggesting that explicit awareness of the task statistics does not influence the 

meaning of the latent sources of influence in learned control adaptation.

4. General Discussion

The current study aimed to examine the latent structure of control-learning underlying 

contextual adaptations of control processes in the domains of cognitive stability (conflict-

control) and flexibility (task switching). Participants performed consecutive list-wide 

proportion congruent (LWPC) and switch (LWPS) paradigms, which manipulated the 

proportion of difficult trials over blocks. Within each block, there were inducer, frequency-

biased stimuli that were either predictive of difficult (incongruent/task-switch) or easy 

(congruent/task-repeat) trials as well as diagnostic, frequency-unbiased stimuli that were 

equally associated with either difficult or easy trials and were thus only influenced by the 

block-wide context. We modeled the frequency-unbiased stimuli as reflective indicators 

that changed as a function of their causal latent variables. We evaluated one- and two-

factor models that included domain-general adaptation of control, accounting for the 

commonality among categorization task goals, as well as models that also accounted 

for context-sensitivity and the role of learning. According to established standards for 

structural equation modeling, model fit was good for the model that included correlated 

domain- and context-specific latent factors, exceeding most of the other models against 

which it was compared. This final model continued to fit the data well even after we 

accounted for processing speed and individual variance in performance on a measure of 

general intelligence, as well as self-reported scores on measures of reward and punishment 

sensitivity. Moreover, we found measurement invariance across self-reported explicit 

awareness of the task manipulations and the order in which participants experienced the 

more difficult blocks. Finally, a series of additional model fits using inverse efficiency 

scores, LISAS, and difference scores, all of which control for the potential confound of 

individual differences in generic processing speed driving the results, corroborated the 

conclusions based on raw RT data. Together these results provide evidence for domain-

specific but correlated learners of contextual control demands, and this control-learning 

architecture was minimally impacted by motivation, awareness, and cognitive ability.

4.1. Caveats

One major caveat inherent in statistical modeling is that our conclusions are necessarily 

limited to the set of models we considered. We believe that the models we compared 

represent the most common and plausible assumptions in this literature, and we respecified 
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hypothesized models in our preregistration as our thinking on the topic evolved, but we 

nonetheless have not estimated all possible models that could fit the control-learning data 

reported here. Other caveats are specific to the experimental procedures deployed. For 

instance, consistent with past research (see review at Stewart et al., 2017), the MTurk sample 

recruited shows a slight underrepresentation of Black/African-American participants and 

participants with Hispanic origin relative to the U.S. population as a whole.

Because participants only performed list-wide paradigms, with temporal manipulations of 

control-learning, we also do not know the extent to which the final model applies to other 

manipulations of control-learning, such as the context-specific and item-specific proportion 

paradigms or other, shorter-scale control adjustments like the congruency sequence effect 

(Gratton et al., 1992; reviewed in Egner, 2007) or post-error slowing (Rabbitt, 1966; 

reviewed in Wessel, 2018). While current theories largely assume learning in these 

paradigms should work similarly (Abrahamse et al., 2016; Egner, 2014), this has yet to 

be tested, particularly since control application may differ depending on whether participants 

anticipate or react to demand in the moment (Bejjani, Tan, et al., 2020; Bugg, 2017); 

that is, whether control is deployed proactively or reactively (Braver, 2012). Since the 

present results also imply some level of differences in learning by timescale, this question is 

particularly relevant.

Here, the reflective indicators were aggregate RT means from specific conditions, which 

means that they all had the same measurement error (though error due to unreliability, 

i.e., random error, was minimal). This measurement error would also manifest in the latent 

variables, making it impossible for us to discern, for example, the extent to which arousal 

(cf. Verguts & Notebaert, 2009) may have played a role in learning. This is especially 

true given the fact that the LWPC and LWPS tasks differed slightly in overall block-wide 

contingency strength (75:25 versus 70:30), and no work has yet addressed whether the 

degree of contingency impacts the strength of pure frequency-unbiased relative to frequency-

biased control-learning5.

Because both the LWPC and LWPS protocols involved stimulus categorization-oriented 

tasks, it is possible that the correlation between the second-order latent variables reflects 

this mutualism, whereby strength in categorization ability would boost the shared variance 

between domains. However, we largely discount this interpretation because of the 

correlation strengths (path loadings) of the unconstrained third model and the fact that the 

LWPS protocol involves more categorization tasks than the LWPC protocol. Unbiased items 

are equally associated with difficult and easy trials, but in the LWPS protocol, although the 

two tasks (parity and letter) are presented an equal number of times as switch and repeat 

trials across the paradigm, the list-wide manipulation nonetheless involves task-level bias. 

That is, tasks that occur in low PS blocks are necessarily presented more often as repeat 

than switch trials in those blocks and tasks in high PS blocks are necessarily presented more 

often as switch than repeat trials in those blocks. For example, in one PS-30 block where 

the switch:repeat trial ratio is 18:42, 9 of the total 18 switch trials will be task A while 9 

5To this end, the authors are conducting a meta-analysis of the different PC paradigms. If you have unpublished data that you would 
like to contribute to this effort, please contact Drs. Bejjani and Egner.
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will be task B. Likewise, 21 of the 42 total repeat trials will be task A while 21 will be task 

B. Overall, task A and B were presented 30 times each, but both have been associated with 

switch trials 9 times and repeat trials 21 times. As such, both task A and task B become 

associated with low-switch likelihood in a PS-30 block (Siqi-Liu & Egner, 2020). Thus, 

if categorization ability provided the commonality between the two domains, we should 

have observed differences in the across domain path loadings for the PS-70 versus PS-30 

variables, where the task-level bias would have manifested. We did not, which suggests 

that the common theme of stimulus categorization was not what determined the common 

variance between the conflict-control and task-switching domains.

A final limitation of the present study is that while we have demonstrated discriminant 

validity of our factors with respect to their independence from general intelligence and 

motivation measures, it would arguably have been desirable to also show (expected) 

positive relationships with some independent measures of related constructs. For instance, a 

number of previous studies have shown that performance on conflict-control tasks correlates 

positively with complex working memory span (Hutchison, 2011; Kane & Engle, 2003; 

Meier & Kane, 2013; Unsworth et al., 2009; but see Rey-Mermet et al., 2019). Accordingly, 

one would anticipate that the control-learning factor in the present study would account for 

significant variance in working memory performance. However, given that this relationship 

has been found to be quite context-specific (e.g., Kane & Engle, 2003; Meier & Kane, 

2013) and that other studies have found little evidence for short-scale adjustments in 

conflict-control to relate to working memory span (e.g., Keye et al., 2013; Meier & 

Kane, 2013; Unsworth et al., 2012; Wilhelm et al., 2013), it is not entirely clear whether 

observing or not observing this type of relationship in the current study would really 

provide a conclusive test of convergent validity. Nonetheless, combining the control-learning 

probes employed in the present paper with complex span tasks would undoubtedly be of 

interest for further studies, in particular since there seems a be a dearth of studies relating 

adjustments in switch readiness to working memory capacity. Having said that, based on 

the fact that a substantial number of prior studies have shown that individual differences 

in performance on some classic working memory tasks (e.g., a variant of the n-back task) 

and task switching protocols (e.g., the classic number/letter switch task; Rogers & Monsell, 

1995) load on distinct latent factors (“updating” vs. “shifting”, respectively) (e.g., Friedman 

et al., 2006, 2008, 2020; Miyake et al., 2000; Seer et al., 2021; Snyder et al., 2021; Vaughan 

& Giovanello, 2010), it appears unlikely that the types of adjustment in switch readiness 

probed in the present study would be closely related to working memory capacity.

4.2. Correlated Domain-Specificity

In this study, we found evidence of good fit for a model that included correlated domain- 

and context-specific latent factors. Put another way, people learn to adapt control settings 

to changing contexts, and this ability is underpinned by distinct but correlated mechanisms 

when it comes to adapting to changes in demand on shielding a current task set from 

distracters versus changes in demand on switching from one task set to another. This 

finding is in line with the assumption that regulating on-task focus and between-task 

switching are related, but are neither mediated by a unitary supervisor nor fully reciprocal 

processes. Critically, this model was derived using only frequency-unbiased items that are 
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free of most confounds that plagued earlier research on control-learning (Braem et al., 

2019). While the idea of a single, domain-general learner is discounted by the current 

findings, the moderate correlation (0.56-0.57) between adaptations in the conflict-control 

and task-switching domains across all behavioral metrics suggests some commonality in 

how domain-specific learning takes place, that is, that some underlying mechanisms may 

be similar. Results from various studies support this notion: for example, researchers have 

found support for episodic contributions to learned control across both conflict-control 

(Brosowsky & Crump, 2018; Spinelli et al., 2019) and task-switching (Whitehead et al., 

2020) domains. However, despite a potentially similar learning source, each domain still 

retains its own unique properties: we found tighter potential coupling between the proportion 

switch than proportion congruent contexts, but also less stable individual differences when 

using switch costs compared to congruency effects.

To explicitly probe for the source of commonalities and test the role of learning, researchers 

could follow the lead of prior latent variable studies on cognitive control (Friedman 

& Miyake, 2017; Miyake & Friedman, 2012) and examine the overlap between brain 

regions or neural mechanisms that are involved between domains as well as the separable 

components specific to each domain. For example, Chiu and Egner (2019) suggested 

that a subcortical learning machinery centered on the dorsal striatum, typically associated 

with reward learning (e.g., Bejjani et al., 2019), mediates the learning of stimulus-control 

associations (in conjunction with frontoparietal cortex). This proposal was based on model-

based neuroimaging of conflict-control learning (Jiang et al., 2015; Chiu et al., 2017), and 

it naturally raises the question of whether the striatum may play a similar role across other 

control domains, in particular within the domain of task switching (cf. De Baene & Brass, 

2013). Importantly, this “unity and diversity” research approach should nonetheless yield 

findings that differ from copious prior neuroimaging research on conflict-control and task 

switching, since it is concerned with dynamic adjustments of control rather than modeling 

static differences in control metrics. Moreover, the final model identified here yielded highly 

reliable path loadings and composite reliability, an improvement on prior research with 

difference scores that sometimes yielded strong common variance among indicators and 

sometimes did not (Draheim et al., 2019).

Finally, another possibility for investigating the source of commonality among tasks is 

to impose similar demands across the learning paradigms and simply test for domain-

specific contributions to control-learning. For example, Bugg and colleagues (2015) used 

a cued LWPC protocol to show that participants typically relax control when they have 

foreknowledge of upcoming demand. This is similar to cued LWPS studies, where most 

adjustments occur in response to the easier, task-repeat trials (e.g., Bejjani et al., in 

press; Siqi-Liu & Egner, 2020) than in response to the harder, task-switch trials. Here, 

this commonality may arise from awareness or from relaxing control because of learned 

expectations (cf. Bejjani, Dolgin, et al., 2020) or both, which may impact the timing of how 

people adjust control. Research that more explicitly teases apart the implications of a shared 

learning framework along these lines is needed (Abrahamse et al., 2016).
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4.3 Timescales of Learning Control

One intriguing possibility suggested by the current data set is that people might learn to 

adjust control in different domains on different timescales. Specifically, exploratory model 

comparison showed that separating out early and late indicators for the task-switching, 

but not conflict-control, domain yielded the smallest AIC and BIC values as well as good 

omnibus model fit. This could suggest two, not mutually exclusive possibilities: that people 

are less consistent over time in their recruitment of conflict-control and thus the collapsed 

metrics are needed to reflect their ongoing expectations, or that people learn probabilistic 

changes in switch likelihood more easily than changes in conflict likelihood and thus the 

timescale of adjustments is more rapid for the former.

With respect to the latter possibility, memory effects for associations between specific 

stimuli and task-switching demands are potentially of shorter duration than those of conflict-

control. For example, studies that have used one-shot control-learning paradigms, in which 

participants are shown trial-unique images that are associated with the need to recruit 

different levels of control, have found conflict-control effects that last longer than those for 

task-switching (Bejjani et al., 2021; Brosowsky & Crump, 2018; Whitehead et al., 2020). 

These differences in duration may be caused in part by a difference in how attention is 

allocated to target stimuli under conflict as compared to task switching. Specifically, there is 

some evidence that conflict, presumably by refocusing attention on task-relevant information 

(Egner & Hirsch, 2005), can lead to enhanced memory for target information (Krebs et al., 

2015; Rosner et al., 2015; Rosner & Milliken, 2015; see also Davis et al., 2019), whereas 

task-switching may cause memory impairment for target stimuli (Richter & Yeung, 2012), 

perhaps due to the need to relax task-set shielding during task set updating (e.g. Dreisbach 

& Wenke, 2011). Outside of longer-term adjustments, item-specific control effects may also 

have smaller effect sizes within the task-switching domain (Chiu & Egner, 2017) than in the 

conflict-control domain (Bejjani, Tan, et al., 2020), although a formal meta-analysis to that 

effect has not yet been conducted. Nonetheless, within the task-switching domain, we have 

found control-learning to be insensitive to long-term memory consolidation (Bejjani et al., 

2021), with effect sizes that are larger earlier on in the task than later. Finally, time-bound 

differences in learning may also stem from the nature of specific task statistics in the present 

study: to form stable associations between stimuli, contexts, tasks, and task-set learning, we 

ensured biased stimuli were both PS-80 and PS-20, whereas the item-specific manipulation 

within conflict-control meant that biased stimuli were either PC-90 or PC-10 (Bejjani et al., 

2021). This could result in weaker overall relationships – although this is contradicted by the 

effect sizes noted in Appendix A – or a deeper emphasis on earlier learned expectations that 

may dissipate more over task blocks until the context shift.

With respect to the possibility that people may recruit conflict-control less consistently 

across time, we suggest a few explanations. For example, an asymmetrical list shifting 

effect (Abrahamse et al., 2013; Bejjani, Tan, et al., 2020; Bejjani & Egner, 2021), in 

which congruency effects are more reduced when participants shift from a harder, mostly 

incongruent context to a mostly congruent context than in the other order, is present 

for the conflict-control domain, but not the task-switching domain (Bejjani et al., 2021). 

This potentially signals that conflict-control is more volatile (Jiang et al., 2015) on a 
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short-term scale and sensitive to contextual demands that may make collapsing across 

metrics necessary to understand broader adjustments in control. We do not believe that 

including collapsed metrics means necessarily less reliability, given that the AIC, BIC, 

and model fit statistics were not much poorer with collapsed task-switching indicators, 

early/late indicators were well correlated within the conflict-control paradigm, and scores 

on the latent variables were higher for conflict-control than task-switching (see Table 16). 

Given task-specific demands, however, and hints of differences across domains (e.g., in the 

awareness data), it is possible each involves different learning sensitivity.

Ultimately, because collapsing the indicators within the early/late timescales results in fewer 

indicators, we cannot estimate models with higher order factors or bifactor models because 

of model misidentification. Thus, future research will have to determine more precisely the 

time course of learning conflict-control relative to switch-readiness. All of the above hint 

at intriguing possibilities for understanding both the unity and diversity within learning to 

adjust control across different contextual demands.

4.4. Individual Differences in Control-Learning

One key finding within the current study was that residualizing the indicators on our 

measure of general cognitive ability (i.e., ICAR) and self-reported reward and punishment 

sensitivity (i.e., BIS-BAS) had little impact on model fit. First, this suggests that the kind 

of learning modeled here does not simply result from participants being good at doing 

cognitive tasks at large; while we do exclude participants for poorer accuracy on the control 

tasks, we did not do so for their performance on the ICAR, so exclusion biases should not 

impact this conclusion.

Second, this suggests a larger distinction between state-based and trait-based individual 

differences in control-learning, with some support for state-based and not trait-based 

adjustments. One core assumption we made was that participants could either relax or 

increase their degree of control on easy or hard trials, respectively, which allows for the 

role of intra-individual differences (Braver, 2012) in deciding whether recruiting control is 

worth the effort, given the current context (Kool & Botvinick, 2018; Shenhav et al., 2013). 

This fits with Bejjani, Dolgin, and colleagues (2020), for instance, where it was found 

that participants only adjusted their control in response to precues when they understood 

both what the precues meant in terms of upcoming control-demand – i.e., the value of 

the precues – and could consciously perceive the precues. This supports the state-based 

idea that individuals adjust control in accordance with their context and evaluation of 

the mental effort involved and that individual differences in this type of control-learning 

are stable enough for the structural equation modeling used here. On the contrary, trait-

based individual differences in control-learning do not seem well supported within the 

current framework. This is consistent with a recent study by Bejjani and Egner (in press), 

which investigated the learning of stimulus-control associations through incidental memory 

of reinforcement (feedback) events and found little evidence for trait-based motivational 

contributions to control-learning. In the current study, the uniquenesses (error terms of the 

indicators) ranged from 0.19 to 0.38 (LWPC: 0.21-0.38; LWPS: 0.19-0.25), indicating that 

there is little variance left to explain. When we accounted for individual variance on a trait-
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level costs-benefits framework (reward vs. punishment sensitivity), model fit nonetheless 

remained good. Because our model assumptions codified state-based adjustments in control, 

we cannot suggest definitive support for these (as opposed to say, an inherent limitation to 

the model itself), but the results of the current study do suggest a much smaller impact of 

trait-based individual differences in control-learning.

4.5. Automaticity in Control-Learning

Interestingly, generalization of learning from frequency-biased to frequency-unbiased items 

may be relatively automatic, as supported by the pattern of results we observed with 

respect to explicit awareness. About two in three participants reported awareness that some 

blocks were harder when they were categorizing the color of color-words, and of those 

participants, about one in three also reported awareness that some blocks were harder 

when they were categorizing digits and letters. However, model fit was estimated to be 

similar for factor loadings (slopes), structure (construct), and intercepts (baseline values) 

as well as item level residual variances across participants who self-reported awareness 

about block difficulty on these list-wide paradigms and those who self-reported having 

less explicit awareness of the task manipulation. This thus suggests that participants 

who are explicitly aware do not necessarily show more control-learning, and that the 

latent variables represent similar constructs across different levels of self-reported explicit 

awareness. Similarly, post-test questions revealed that while participants could identify 

the temporal difficulty associated with blocks and the item-specific difficulty associated 

with frequency-biased items, they were not accurately estimating the causal strength of 

the proportion manipulations and they misidentified the difficulty of frequency-unbiased 

items. We interpreted this to mean that frequency-biased items increase explicit awareness in 

participants about the current difficulty level, which serves as a learning signal that causes 

the generalization of attention from frequency-biased (inducer) items to frequency-unbiased 

(diagnostic) items in a relatively automatic fashion. Thus, what researchers have termed 

intentionality (e.g., Brosowsky & Crump, 2016) or even strategic adjustments may instead 

reflect increased awareness of task manipulations that can provoke automatic adjustments in 

control.

4.6. Contextual Adaptations of Control

In addition to observing measurement invariance for explicit awareness groups, we 

also observed measurement invariance across block order groups, or participants who 

experienced the mostly congruent context first relative to those who experienced the mostly 

incongruent context first. Previous studies have found larger mean congruency differences 

for participants who experience the MC context first and then switch to the MI context 

compared to the other way around (Abrahamse et al., 2013; Bejjani, Tan, et al., 2020; 

Bejjani & Egner, 2021), indicating another contextual adaptation of control, whereby 

initial learned expectations dictate subsequent participant responding. Because we observed 

measurement invariance across factor structure, loadings, and intercepts as well as item 

residual variances, this provides support for the idea that these block order groups do not 

differ in terms of latent sources of influence in control-learning (e.g., the rate of learning 

(slopes), latent structure (construct), or baseline differences (intercepts)). This then allows 

the means for the two groups to be compared and provides further support for the idea 
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that the constructs are the same, or have the same meaning, across block order groups. 

Bejjani and Egner (2021) speculated that participants strongly anchor their expectations 

of control-demand to the context they experienced first. Within a learning framework of 

control, this is thus possible without the meaning of the latent variables differing between 

groups: that is, individuals may develop learned expectations that thus cause varying scores 

on those second-order variables, without the constructs themselves changing.

Of note, we could rule out differences in construct meaning because of our methodological 

approach. Most control-learning studies use basic repeated-measures ANOVA analyses to 

infer learning of different specific attentional states (see Appendix A with Supplementary 

Text). However, within the current study, we instead focused on the variance-covariance 

matrix. Future studies should also consider increasing their sample sizes or pooling together 

relevant samples and shifting away from repeated-measures ANOVAs to more sensitive 

analyses as a means of accounting for individual differences, such as the modeling of 

reinforcement learning variables (Chiu et al., 2017; Jiang et al., 2015; Muhle-Karbe et al., 

2018), Gaussian Process models accounting for latent learning (McDonald et al., 2019), 

hierarchical modeling (Rouder & Haaf, 2019), exploratory network analysis (Epskamp et al., 

2018), or latent growth curve models that estimate growth trajectories for repeated measures 

of dependent variables (Kim-Spoon et al., 2021). These analytical approaches may more 

accurately take the learning process into account than the more commonly used analyses 

focusing on aggregate measures of performance as indicators of learning.

5. Conclusions

The current study examined the cognitive architecture of learning to dynamically adjust 

control across different contexts. Participants performed a conflict-control and task-

switching paradigm in which the difficulty of trials was manipulated temporally across 

blocks of trials, with inducer, frequency-biased stimuli that were predictive of either difficult 

or easy trials as well as diagnostic, frequency-unbiased stimuli that were equally associated 

with difficult and easy trials. Modeling these frequency-unbiased stimuli as reflective 

indicators of control-learning, we found support for a model that included correlated 

domain- and context-specific latent variables, and this model was not impacted by individual 

variance in cognitive ability, motivation, or explicit awareness of the task manipulations. 

This suggests that the ability to adapt control settings to changing demands is mediated by 

distinct but correlated mechanisms in the domains of cognitive stability (conflict-control) 

and flexibility (task-switching).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• We examine the latent structure of learning to adjust cognitive control

• We manipulate the proportion of congruency and task-switching over blocks 

of trials

• Model fit is best with correlated domain- and context-specific latent factors

• Model fit does not decrease when accounting for awareness, ability, and 

motivation

• Learned conflict-control and switch-readiness may depend on distinct abilities
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Figure 1. Experimental protocol.
Participants performed a color-word Stroop task (A), which involved a list-wide proportion 

congruent (PC) manipulation. Next, they completed a cued parity/letter task-switching 

paradigm, which also involved a list-wide proportion switch (PS) manipulation (B). Finally, 

participants answered mental health questions and demographics prompts, and responded to 

explicit awareness questions and personality questionnaires (C).
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Figure 2. Control-Learning Structural Equation Model.
Mean Reaction Times (ms) within condition-specific variables for unbiased (PC-50/PS-50) 

items are modeled to reflect their respective context-specific proportion latent variables, 

which then reflect correlated domain-specificity. The path diagram above was produced 

with the semPlot package and displays the standardized estimates after model estimation. 

E = Early, L = Late within context. MC = Mostly Congruent (PC-75), MI = Mostly 

Incongruent (PC-25), MR = Mostly Repeat (PS-30), MS = Mostly Switch (PS-70) contexts. 

C = Congruent, I = Incongruent, R = Repeat, S = Switch trial. P70 = PS-70, P30 = 

PS-30, P25 = PC-25, P75 = PC-75, PSC = Proportion Switch Contexts, PCC = Proportion 

Congruent Contexts.
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Table 1.

Trial counts across the LWPC and LWPS within a single task block and across all blocks by proportion 

context manipulation.

MC MI MR MS

Biased Items

 Congruent 61 (122) 7 (14)

 Incongruent 7 (14) 61 (122)

Unbiased Items

 Congruent 20 (40) 20 (40)

 Incongruent 20 (40) 20 (40)

Biased Items

 Task-Repeat 32 (128) 8 (32)

 Task-Switch 8 (32) 32 (128)

Unbiased Items

 Task-Repeat 10 (40) 10 (40)

 Task-Switch 10 (40) 10 (40)
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Table 2.

Descriptive behavioral metrics (RT, IE, LISAS, and RT difference scores) across the LWPC and LWPS.

Reaction Time (ms)

Metric Mean Lower 95%
CI

Upper 95%
CI

Skew Kurtosis Reliability

eMCC 652 648 656 0.70 1.07 ρ(947) = 0.69

eMCIC 717 712 722 0.18 0.05 ρ(938) = 0.63

eMIC 656 652 660 0.72 1.21 ρ(946) = 0.63

eMIIC 709 705 713 0.23 0.17 ρ(943) = 0.67

lMCC 641 637 645 0.75 1.32 ρ(948) = 0.68

lMCIC 696 692 701 0.23 0.16 ρ(948) = 0.66

lMIC 640 636 644 0.85 1.70 ρ(948) = 0.70

lMIIC 685 681 689 0.50 0.84 ρ(948) = 0.67

eMRR 725 720 730 0.07 0.09 ρ(948) = 0.72

eMRS 754 749 759 −0.19 0.12 ρ(947) = 0.68

eMSR 736 731 741 −0.12 0.07 ρ(947) = 0.70

eMSS 750 744 755 −0.22 0.36 ρ(948) = 0.65

lMRR 713 708 718 0.21 0.19 ρ(948) = 0.72

lMRS 743 737 748 −0.19 0.13 ρ(948) = 0.69

lMSR 727 722 732 0.05 0.17 ρ(948) = 0.72

lMSS 740 735 746 −0.10 0.04 ρ(947) = 0.69

Inverse Efficiency (ms)

Metric Mean Lower 95%
CI

Upper 95%
CI

Skew Kurtosis Reliability

eMCC 769 756 782 3.05 14.85 ρ(947) = 0.63

eMCIC 1109 1064 1154 5.33 41.62 ρ(938) = 0.64

eMIC 782 767 796 5.03 48.73 ρ(946) = 0.58

eMIIC 1001 971 1032 5.68 52.82 ρ(943) = 0.61

lMCC 731 721 741 2.46 10.40 ρ(948) = 0.52

lMCIC 882 864 900 5.39 56.86 ρ(948) = 0.56

lMIC 721 713 729 1.78 5.10 ρ(948) = 0.53

lMIIC 837 825 849 1.89 5.84 ρ(948) = 0.53

eMRR 850 839 860 1.70 6.25 ρ(948) = 0.54

eMRS 955 939 970 6.98 113.34 ρ(947) = 0.41

eMSR 858 849 868 1.02 2.08 ρ(947) = 0.47

eMSS 934 921 947 1.72 7.06 ρ(946) = 0.45

lMRR 810 801 819 1.12 2.40 ρ(948) = 0.50

lMRS 921 909 933 1.27 2.50 ρ(948) = 0.50

lMSR 830 821 840 1.59 5.68 ρ(948) = 0.51

lMSS 899 887 911 1.28 3.39 ρ(947) = 0.51

LISAS (ms)

Metric Mean Lower 95%
CI

Upper 95%
CI

Skew Kurtosis Reliability

eMCC 689 684 694 0.67 0.33 ρ(947) = 0.69
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Reaction Time (ms)

Metric Mean Lower 95%
CI

Upper 95%
CI

Skew Kurtosis Reliability

eMCIC 795 789 802 0.39 −0.01 ρ(938) = 0.66

eMIC 695 690 700 0.61 0.37 ρ(946) = 0.64

eMIIC 778 772 783 0.35 −0.08 ρ(943) = 0.66

lMCC 673 668 678 0.71 0.86 ρ(948) = 0.61

lMCIC 749 744 755 0.24 −0.25 ρ(948) = 0.64

lMIC 670 665 675 0.66 0.85 ρ(948) = 0.63

lMIIC 733 728 738 0.37 0.12 ρ(948) = 0.62

eMRR 769 764 775 0.14 0.06 ρ(948) = 0.65

eMRS 820 814 826 −0.13 0.05 ρ(947) = 0.57

eMSR 780 774 786 −0.04 −0.15 ρ(947) = 0.61

eMSS 811 805 817 −0.17 0.06 ρ(946) = 0.60

lMRR 749 743 754 0.19 −0.06 ρ(948) = 0.63

lMRS 802 796 808 −0.03 0.01 ρ(948) = 0.61

lMSR 764 759 770 0.11 0.13 ρ(948) = 0.64

lMSS 794 788 800 −0.01 −0.11 ρ(947) = 0.62

RT Difference Scores divided by overall RT

Metric Mean Lower 95%
CI

Upper 95%
CI

Skew Kurtosis Reliability

eMCcong 0.10 0.09 0.10 0.05 2.09 ρ(948) = 0.20

eMICcong 0.08 0.07 0.08 0.12 0.44 ρ(947) = 0.12

lMCcong 0.08 0.08 0.09 0.21 −0.16 ρ(948) = 0.20

lMICcong 0.07 0.06 0.07 0.15 0.23 ρ(948) = 0.18

eMRswi 0.04 0.03 0.04 −0.09 0.55 ρ(947) = 0.13

eMSswi 0.02 0.01 0.02 0.14 0.33 ρ(948) = 0.01

lMRswi 0.04 0.04 0.05 0.07 0.03 ρ(948) = 0.11

lMSswi 0.02 0.01 0.02 0.51 3.31 ρ(947) = 0.05

Reliability refers to split-halves reliability, which was calculated by correlating the mean condition-specific measures that result from alternating 0s 
and 1s across trials within all blocks of each respective task.
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Table 3.

Omnibus fit statistics across behavioral metrics (RT, IE, LISAS, difference scores)

Model 1 – One (domain-general) factor

χ 2 df CFI TLI RMSEA SRMR

RT 5024.97 104 0.618 0.559 0.245 [0.239, 0.250] 0.184

IE 1119.27 104 0.644 0.590 0.155 [0.147, 0.164] 0.124

LISAS 4225.99 104 0.615 0.556 0.217 [0.211, 0.222] 0.162

RT Difference Scores 158.87 20 0.712 0.597 0.090 [0.077, 0.103] 0.072

Model 2 – Two factors (Conflict and Switch domains)

χ 2 df CFI TLI RMSEA SRMR

RT 1366.69 103 0.914 0.900 0.117 [0.111, 0.122] 0.037

IE 583.50 103 0.849 0.824 0.102 [0.094, 0.110] 0.063

LISAS 1529.18 103 0.872 0.851 0.125 [0.120, 0.131] 0.052

RT Difference Scores 45.78 19 0.946 0.921 0.040 [0.025, 0.055] 0.033

Model 3 – Four fully correlated proportion context factors (PC/PS)

χ 2 df CFI TLI RMSEA SRMR

RT 748.52 98 0.956 0.946 0.086 [0.080, 0.092] 0.028

IE 444.51 98 0.895 0.872 0.087 [0.079, 0.095] 0.054

LISAS 972.63 98 0.923 0.905 0.100 [0.094, 0.106] 0.042

RT Difference Scores 16.71 14 0.995 0.989 0.015 [0.000, 0.037] 0.019

Model 4 – Four domain-only correlated proportion context factors (PC/PS)

χ 2 df CFI TLI RMSEA SRMR

RT 1036.39 102 0.937 0.925 0.101 [0.095, 0.106] 0.272

IE 557.79 102 0.863 0.838 0.098 [0.090, 0.106] 0.167

LISAS 1226.50 102 0.901 0.883 0.111 [0.105, 0.117] 0.232

RT Difference Scores 35.13 18 0.966 0.947 0.032 [0.016, 0.048] 0.037

Model 5 – One higher-order factor (domain-general context) predicted by proportion context factors (PC/PS)

χ 2 df CFI TLI RMSEA SRMR

RT 1607.58 100 0.898 0.877 0.129 [0.123, 0.135] 0.146

IE 572.19 100 0.856 0.827 0.101 [0.093, 0.109] 0.094

LISAS 1587.97 100 0.870 0.843 0.129 [0.123, 0.134] 0.125

RT Difference Scores n/a n/a n/a n/a n/a n/a

Model 6 – Two higher-order factors (domain-specific context) predicted by proportion context factors (PC/PS)

χ 2 df CFI TLI RMSEA SRMR

RT 749.30 99 0.956 0.946 0.085 [0.080, 0.091] 0.028

IE 442.52 99 0.896 0.873 0.086 [0.078, 0.095] 0.054

LISAS 972.66 99 0.923 0.906 0.099 [0.094,0.105] 0.042

RT Difference Scores n/a n/a n/a n/a n/a n/a
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Table 4.

Omnibus fit statistics when accounting for Block Order between-participant groups.

χ 2 df CFI TLI RMSEA SRMR

Configural 894.46 198 0.953 0.943 0.088 0.030

Metric 925.61 212 0.952 0.946 0.086 0.037

Scalar 1008.27 222 0.948 0.943 0.088 0.040

Strict 1080.34 238 0.943 0.943 0.088 0.039
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Table 5.

Omnibus fit statistics when accounting for Explicit Awareness between-participant groups.

χ 2 df CFI TLI RMSEA SRMR

Configural 876.37 198 0.953 0.943 0.087 0.028

Metric 918.82 212 0.952 0.946 0.085 0.036

Scalar 929.10 222 0.952 0.948 0.083 0.036

Strict 913.82 238 0.952 0.951 0.081 0.037

Cogn Psychol. Author manuscript; available in PMC 2023 June 01.


	Abstract
	Introduction
	Latent Variable Research on Cognitive Control
	Models of Control-Learning
	The Current Study

	Method
	Sample Size
	Participants
	Overall Procedure
	List-wide proportion congruent (LWPC) task
	List-wide proportion switch (LWPS) task
	Post-test questionnaire

	Data Analysis

	Results
	Correlated Domain- and Context-Specificity of Control-Learning
	Addressing Speed-Accuracy Trade-offs and Conceptual Validity
	Timing of Control-Learning Effects
	Measurement Invariance across Block Order
	Specificity of Control-Learning
	Explicit Awareness as a Learning Signal
	Measurement Invariance across Explicit Awareness

	General Discussion
	Caveats
	Correlated Domain-Specificity
	Timescales of Learning Control
	Individual Differences in Control-Learning
	Automaticity in Control-Learning
	Contextual Adaptations of Control

	Conclusions
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

