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Abstract

Background: Early diagnosis and treatment of prostate cancer (PCa) can be curative, however 

prostate specific antigen is a suboptimal screening test for clinically significant PCa. While 

prostate MRI has demonstrated value for the diagnosis of PCa, the acquisition time is too long for 

a first-line screening modality.

Purpose: To accelerate prostate MRI exams, utilizing a variational network (VN) for image 

reconstruction.

Study Type: Retrospective

Subjects: 113 subjects (train/val/test: 70/13/30) undergoing prostate MRI.

Field Strength/Sequence: 3.0 T; A T2 Turbo spin echo (TSE) T2 weighted image (T2WI) 

sequence in axial and coronal planes, and axial echo-planar diffusion weighted imaging (DWI).

Assessment: Four abdominal radiologists evaluated the image quality of VN reconstructions of 

retrospectively under-sampled biparametric MRIs (bpMRI), and standard bpMRI reconstructions 

for 20 test subjects (studies). The studies included axial and coronal T2WI, DWI B50 s/mm2 and 

B1000 s/mm (4-fold T2WI, 3-fold DWI), all of which were evaluated separately for image quality 

on a Likert scale (1: non-diagnostic to 5: excellent quality). In another 10 test subjects, three 

readers graded lesions on bi-parametric MRIs (bpMRI) – which additionally included calculated 

B1500 s/mm2, and apparent diffusion coefficient (ADC) map – according to the Prostate Imaging 

Reporting and Data System (PI-RADS v2.1), for both VN and standard reconstructions. Accuracy 

of PI-RADS ≥ 3 for clinically significant cancer was computed. Projected scan time of the 

retrospectively under-sampled bi-parametric exam was also computed.

Statistical tests: One-sided Wilcoxon signed-rank test was used for comparison of image 

quality. Sensitivity, specificity, positive predictive value, and negative predictive value were 
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calculated for lesion detection and grading. Generalized estimating equation with cluster effect 

was used to compare differences between standard and VN bpMRI. A p value of <0.05 was 

considered statistically significant.

Results: Three of four readers rated no significant difference for overall quality between the 

standard and VN axial T2WI (Reader 1: 4.00 ±0.56 (Standard), 3.90 ±0.64 (VN) p=0.33; Reader 

2: 4.35 ±0.74 (Standard), 3.80 ±0.89 (VN) p=0.003; Reader 3: 4.60 ±0.50 (Standard), 4.55 ±0.60 

(VN) p=0.39; Reader 4: 3.65 ±0.99 (Standard), 3.60 ±1.00 (VN) p=0.38). All four readers rated 

no significant difference for overall quality between standard and VN DWI B1000 s/mm2 (Reader 

1: 2.25 ±0.62 (Standard), 2.45 ±0.75 (VN) p=0.96; Reader 2: 3.60 ±0.92 (Standard), 3.55 ±0.82 

(VN) p=0.40; Reader 3: 3.85 ±0.72 (Standard), 3.55 ±0.89 (VN) p=0.07; Reader 4: 4.70 ±0.76 

(Standard); 4.60 ±0.73 (VN) p=0.17) and three of four readers rated no significant difference 

for overall quality between standard and VN DWI B50 s/mm2 (Reader 1: 3.20 ±0.70 (Standard), 

3.40 ±0.75 (VN) p=0.98; Reader 2: 2.85 ±0.81 (Standard), 3.00 ±0.79 (VN) p=0.93; Reader 3: 

4.45 ±0.72 (Standard), 4.05 ±0.69 (VN) p=0.02; Reader 4: 4.50 ±0.69 (Standard), 4.45 ±0.76 

(VN) p=0.50). In the lesion evaluation study, there was no significant difference in the number 

of PI-RADS ≥ 3 lesions identified on standard versus VN bpMRI (p=0.92, 0.59, 0.87) with 

similar sensitivity and specificity for clinically significant cancer. The average scan time of the 

standard clinical bi-parametric exam was 11.8 mins, and this was projected to be 3.2 mins for the 

accelerated exam.

Conclusion: Diagnostic accelerated bi-parametric prostate MRI exams can be performed using 

deep learning methods in < 4 mins, potentially enabling rapid screening prostate MRI.
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INTRODUCTION

Prostate cancer (PCa) is the second most frequent cancer diagnosed in men and the fifth 

leading cause of death worldwide (1). Early diagnosis and treatment can be curative, 

but currently there is no adequate screening test. The blood test for prostate specific 

antigen (PSA) is inexpensive but lacks specificity for clinically significant PCa; it is not 

recommended for men over 70 years old and is only recommended for selective screening in 

men aged 55–69 years (2,3).

The role of prostate MRI in the detection and localization of clinically significant PCa 

(csPCa), defined as Gleason 7 or higher prostate cancer (4–6), has become increasingly 

important (7–10). Many recent studies support the role of multi-parametric MRI (mp-MRI) 

in the diagnosis and management of PCa, not only for detection but also for guiding 

biopsy of csPCa (11–13). While prostate MRI has demonstrated value, the prohibitively 

long acquisition time poses a major challenge in the clinical implementation as a first-line 

screening tool. To address this challenge, an abbreviated protocol has been proposed, 

which omits dynamic contrast enhanced (DCE) imaging, leaving only T2-weighted (T2WI) 

and diffusion-weighted imaging (DWI) (14,15). A recent study demonstrated increased 

sensitivity in detecting csPCa with this bi-parametric MRI (bp-MRI) protocol (16). Although 

Johnson et al. Page 2

J Magn Reson Imaging. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this approach reduces acquisition time and cost, it still requires approximately 15 minutes 

and thus does not sufficiently reduce scan time for practical routine screening.

Accelerating MRI acquisitions has been an active area of research for many years. The 

major developments that have contributed to faster imaging are parallel imaging (17,18) 

and compressed sensing (19), and more recently deep learning. Deep learning- based 

reconstruction approaches are a generalization of traditional regularized reconstruction 

and have been shown to outperform parallel imaging and compressed sensing in many 

applications (20–23). These techniques show great promise in achieving high image quality 

in short scan times. A recent study demonstrated that 4-fold accelerated knee exams, 

reconstructed with a variational network (VN) were interchangeable with clinical protocol 

(24). Another study, showed that VN reconstruction of pediatric abdominal images resulted 

in superior image quality compared to the traditional parallel imaging, compressed sensing 

(PICS) reconstruction (25).

Our work builds upon the VN described by Hammernik et al (23). With expanded model 

capacity, incorporation of multiple sets of coil sensitivities (26) and utilization of state-of-

the-art optimizer (27), we extended the VN to reconstruction of accelerated clinical prostate 

images. With this novel VN implementation, we aim to accelerate biparametric prostate 

exams while maintaining the image quality of the current clinical protocol.

METHODS

Study Population

This study was approved by an institutional review board (IRB) and was HIPAA compliant. 

Given the retrospective nature of this study it received waiver of consent. Clinical prostate 

MRI exam performed previously in 113 male patients on a 3.0T MR scanner (MAGNETOM 

Vida, Siemens Healthineers, Germany) with a 30-channel body coil was utilized in this 

study. The mean age of the subjects was 68 ± 7 years. These clinically acquired data sets 

were used retrospectively to develop, test, and validate accelerated acquisitions.

Image acquisition & reconstruction

T2-weighted images—For each patient a 2D T2 turbo spin echo (TSE) sequence was 

performed in both the axial and coronal planes. The scan parameters for the coronal 

acquisition were: TR = 4 s, TE = 100 ms Echo train length (ETL) = 25, in-plane resolution 

= 0.56 mm × 0.56 mm, matrix size = 320 × 320, slice thickness = 3 mm, under-sampling 

factor (R) = 2, Number of averages (NEX) = 2, and scan time 2.55 mins. For the axial 

acquisition, scan parameters were: TR = 4 s, TE =100 ms, ETL= 25, in-plane resolution = 

0.56 mm × 0.56 mm, slice thickness = 3 mm, R = 2, NEX = 3, and scan time = 3.87 mins.

For each image, the coil sensitivity maps wer estimated using ESPIRIT (26). Similar to the 

soft-sense reconstruction described earlier (26), two sets of coil sensitivity maps were used 

for the reconstruction. This was necessitated by the extension of anatomy beyond the field of 

view.
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The raw data were acquired with interleaved averages such that the target data was 

effectively fully sampled. Specifically, for the coronal acquisition, the first average sampled 

odd lines of k-space, while the second average sampled even lines. This is the clinical 

(standard) protocol at our institution. The ground truth/target image was then reconstructed 

by adding the two averages and performing an inverse fast Fourier transform (IFFT). 

For the axial acquisitions there were 3 averages. The odd averages sampled odd lines 

and the second average sampled even lines. The averages were then combined as: 0.5 × 
(average1+average3) + average2 before performing an IFFT.

The fully sampled raw k-space data were retrospectively under-sampled; the sampling 

pattern was consistent with an under-sampling rate (R) = 4 equidistant under-sampling, 

commonly used in parallel imaging, where every 4th line was sampled. In addition, we 

sampled 32 lines at the center of k-space for calibration of the receive coil sensitivity 

maps. The projected scan times for the accelerated protocol were calculated by dividing the 

standard scan time by the relative acceleration factor (4 or 6) and adding an additional 

TR for the extra center lines. The retrospectively under-sampled raw data were then 

reconstructed using the trained VN.

A soft-sense reconstruction was also performed for both the coronal (SScor) and axial 

(SSax) images to serve as a conventional parallel imaging comparison. This was essentially 

a relaxed sense reconstruction that utilized the same two sets of coil sensitivities as were 

used for the VN reconstruction. Structural similarity index (SSIM) (28) was calculated for 

all test set images in order to evaluate the relative performance of soft-sense and the VN.

Diffusion weighted images—In addition to T2-weighted images, echo planar imaging 

(EPI)-DWI were also acquired for each subject. The EPI-DWI scans were performed using 

tri-directional diffusion-sensitizing gradients with b values of 50 s/mm2 (B50), and 1000 

s/mm2 (B1000), performed with 4, and 12 averages, respectively. Images were acquired with 

FOV 20 × 20 cm, matrix 90 × 90, R =2 under-sampling, ETL = 75, TR = 5.8 – 6.5 s, TE = 

77 ms and scan time ~ 5.4 mins.

The standard B50 and B1000 images were reconstructed with an EPI-gridding method, 

followed by GRAPPA, with all the acquired averages. The averages were combined as the 

final step by combining the magnitude images in image space to avoid phase cancellation. 

The VN was used to reconstruct a single average for the B50 images and 4 averages for 

the B1000 images, resulting in a 4-fold and 3-fold acceleration respectively. The projected 

scan time for the accelerated protocol was calculated by multiplying the standard scan by 

the fraction of averages retained (5/16) and adding an additional TR for the extra calibration 

lines. A geometric mean of the tri-directional reconstructed images was then performed to 

yield diffusion trace images for B50 and B1000. Apparent diffusion coefficient (ADC) maps 

and an estimated B1500 image were also calculated from the tri-directional reconstructed 

images.

Variational network architecture and training

Our method was inspired by the VN – a model-based, deep learning reconstruction 

framework (18,20). The input to the network included the measured k-space samples, two 
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sets of coil sensitivity maps calculated with ESPIRIT and the reconstructed zero-filled 

image. This data processing pipeline is illustrated in Figure 1.

The reconstruction network consisted of multiple stages, each modeled after a single 

gradient descent step. In the t-th stage the image was updated from xt to xt+1 using:

xt + 1 = xt − λtA * A xt − k − CNN xt (1)

where λt is a learned parameter that controls the relative weighting between data consistency 

and regularization, A is the linear forward operator that applies sensitivity maps, the 

2D Fourier transform, and under-sampling, k is the measured k-space data and CNN is 

a convolutional neural network that regularizes the reconstruction. The CNN used for 

this reconstruction was modelled after a UNet (29) and is illustrated in Figure 2. The 

encoder portion of the network was made up of convolution and max pooling layers, 

while the decoder was made up of convolution and up-sampling layers. Skip connections, 

concatenations of encoder and decoder layers, were also included. All convolution kernels 

were 3×3. Instance normalization and rectified linear unit (ReLU) were applied to the 

output of each convolution layer. The model consisted of approximately 8 million learnable 

parameters.

Network training for T2-weighted images—83 subjects were randomly divided into 

training (70) and validation (13) sets, the test set was an additional 20 datasets acquired 

from 20 consecutive subjects. Additional 10 subjects were included for the lesion detection 

experiment. The coronal image inputs were a single average with retrospective 4-fold under-

sampling relative to Nyquist sampling, for an effective acceleration (R) = 4, relative to the 

clinical protocol. The axial image inputs were also a 4-fold retrospectively under-sampled 

single average, which resulted in an effective acceleration of R = 6, relative to the clinical 

protocol. The target images for both networks were the corresponding fully-sampled images. 

The two networks were trained with the Adam optimizer and a learning rate (LR) = 1 × 

10−3. The weights of the model were updated after every forward pass through the network 

(batch size =1) to minimize the mean squared error (MSE) of the prediction relative to the 

fully-sampled target images. This process used the training data-set, while the validation set 

was used as stopping criteria to ensure the model was not over-fitting the training data.

Network training for diffusion-weighted images—The subjects described in the 

previous section were also used to train and evaluate the diffusion network. A separate 

model was trained for B50 and B1000 images. The image inputs were 1 average and 4 

averages for the B50 and B1000, respectively, which results in an approximately 3-fold 

acceleration overall, relative to clinical protocol. The input and target images were 2-fold 

under-sampled relative to Nyquist sampling. The B1000 network had an extra channel 

dimension to accommodate the 4 averages. This dimension was retained throughout the 

network, and the averages were only combined at the final stage prior to calculation of 

the loss function. The target images were reconstructed with GRAPPA. The networks were 

again trained with the Adam optimizer, a learning rate (LR) = 1 × 10−3, and an MSE loss 

function.
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Reader study

Image Quality: The trained models were evaluated for image quality on an independent 

test data set from 20 consecutive patients. Four abdominal fellowship trained radiologists 

(with 6 (KM), 3 (PS), 1 (AD), and 1 (RP) years of clinical experience interpreting prostate 

MRIs) evaluated the images and were blinded to the acquisition/reconstruction schemes. 

The VN T2WI axial and coronal (VNT2ax and VNT2cor), standard T2WI axial and 

coronal (StandardT2Ax and StandardT2Cor), VN diffusion and standard clinical diffusion 

(VNDiffB50, VNDiffB1000, StandardDiffB50, StandardDiffB1000) images were evaluated 

for the following image quality metrics utilizing a five point Likert grading scale: overall 

quality, prostate capsule clarity, clarity of peripheral zone and transition zone boundary, 

clarity of periurethral region (T2WI only), and clarity in relation to artifacts (DWI only). 

The five-point Likert scale was applied to all the metrics by each of the readers and was 

defined as follows: 1 – non-diagnostic, 2 – poor quality, 3 – moderate quality, 4 – good 

quality, 5 – excellent quality (30). All four readers were trained with independent unlabeled 

example images of the same type of reconstructions prior to the study.

Lesion identification: An additional 10 consecutive patients (new and not used in the 

above image quality experiment) who had undergone MRI of the prostate for suspicion for 

prostate cancer and who had prospectively identified lesions risk stratified as PI-RADS ≥ 

3 were included. Each patient had a subsequent MRI/transrectal ultrasound (TRUS) fusion 

biopsy performed within six months of the MRI. The clinical histopathology results from 

the biopsies were obtained and reported as Gleason Grade Group scores with “clinically 

significant” prostate cancer (csPCa) defined as Gleason Grade Group 2 or greater (31). From 

these 10 patients, a total of 14 lesions were prospectively assigned PI-RADS ≥ 3 scores on 

multiparametric MRI and subsequently underwent MRI/TRUS fusion biopsy.

Three abdominal fellowship trained radiologists (with 6 (KM), 3 (PS), and 1 (RP) years 

of experience)blinded to the reconstruction scheme were presented independently and 

randomly, VN accelerated and standard bp-MRI data that consisted of T2WI and DWI (b50 

s/mm2, b1000 s/mm2, calculated b1500 s/mm2, and ADC map). The VN accelerated exam 

consisted of axial and coronal VN T2WI and VN DWI. The conventional exam consisted 

of standard axial and coronal T2WI and standard axial DWI. The readers were asked to 

identify and assign scores to lesions according to Prostate Imaging Reporting and Data 

System (PI-RADS) v2.1. We used PI-RADS ≥ 3 as a cutoff for positive scoring for prostate 

cancer as it is used as a minimum score for targeted MRI targeted biopsy (5).

Statistical Analyses

One-sided paired Wilcoxon signed-rank test was used to compare image quality evaluations 

of standard versus reconstructed images with the null hypothesis that VN was at least as 

good as the standard. Significance was designated as having p < 0.05. Frequency of studies 

with difference of ±1 between standard and reconstructed images were also calculated.

Sensitivity, specificity, positive predictive value, and negative predictive value were 

calculated for each reader separated by standard and VN exams. The number of PI-RADS 
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≥ 3 lesions that were assigned by each reader on standard and VN exams were compared 

utilizing generalized estimating equation model with cluster effect.

RESULTS

T2WI results

The average acquisition time for the 20 coronal test set volumes was 2.55 mins, this scan 

time is projected to be reduced to 0.7 mins with the R = 4 acceleration compared to clinical 

protocol. The average scan time for the axial test set volumes was 3.87 mins, which would 

be reduced to 0.7 mins with the R = 6 acceleration compared to clinical protocol.

The mean SSIM to the fully sampled standard images, calculated over all slices of the test 

set was 0.86 ±0.05, and 0.90 ± 0.03 for the VNT2cor and VNT2ax images, respectively. 

For the soft-sense reconstructions (parallel imaging comparison) the mean SSIM was 0.61 

± 0.07 and 0.75 ± 0.07 for the SScor and SSax images, respectively. Two representative 

examples for the coronal and axial reconstructions are shown in Figures 3 and 4.

DWI results

The average acquisition time for the diffusion test set volumes was 5.4 mins, the projected 

scan time would be reduced to 1.8 mins with the described acceleration scheme. The mean 

SSIM to the fully sampled standard images, calculated over all slices of the test set was 

0.93 ± 0.03 and 0.85 ± 0.07, for the B50 and B1000 images, respectively. For the GRAPPA 

reconstructions, the mean SSIM was 0.88 ± 0.05 and 0.77± 0.09 for the B50 and B1000 

images, respectively. Representative results are shown in Figure 5.

Reader study results

Image Quality: Table 1 includes the image quality comparison results of the T2WI from 

each reader. Three of four readers rated no significant difference of overall quality of VN 

axial T2WI compared to standard, although all readers rated decreased overall quality of 

VNT2Ax compared to StandardT2Ax (Reader 1: 4.00 ±0.56 (Standard), 3.90 ±0.64 (VN) 

p=0.33; Reader 2: 4.35 ±0.74 (Standard), 3.80 ±0.89 (VN) p=0.003; Reader 3: 4.60 ±0.50 

(Standard), 4.55 ±0.60 (VN) p=0.39; Reader 4: 3.65 ±0.99 (Standard), 3.60 ±1.00 (VN) 

p=0.38).

Three of four readers rated no significant difference in overall quality between VNT2cor and 

StandardT2Cor, including one reader who rated the exact same overall quality of VNT2cor 

compared to StandardT2Cor(Reader 1: 3.75 ±0.55 (Standard), 3.45 ±0.60 (VN) p=0.07; 

Reader 2: 4.20 ±0.95 (Standard), 4.20 ±0.89 (VN) p=0.53; Reader 3: 4.30 ±0.66 (Standard), 

4.10 ±0.55 (VN) p=0.06; Reader 4: 3.20 ±1.00 (Standard), 2.90 ±0.97 (VN) p=0.02).

Table 2 includes the image quality comparison results of the DWI from each reader. One 

reader rated increased overall quality while three readers rated decreased overall quality of 

VN DWI B1000 s/mm2 compared to standard, all without significant difference (Reader 

1: 2.25 ±0.62 (Standard), 2.45 ±0.75 (VN) p=0.96; Reader 2: 3.60 ±0.92 (Standard), 3.55 

±0.82 (VN) p=0.40; Reader 3: 3.85 ±0.72 (Standard), 3.55 ±0.89 (VN) p=0.07; Reader 4: 

4.70 ±0.76 (Standard); 4.60 ±0.73 (VN) p=0.17). Two of four readers rated increased overall 
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quality of VN DWI B50 s/mm2 compared to standard without significant difference while 

two readers rated decreased overall quality of VN DWI B50 s/mm2 compared to standard, 

one with significant difference (Reader 1: 3.20 ±0.70 (Standard), 3.40 ±0.75 (VN) p=0.98; 

Reader 2: 2.85 ±0.81 (Standard), 3.00 ±0.79 (VN) p=0.93; Reader 3: 4.45 ±0.72 (Standard), 

4.05 ±0.69 (VN) p=0.02; Reader 4: 4.50 ±0.69 (Standard), 4.45 ±0.76 (VN) p=0.50).

Lesion Identification.—A total of 5 of the 14 lesions demonstrated Gleason Grade Group 

2 prostate cancer or higher. Table 3 shows the results of the reader study. PI-RADS ≥ 3 was 

assigned to 7 lesions on standard bp-MRI exams and to 8 lesions on VN bp-MRI exams by 

Reader 1 (p=0.92), assigned to 7 lesions on standard exams and to 9 lesions on VN exams 

by Reader 2 (p=0.59), and assigned to 8 lesions on standard exams and 8 lesions on VN 

exams by Reader 3 (p=0.87). The VN bp-MRI exam had sensitivity and specificity which 

were not significantly different, compared to the standard bp-MRI exam for csPCa as shown 

in the Table 3. Figure 6 shows an example of a lesion that is visible in both the standard and 

VN bp-MRI exams.

DISCUSSION

In this work, we developed and clinically evaluated a VN approach for accelerated T2WI 

and DWI of the prostate. The VN approach enabled reduced acquisition times from a 

standard protocol time of 11.8 mins to a projected scan time of 3.2 mins. Furthermore, 

compared with the parallel imaging reconstructions with equivalent acceleration, the VN- 

images had higher SSIM.

In our study, three of four readers rated no significant difference in image quality between 

Standard and VN in both axial and coronal planes. Although one reader scored VN 

reconstructions significantly lower than Standard sequences for the T2WI, the differences 

were small. A study by Gassenmaier et al (32), evaluated a deep learning reconstructed axial 

T2 of the prostate which found that readers rated the deep learning reconstructed axial T2 to 

be higher overall quality. However, in our reconstruction, we were able to decrease scan time 

by 6 fold compared to their 3 fold and 4 fold acceleration, which may account for the quality 

differences.

All four readers rated no significant difference in image quality between Standard and VN 

in B1000 DWI while three of four readers rated no significant difference in image quality 

between Standard and VN B50 DWI. As clinical interpretation of prostate MRI typically 

utilizes the high B values more heavily, these small differences are likely not to affect 

clinical interpretation.

This point is reiterated in our lesion identification and grading portion of the study, which 

showed no significant difference in the number of PI-RADS ≥ 3 lesions identified by any of 

the readers. Furthermore, the sensitivity and specificity of the VN bp-MRI exam for csPCa 

were also not significantly different compared to that of the standard bp-MRI exam. This 

preliminary study demonstrated promising results that VN reconstructed MRI may possibly 

be interchangeable with the clinical exams.
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An abbreviated T2-weighted prostate MRI protocol that also utilizes deep learning 

reconstruction was recently proposed by O’Shea et al (33). This method used deep learning 

for noise removal and eliminated the need for multiple averages. Our proposed method 

builds upon this technique by utilizing deep learning for sparse sampling reconstruction 

in addition to denoising, enabling greater overall acceleration of the T2-weighted scans. 

Acceleration of the DWI scan was an additional novel element of our work and was critical 

in order to achieve scan times short enough for routine screening.

MRI is increasingly utilized as a tool for annual active surveillance in low and even 

intermediate risk PCa (34,35). In addition, there is potential for the use of prostate MRI as 

a screening tool for PCa (16). The same lengthy multiparametric MRI protocol is currently 

commonly used for all PCa indications, however with the acceleration of T2WI and DWI, 

a more patient tolerable, affordable, and accessible prostate MRI can be made available to 

patients who may not need a full diagnostic protocol.

While it is a critical step in achieving practical routine screening, reduction of scan time 

alone is unlikely to sufficiently reduces costs. An additional cost consideration is the need 

for highly trained radiologists with specific experience in the interpretation of prostate MRI. 

Several groups have been working on approaches for automated diagnosis of PCa (36,37). 

If the learned reconstruction presented in this work is paired with deep-learning methods for 

automated lesion detection and classification, this could further lower the cost and increase 

accessibility.

Limitations

While the presented study design allowed for the comparison of image quality between 

the conventional and accelerated image protocols, it was a small study evaluated on only 

20 subjects on image quality evaluation and 10 subjects on lesion evaluation. Hence, we 

could not conclude that the protocols were interchangeable, though results were promising. 

An important future step will be correlating reader assessments of pathological findings 

with biopsy results in a larger cohort. Another limitation was that the under-sampling was 

done retrospectively rather than prospectively. Additionally, the exams were performed on a 

single 3T scanner from a single vendor. It will be important moving forward to establish a 

prospectively accelerated protocol that is robust across a variety of scanners and vendors and 

to correlate reader assessments of pathological findings with biopsy results.

CONCLUSIONS

Diagnostic quality highly accelerated bp-MRI prostate exams can be acquired and 

reconstructed using deep learning methods with < 4 mins of acquisition time, which can 

enable rapid screening prostate MRI.
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Figure 1. 
Data processing pipeline, and structure of the reconstruction network. First, a zero filled 

reconstruction is generated from the under-sampled k-space and coil sensitivity maps. Then, 

this reconstruction, along with the raw k-space data and sensitivity maps are passed as the 

input to the reconstruction network. The reconstruction network has 10 stages (T = 10), 

each stage applies data consistency and regularization, as described in equation (1). The T2 

reconstruction networks and the B50 diffusion network reconstruct a single image from a 

single zero-filled input image, while the B1000 diffusion network reconstructs four images 

from multiple zero-filled images, and combines the averages as the last step.
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Figure 2. 
Illustration of the CNN regularizer, based off the UNet model [24]
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Figure 3. 
Coronal image results for subject 1 (top row) and subject 2 (bottom row). Soft-sense 

reconstructions are shown in a) and d). VN reconstructions are shown in b) and e) while 

the fully while the fully sampled, ground-truth images are shown in c) and f). The value 

indicated on the images is the calculated SSIM of the slice shown.
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Figure 4. 
Axial image results for subject 3 (top row) and subject 4 (bottom row). Soft-sense 

reconstructions are shown in a) and d). VN reconstructions are shown in b) and e) while 

the fully sampled, ground-truth images are shown in c) and f). The value indicated on the 

images is the calculated SSIM of the slice shown.
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Figure 5. 
Diffusion B50 s/mm2 (top) and B1000 s/mm2 (bottom) results for a single subject. Grappa 

reconstructions are shown in a) and d). VN reconstructions are shown in b) and e) while the 

grappa reconstructed, ground-truth images are shown in c) and f). The value indicated on the 

images is the calculated SSIM of the slice shown.
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Figure 6. 
Standard T2 TSE (Fig a), ADC (Fig b), and DWI b=1500 s/mm2 (Fig c) shows lesion in the 

left posterolateral midgland prostate (white arrow), which was biopsied to be Gleason Grade 

Group 3. The same lesion can be seen identically on the DL-reconstructed T2 TSE (Fig d), 

ADC (Fig e), and DWI b=1500 s/mm2 (Fig f).
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Table 3.

Comparison of sensitivity, specificity, positive predictive value, and negative predictive value of lesion 

identification and grading for readers individually and as a group.

Reader 1 Reader 2 Reader 3

Standard VN P Standard VN P Standard VN P

PI-RADS >=3 criteria

Sensitivity 0.40 0.60 0.53 0.60 1.00 NA* 0.60 0.60 1.00

Specificity 0.55 0.64 0.62 0.60 0.64 0.86 0.58 0.55 0.85

PPV 0.29 0.38 0.72 0.43 0.56 0.62 0.38 0.38 1.00

NPV 0.67 0.82 0.44 0.75 1.00 NA* 0.78 0.75 0.89

*
NA = not applicable.

p value is not feasible when there is limited variation in data (e.g. when positive predictive value is 1 for one of the comparators). PI-RADS = 
prostate imaging reporting and data system; VN = Variational Network; PPV = positive predictive value; NPV = negative predictive value.
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