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Abstract

Purposes: Preimplant diagnostic magnetic resonance imaging is the gold standard for image-

guided tandem-and-ovoids (T&O) brachytherapy for cervical cancer. However, high dose rate 

brachytherapy planning is typically done on postimplant CT-based high-risk clinical target volume 

(HR-CTVCT) because the transfer of preimplant Magnetic resonance (MR)-based HR-CTV 

(HR-CTVMR) to the postimplant planning CT is difficult due to anatomical changes caused by 

applicator insertion, vaginal packing, and the filling status of the bladder and rectum. This study 

aims to train a dual-path convolutional neural network (CNN) for automatic segmentation of 

HR-CTVCT on postimplant planning CT with guidance from preimplant diagnostic MR.

Methods: Preimplant T2-weighted MR and postimplant CT images for 65 (48 for training, eight 

for validation, and nine for testing) patients were retrospectively solicited from our institutional 

database. MR was aligned to the corresponding CT using rigid registration. HR-CTVCT and 

HR-CTVMR were manually contoured on CT and MR by an experienced radiation oncologist. 

All images were then resampled to a spatial resolution of 0.5 × 0.5 × 1.25 mm. A dual-path 3D 

asymmetric CNN architecture with two encoding paths was built to extract CT and MR image 

features. The MR was masked by HR-CTVMR contour while the entire CT volume was included. 

The network put an asymmetric weighting of 18:6 for CT: MR. Voxel-based dice similarity 

coefficient (DSCV), sensitivity, precision, and 95% Hausdorff distance (95-HD) were used to 

evaluate model performance. Cross-validation was performed to assess model stability. The study 
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cohort was divided into a small tumor group (<20 cc), medium tumor group (20–40 cc), and large 

tumor group (>40 cc) based on the HR-CTVCT for model evaluation. Single-path CNN models 

were trained with the same parameters as those in dual-path models.

Results: For this patient cohort, the dual-path CNN model improved each of our objective 

findings, including DSCV, sensitivity, and precision, with an average improvement of 8%, 7%, 

and 12%, respectively. The 95-HD was improved by an average of 1.65 mm compared to the 

single-path model with only CT images as input. In addition, the area under the curve for different 

networks was 0.86 (dual-path with CT and MR) and 0.80 (single-path with CT), respectively. The 

dual-path CNN model with asymmetric weighting achieved the best performance with DSCV of 

0.65 ± 0.03 (0.61–0.70), 0.79 ± 0.02 (0.74–0.85), and 0.75 ± 0.04 (0.68–0.79) for small, medium, 

and large group. 95-HD were 7.34 (5.35–10.45) mm, 5.48 (3.21–8.43) mm, and 6.21 (5.34–9.32) 

mm for the three size groups, respectively.

Conclusions: An asymmetric CNN model with two encoding paths from preimplant MR 

(masked by HR-CTVMR) and postimplant CT images was successfully developed for automatic 

segmentation of HR-CTVCT for T&O brachytherapy patients.
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1 | INTRODUCTION

The American Brachytherapy Society and Groupe European Curietherapie-European 

Society of Therapeutic Radiation Oncology (GEC-ESTRO) Gynecology (GYN) working 

group supports brachytherapy after external beam radiotherapy for patients with locally 

advanced cervical cancers (FIGO stages IB-IVA stage number) as it improves local 

control and survival rates.1–3 There are various applicators available for brachytherapy 

treatment of cervical cancer. Tandem-and-ovoids (T&O) is one commonly used applicator 

for patients with barrel-shaped cervixes.3,4 The appropriate selection of the applicator 

depends on the patient’s clinical history (e.g., prior hysterectomy) and anatomy.3 The 

European studies on magnetic resonance imaging (MRI)-guided brachytherapy in locally 

advanced cervical cancer (EMBRACE) demonstrated that 98% of local failures were 

located within the high-risk clinical target volume (HR-CTV) and the intermediate-risk 

CTV (IR-CTV).3 A correlation between local control and target volume was demonstrated 

in the retroEMBRACE data that supports adaptive brachytherapy planning with target 

dose escalation. With the advent of three-dimensional imaging modalities, such as MRI 

or computed tomography (CT), the concept of image-guided adaptive brachytherapy has 

been developed and implemented by the GEC-ESTRO gynecology working group in the 

EMBRACE studies. Compared to CT, the MR scan can detect tumor regression during 

radiation therapy, which allows for adaptive brachytherapy plans and ensures sufficient 

target dose coverage without overdosing the organs at risk (OAR).5–7 The results of the 

EMBRACE studies confirmed the safety, feasibility, advantages of MRI-based treatment 

planning, clinical outcomes, and late toxicities supporting the implementation of MRI-based 

brachytherapy.3
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Currently, the application of MRI for each applicator implantation is still limited. Major 

drawbacks include limited availability of MRI scanners, time needed for MRI scanning, 

and additional patient transportation and setup time leading to increased uncertainty in 

the applicator position, and older MRI noncompatible applicators. In cases where MRI is 

not available in the subsequent fractions of brachytherapy, the MRI-based target contours 

can be reused through image fusions in the process of contouring on CT. Uncertainties in 

image and registration quality result in inconsistency in contouring at different fractions of 

brachytherapy or from different clinicians. Moreover, the fusion of pretreatment MRI to the 

CT for planning is challenging due to anatomical changes caused by applicator insertion, 

vaginal packing, and physiologic changes of the bowels and bladder. Therefore, we seek 

to train a dual-path convolutional neural network (CNN) utilizing the preimplant diagnostic 

MR and postimplant CT for automatic segmentation of HR-CTV.

The development of deep learning has pushed the limits of what is possible in 

the domain of medical image processing, particularly in image registration, detection, 

segmentation, regression, and classification.8–11 Meanwhile, improved performance has 

been reported on solving a large variety of tasks in radiation oncology, such as 

treatment planning, contouring, organ segmentation, quality improvement, and treatment 

response.12–14 Specifically, CNN has achieved remarkable success in 2D and 3D medical 

image segmentation,15–17 most of which are for normal organs. A few studies reported 

automatic segmentation of CTV. For the head and neck, Cardenas et al. built a deep auto-

encoders model to auto-delineate HR-CTV.18 Zhang et al. used a UNet to auto-segment 

HR-CTV on CT images alone for T&O patients.19 However, a potential limitation of this 

study is that MR was not used. Without MR, reliable manual segmentation of the HR-CTV 

is less than ideal in our experience due to the poor soft-tissue contrast, tumor visibility, 

and applicator-caused artifacts in the CT images. Dyer et al. used a deformable image 

registration algorithm to aid HR-CTV contours by involving preimplant MR and postimplant 

CT, with the need to manually segment both target and OAR, including cervix, uterus, 

bladder, and rectum. The contour-guided deformable image registration achieved a relatively 

low voxel-based DSC of 0.61.20 In the current study, we aim to first understand the inter- 

and intraoperator HR-CTV contour consistencies for T&O brachytherapy patients, which 

serve as a reasonable upper bound to evaluate automated segmentation algorithms. We 

then developed a novel dual-path CNN to incorporate both preimplant diagnostic MR and 

postimplant planning CT for the automated segmentation of the HR-CTV, with a layer-level 

fusion of symmetric weightings to improve performance. Moreover, an asymmetric learning 

architecture from multi-modal MR images was built by using a different number of filters 

for different paths to improve the results. Model performance is compared with contouring 

uncertainties existing in the real clinical setting.

2 | METHODS AND MATERIALS

2.1 | Patient data

Under an institutional review board approved protocol, we retrospectively solicited 65 T&O 

patients from our institutional database from 2017 to 2021. Preimplant T2-weighted MR 

and postimplant CT images (typically done one week after the MR scan) were included 
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for each patient. In addition, a second postimplant CT two weeks after the MR scan was 

also included to quantify intra- and interoperator uncertainties. The CT-based HR-CTV 

(HR-CTVCT) was manually delineated on the CT after reviewing the tumor measurements 

on the diagnostic MR images as part of the standard clinical workflow. For the study, 

the HR-CTVCT was verified by a single primary radiation oncologist (PRO), who was the 

brachytherapy fellow trained in our institution with 5 years of experience. The MR-based 

HR-CTV (HR-CTVMR) were manually contoured by a medical resident and then verified by 

the same PRO. We divided the patient cohort into small (<20 cc), medium (20–40 cc), and 

large volume group (>40 cc) based on the HR-CTVCT of the first postimplant CT.

2.2 | Image acquisition and preprocessing

Postimplant CT images were performed on GE medical systems, with original volumetric 

dimensions of 512 × 512 × 220, voxel spacing of 0.5 × 0.5 × 1.25 mm3, kVp of 120, and 

mAs of 300. Preimplant T2-weighted MR images were acquired on GE medical systems, 

with original volumetric dimensions of 256 × 256 × 42 and a voxel spacing of 1.25 × 1.25 

× 5 mm3, TP of (2316–5422) ms, echo time of (109–114) ms, percent phase field of view of 

100, and flip angle of 180°.

Digital Imaging and Communications in Medicine (DICOM) files containing CT and 

MR images were exported to VelocityAI (Varian, Palo Alto, CA). The MR scans were 

then rigidly registered to the CT coordinates using the femur heads, sacrum, and coccyx 

as landmarks. Figure 1 compares the location and volume of preimplant MR-based HR-

CTVMR and postimplant CT-based HR-CTVCT for an example patient. The voxel intensities 

of CT and MR images were normalized to be between 0 and 1. To manage the data size 

in training, we resampled the registered CT and MR images to 128 × 128 × 80 voxels 

by nearest-neighbor interpolation. All images have a final spatial resolution of 0.5 × 0.5 × 

1.25 mm3. The model training and testing were performed using a graphics processing unit 

(GPU) workstation equipped with 4x RTX 2080 Ti and a total of 44 Gigabyte (GB) graphic 

memory.

2.3 | Cross-validation procedure

Final model performance was assessed using eight-fold cross-validation, in which each fold 

consisted of randomly selected 48 subjects for training, eight for validation, and nine for 

testing.

2.4 | Network architecture

As shown in Figure 2, a dual-path 3D asymmetric CNN architecture with two encoding 

paths was built for image features of CT and MR. The MR was masked by HR-CTVMR 

contour while the entire CT volume was included. The network employed NCT filters on the 

CT path and NMR filters on the MR path, where NCT and NMR are two tunable parameters 

to control the relative weighting of the imaging modalities. In this study, we fixed NCT = 

18 and increased NMR from 2 to 18 with an increment of 2. Inside each encoding path, the 

corresponding kernel convolution was applied twice with a rectified linear unit, a dropout 

layer between layers with a dropout rate of 0.4, a shortcut with kernel 1 × 1 × 1, and a 

2 × 2 × 2 max-pooling operation in each layer.21,22 The number of feature channels was 
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doubled after the max-pooling operation. In the upsampling path, each layer consisted of an 

upconvolution kernel of 2 × 2 × 2, followed by two 3 × 3 × 3 convolution kernels to halve 

the feature channels. We then concatenated the corresponding channels in the two paths. In 

the final step, 1 × 1 × 1 convolution and soft-max were used to map the feature vectors to 

binary classes. The loss function used cross-entropy, which was defined as

E = − ∑xyk(x) log pk(x) + 1 − yk(x) log 1 − pk(x) (1)

yk(x) was the true label at pixel position x, which was 0 or 1 for this binary case. pk(x) was 

the pixel-wise soft-max, which was given by

pk (x) = exp fk(x)
∑k′

C exp fk′(x) (2)

fk(x) was the activation function in feature channel k at the pixel position x. C was 

the number of classes. Glorot (Xavier) normal initializer was used for this dual-path 

CNN,23 which drew samples from a truncated normal distribution centered on zero with 

σ = 2
fanin+fanout

. fanin and fanout were the numbers of input and output units, in the 

weighting tensor, respectively. Adam optimizer was used to train this model.24 We tested 

learning rates ranging from 1 × 10−4 to 1 × 10−7. As a result, a learning rate of 6 × 10−5 with 

1000 epochs was chosen to train this model.

The dual-path CNN model was compared with two scenarios using a single path in CNN, 

respectively. In the first scenario, the single path only used the CT as input; in the second 

scenario, the CT and MR were concatenated into a single matrix for input. The same 

network parameters, loss function, and training methods were used for comparisons. We 

define the following acronyms for the four models studied: SPCT, SPCTMR, DPSW, and 

DPAW stand for single-path with input of CT, single-path with combined inputs of CT 

and MR, dual-path with symmetric weighting, and dual-path with asymmetric weighting, 

respectively.

2.5 | Intra- and interoperator uncertainty estimation

To benchmark the performance of our dual-path CNN model, we studied intra- and 

interoperator uncertainties. For the intraoperator uncertainty, 10 patients were randomly 

selected from each volume group for a total of 30 patients. Postimplant CTs at the first 

and second fractions were contoured by the PRO as part of the standard clinical workflow. 

For the interoperator uncertainty, four patients were randomly selected from each volume 

group for a total of 12 patients. The HR-CTVCT from these 12 patients was independently 

contoured by two additional radiation oncologists (RO1 and RO2), who occasionally treat 

brachytherapy patients. HR-CTVCT from PRO, RO1 and RO2 were used to calculate intra- 

and interoperator dice similarity coefficients (DSCintra and DSCinter) as follows:
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DSCintra  = 2 * HR−CTVweek1  ∩ HR − CTVweek2 
HR−CTVweek1  + HR − CTVweek2 

(3)

DSCinter  = 2 * HR−CTVPRO ∩ HR − CTVRO1or2
HR−CTVPRO + HR − CTVRO1or2

(4)

Additionally, to evaluate the dosimetric uncertainties of the auto-segmented volumes, we 

compared the dose to the 90% (D90%) of the HR-CTV to the PRO plan of the same 12 

patients. To compare these findings with intraoperator variability, rigid registration of PRO 

contours from the second fraction (PRO2) was used on the first fraction with alignment of 

the tandem. Interoperator D90% was also determined on the first fraction using RO1 and 

RO2 contours.

2.6 | Evaluation

The performance of the developed automated segmentation model was similarly determined 

using the DSCV, sensitivity, precision, and Hausdorff distance (HD).

DSCV = 2 × TPV
2 × TPV + FPV + FNV

(5)

where TPV is the number of voxels correctly detected, FNV is the number of voxels not 

detected, and FPV is the number of voxels falsely detected.

Voxel-based sensitivity (SV) and precision (PV) are the similarity measure often used 

in medical image processing to evaluate the performance of the segmentation algorithm 

that has a predefined ground truth.25 SV and PV are defined in Equations (6) and (7), 

respectively.

SV = TPV
TPV + FNV

(6)

PV = TPV
TPV + FPV

(7)

HD is the maximum distance between a boundary point of auto-segmentation A and the 

nearest boundary point of manual contour B:

HD(A, B) = max(ℎ(A, B), ℎ(B, A)) (8)

where

ℎ(A, B) = maxa ∈ Aminb ∈ B a − b (9)
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|·| denotes the Euclidean distance. To mitigate the sensitivity of HD to point outliers, we used 

95-HD as the 95%-percentile HD between set A and B.

2.7 | Statistical testing

Due to the relatively small sample size, statistical analyses were performed by taking p < 

0.05 as statistically significant, calculated by an independent two-sample t-test. In addition, 

mean ± standard deviation (SD), 95% confidence interval, and the median (minimum, 

maximum) were used to summarize the results. Following a significant one-way Analysis of 

Variance (ANOVA) result, Bonferroni correction was performed on DSCv results, comparing 

four models, and including six comparisons between any two models. The original alpha 

level (0.05) was adjusted to 0.0083 (0.05/6) with Bonferroni correction, which means 

the test is significant if the p-value is <0.0083. Additionally, the relative SD (RSD) and 

two-sided Wilcoxon signed rank test were calculated for dosimetric evaluation.

3 | RESULTS

Figure 3a shows the volume distribution of HR-CTVCT in CT and HR-CTVMR in MR. The 

65 patients are divided based on HR-CTVCT into small (<20 cc, n = 13), medium (20–40 cc, 

n = 39), and large (>40cc, n = 13) groups, respectively. As shown in Figure 3b, the mean, 

median, and SD of volumes for HR-CTVMR (HR-CTVCT) are 38.0 (31.7) cc, 32.8 (28.2) 

cc, and 19.2 (16.7) cc. The volume difference between HR-CTVMR and HR-CTVCT is not 

statistically significant (p = 0.06).

3.1 | Intra- and interoperator uncertainty analysis

From the 30 patients’ week one and week two CTs (total of 60 CTs), the intraoperator 

DSCintra was calculated for the PRO. The DSCintra were 0.67 ± 0.03 (0.62–0.75), 0.75 ± 

0.06 (0.66–0.88), and 0.73 ± 0.08 (0.57–0.88), for the small, medium, and large volume 

groups, respectively. From the 12 patients’ week one and week two CTs (total of 24 CTs), 

the interoperator DSCinter was calculated for RO1 versus PRO and RO2 versus PRO. The 

DSCinter were 0.64 ± 0.10 (0.49–0.83), 0.69 ± 0.08 (0.55–0.79), and 0.68 ± 0.09 (0.54–0.84) 

for the three volume groups.

3.2 | Model performance and comparison among different models

Figure 4a shows the four trained models’ receiver operating characteristic curves. Figure 

4b shows the loss function convergence for the training data. In addition, Figure 4c shows 

loss function convergence for training and validation of the dual-path model. The dual-path 

model with asymmetric weighting clearly showed the best diagnostic ability among all 

four models from Figure 4a. The average results from the eight-fold cross-validation were 

reported for each model. The mean area under the curve values are 0.86 (0.85–0.87), 0.83 

(0.81–0.84), 0.82 (0.81–0.83), 0.80 (0.78–0.81) for dual-path with asymmetric weighting, 

dual-path with symmetric weighting, single-path with input CT+MR, and single-path with 

input CT, respectively. Compared to single-path with CT-only input, all other three models 

performed significantly better, p < 0.01.
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Resulted DSCv values from the four models were compared. After Bonferroni correction, 

the DPAW resulted in significantly greater DSC than DPSW, SPCTMR, and SPCT, p < 

0.0083. DPSW also resulted in significantly greater DSC than SPCT, although it was not 

significantly different from SPCTMR, emphasizing the importance of asymmetric weightings. 

For single path models, the addition of MRs did not significantly improve the DSC. The Sv 

is significantly higher in the DPAW model than DPSW and SPCT (p < 0.0083), although it 

is not significantly different from SPCTMR (p = 0.04). DPAW also resulted in significantly 

greater Pv than DPSW, SPCTMR, and SPCT, p < 0.0083. DPSW and SPCTMR both resulted in 

significantly higher Pv than SPCT, emphasizing the importance of MR data. The PV from 

SPCTMR is not significantly different from DPSW, with p = 0.023, again emphasizing the 

importance of asymmetric weightings. 95-HD from DPAW is significantly smaller than SPCT 

and SPCTMR, yet not significantly different from DPSW with p = 0.021.

Table 1 shows the detailed model validation results by different volume groups. Single-path 

CNN models with CT-only input and CT + MR (masked by HR-CTVMR) input were trained 

with the same learning parameters as those used in dual-path models. For the single-path 

CNN with only CT input, the results of DSCv, Sv, Pv, and 95-HD were 0.68 (0.52–0.81), 

0.74 (0.65–0.82), 0.72 (0.63–0.83), and 7.65 (4.57–14.62) mm, respectively. The DSCv, 

Sv, Pv, and 95-HD improved to 0.71 (0.54–81), 0.79 (0.70–0.84), 0.76 (0.67–0.84), and 

7.16 (4.26–13.45) mm when training the single-path CNN with both CT and MR inputs. 

Moreover, to explore the role of HR-CTVMR, dual-path CNN models were constructed 

with two encoding paths based on CT and MR with varying filter weightings. Compared 

to the single-path model, the dual-path model with the symmetric weighting of 18:18 for 

CT: MR improved DSCv, Pv, and 95-HD to 0.72 (0.54–0.82), 0.78 (0.65–0.83), and 6.73 

(4.61–10.55) mm, respectively. However, there was a minor reduction of Sv to 0.76 (0.68–

0.83). Among all dual-path models with varying CT: MR weightings, the best performing 

model was the dual-path with an optimized asymmetric weighting of 18:6 (CT: MR), which 

achieved the highest DSCv, Sv, and Pv of 0.76 (0.61–0.85), 0.81 (0.72–0.86), and 0.83 

(0.71–0.90). The 95-HD was also decreased to 5.99 (3.67–10.45) mm.

3.3 | Model comparison with the intra- and interoperator uncertainties

Figure 5 shows the model comparison with the intra- and interoperator uncertainties for 

the 12 randomly selected patients. The dual-path asymmetric model yielded a favorable 

contouring result with a mean DSCV (auto-segmentation vs. PRO) of 0.74 ± 0.06. This result 

is superior to interoperator uncertainties for RO1 versus PRO (DSCinter = 0.68 ± 0.11) and 

RO2 versus PRO (DSCinter = 0.69 ± 0.07), as well as the mean intraoperator agreement of 

PRO (DSCintra = 0.74 ± 0.07). However, the differences were statistically insignificant with 

p-values of 0.14, 0.08, and 0.72, respectively.

Figure 6 shows a representative example comparing manual contours from RO1, RO2, 

PRO (ground truth), and the auto-contour from the dual-path model with the optimized 

asymmetric weighting. The volume of HR-CTVCT is 43 cc. For this representative case, 

our model achieved DSCV = 0.77, between the radiation oncologist manual interoperator 

variations (DSCinter = 0.84 for RO1 and DSCinter = 0.63 for RO2).
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Comparison of intra- and interoperator D90% to our model of the 12 patients is shown in 

Table 2. The median RSD% of our model compared to PRO was 7.0. This was between 

the interoperator RO1 and RO2 RSD% with medians of 7.6 and 5.7, respectively. However, 

the RSD% evaluating intraoperator D90% was lower with a median of 2.8. Wilcoxon 

signed rank test showed no statistically significant difference between the D90% for the 

intraoperator comparison and the auto segmented versus PRO dosimetric evaluation. There 

were statistically significant differences in both the RO1 and RO2 D90% compared to PRO.

4 | DISCUSSION

Deep learning networks have become a state-of-the-art method for automated multiorgan 

segmentation on CT images.26–28 Nevertheless, for pelvis anatomy, the blurry boundaries 

and low soft-tissue contrast could reduce the segmentation accuracy.26 To address this 

issue, Wang et al. developed a multistage segmentation framework consisting of an organ 

localization model to extract the segmentation region of each organ.26 Tong et al. proposed 

a multi-task edge-recalibrated network to adaptively enhance its segmentation performance 

by extracting the edge-related features during training.16 Meanwhile, very little work has 

been done to auto-segment the HR-CTV for high dose rate brachytherapy, which was 

considerably more challenging due to the lack of visible anatomical edges in CT.18,19 GEC-

ESTRO recommends performing the “pre-exam” MR scan for tumor size and anatomical 

evaluation, and applicator selection. With the applicator in situ, the “pretreatment” MR 

scan is recommended for contouring and treatment planning at each implantation of the 

applicator.29,30 The multiplanar T2-weighted MR scan of less than 5-mm slice thickness 

acquired with the pelvic surface coils is considered as the gold standard for visualization 

and contouring of the tumor and OAR.30 The use of complementary MRI sequences (e.g., 

contrast-enhanced T1-weighted MR or 3D isotropic MRI sequences) is optional.30 Without 

the applicator in situ, MRI acquired before brachytherapy treatment is used to improve 

contouring of the HR-CTV on subsequent postimplant CT images.31,32 Therefore, HR-CTV 

delineation should benefit from features of preimplant MR as well as the postimplant CT. 

Nevertheless, it is challenging to incorporate preimplant MR imaging information into 

the HR-CTV delineation workflow due to large variabilities between HR-CTVCT and HR-

CTVMR in the location, shape, and size. Dyer et al. used the preimplant MR to aid target 

contours through deformable image registration, which achieved a relatively low DSCV of 

0.61.20 We avoided the unreliable MR-CT deformable registration by training a dual-path 

deep learning network to synthesize both the CT and MR information. To the best of our 

knowledge, this is the first report of auto HR-CTV segmentation for T&O patients using 

deep learning imaging features extracted from both postimplant CT and preimplant MR.

Motivated by the success of asymmetric learning from two different kernels from one input 

source,33 in this study, we employed dual-path for CT and MR inputs, respectively, to allow 

separate control of the filters, channels, depths, and kernel sizes. Specifically, we studied the 

asymmetric features learned from CT and MR controlled by the relative number of filters 

and determined the optimal ratio of 18:6 for CT versus MR. The higher contribution from 

the CT can be explained by the fact that the CT is in the treatment geometry and contains 

more directly relevant information than the preimplant MR. Yet, the nonzero weighting of 

MR indicates a non-negligible contribution of MR to the segmentation performance. The 
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statistical testing results on DSC, SV, PV, and 95-HD comparing different models also help 

understand the importance of MR contribution and asymmetric weighting. The comparisons 

between SPCT and SPCTMR showed insignificant differences in DSC and HD-95 using 

Bonferroni corrected p-value. Yet, the sensitivity and specificity values are significantly 

different, indicating that the MR dataset’s contribution is less on the location or volume of 

the CTVs and more on the tumor identification and detection. Using standard p < 0.05 as a 

significance threshold, DPAW achieved significantly better results on all metrics than DPSW. 

After Bonferroni correction, only HD-95 became statistically insignificant. This particular 

result supported the importance of asymmetric weighting.

It is worth noting that the HR-CTV volume influenced our model’s segmentation 

performance. The medium group presented the best DSCV and 95-HD values with both 

single and dual path models. This could be attributed to the nonuniform dataset distribution. 

As shown in Figure 3, the medium group comprised more samples than the small and 

large CTV groups. The results indicate space for further improvement with a larger dataset 

enriched in CTVs toward both tail ends of the size distribution.

A unique contribution of the study is that we compared the automated segmentation 

performance with both inter- and intraoperator variations, as shown in Figure 5. The 

interoperator variation indicates the potential variation between radiation oncologists who 

are specialized in T&O brachytherapy and who are not. This variation reflects the 

real-world uncertainties in treating T&O patients at a low-volume clinic versus a high-

volume clinic. As shown in the results, after model training, our automated segmentation 

method performed better than the nonspecialists and closer to the specialist. Therefore, 

the automated segmentation method, after further validation, will be valuable to help low 

volume clinics to improve their consistency and quality of defining the HR-CTV for T&O 

treatments. Dosimetric evaluation also showed RSD% was not statistically different between 

the intraoperator and auto-segmentation versus PRO D90%. This further supports that auto-

segmentation may allow for improved consistency compared to nonspecialist practitioners. 

While the DSC for auto-segmentation and RO1 was higher than RO2, the RSD% was lower 

for RO2. This can be explained by the fact that the mean volume of the evaluated contours 

was smaller for RO2 (21.6 cc, range 11–31.2) compared to PRO, PRO1, RO1, and the model 

– 27.5 cc (12.8–57.3), 25.8 cc (14.5–59.2), 33 cc (18.6–65.4), and 27.5 cc (19.6–60.9), 

respectively. Therefore, although the contours may not be as accurate when compared to 

PRO, D90% can be higher due to a smaller volume needing coverage by the plan. The 

RSD% seen in our study is also comparable to a prior study evaluating dosimetric variability 

with MRI-based contours.34

The study is limited by the patient sample size and the number of radiation oncologists 

who have repeated the HR-CTV segmentation. Larger patient size and broader sampling of 

manual segmentation from a variety of clinics will improve the representation of HR-CTV 

segmentation.
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5 | CONCLUSION

A 3D asymmetric CNN model with two encoding paths from preimplant MR and 

postimplant CT was successfully developed for automatic segmentation of HR-CTV for 

T&O brachytherapy patients.
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FIGURE 1. 
Axial, sagittal, and coronal views of computed tomography (CT) and MR for a 

representative patient, which show the comparison of location and size of preimplant MR-

based high-risk clinical target volume (HR-CTVMR) and postimplant planning-CT-based 

HR-CTVCT
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FIGURE 2. 
The architecture of the asymmetric convolutional neural network (CNN) model. Each blue 

cuboid corresponds to a feature map. The number of channels is denoted on the top of the 

cuboid
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FIGURE 3. 
(a) The volume distribution of high-risk clinical target volume (HR-CTVCT) and HR-

CTVMR. (b) Boxplots of HR-CTVCT in computed tomography (CT) and HR-CTVMR in 

MR. The difference in volumes is not statistically significant (p = 0.06)
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FIGURE 4. 
(a) Receiver operating characteristic (ROC) curves from the four models, including dual-

path with asymmetric weighting (DP_AW), dual-path with symmetric weighting (DP_SW), 

single-path with input computed tomography (CT) + MR (SP_CTMR), and single-path 

with input CT (SP_CT). (b) The objective loss as a function of the epoch for the four 

convolutional neural network (CNN) models. (c) The objective loss as a function of epoch 

for training and validation (DP_AW_VAL) cohorts for dual path with asymmetric weighting
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FIGURE 5. 
Comparison of two additional radiation oncologists (RO1 and RO2), the primary 

brachytherapy radiation oncologist (PRO), and our model
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FIGURE 6. 
Comparison of manual PRO (red), RO1 (pink), RO2 (purple), and automatic dual-path 

(green) contours in axial, sagittal, and coronal views for a representative patient
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