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Abstract 
Background: The electrocardiogram (ECG) is a physiological signal 
used to diagnose and monitor cardiovascular disease, usually using 2- 
D ECG. Numerous studies have proven that ECG can be used to detect 
human emotions using 1-D ECG; however, ECG is typically captured as 
2-D images rather than as 1-D data. There is still no consensus on the 
effect of the ECG input format on the accuracy of the emotion 
recognition system (ERS). The ERS using 2-D ECG is still inadequately 
studied. Therefore, this study compared ERS performance using 1-D 
and 2-D ECG data to investigate the effect of the ECG input format on 
the ERS. 
Methods: This study employed the DREAMER dataset, which contains 
23 ECG recordings obtained during audio-visual emotional elicitation. 
Numerical data was converted to ECG images for the comparison. 
Numerous approaches were used to obtain ECG features. The 
Augsburg BioSignal Toolbox (AUBT) and the Toolbox for Emotional 
feature extraction from Physiological signals (TEAP) extracted features 
from numerical data. Meanwhile, features were extracted from image 
data using Oriented FAST and rotated BRIEF (ORB), Scale Invariant 
Feature Transform (SIFT), KAZE, Accelerated-KAZE (AKAZE), Binary 
Robust Invariant Scalable Keypoints (BRISK), and Histogram of 
Oriented Gradients (HOG). Dimension reduction was accomplished 
using linear discriminant analysis (LDA), and valence and arousal were 
classified using the Support Vector Machine (SVM). 
Results: The experimental results show 1-D ECG-based ERS achieved 
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65.06% of accuracy and 75.63% of F1 score for valence, and 57.83% of 
accuracy and 44.44% of F1-score for arousal. For 2-D ECG-based ERS, 
the highest accuracy and F1-score for valence were 62.35% and 
49.57%; whereas, the arousal was 59.64% and 59.71%. 
Conclusions: The results indicate that both inputs work comparably 
well in classifying emotions, which demonstrates the potential of 1-D 
and 2-D as input modalities for the ERS.
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Introduction
Medical professionals have been actively using electrocardiogram (ECG) wave images as a tool for monitoring1–3

and diagnosing cardiovascular diseases,4–6 such as heart attacks, dysrhythmia, and pericarditis, with some reported
accuracy of more than 99% in the past decade. Fundamentally, ECG is used to measure electrical activity in the human
heart by attaching electrodes to the human body. Due to the continual blood pumping action to the body, the electrical
activity of the heart can be found in the sinoatrial node. The electrocardiogram signal is composed of three basic
components: P, QRS, and T waves (Figure 1). P waves are produced during atrium depolarization, QRS complexes are
produced during ventricular depolarization, and T waves are produced during ventricle recovery.

Today’s ECG devices have advanced from large and immobile to compact, wearable, and portable. Additionally, the
signal accuracy of portable devices is comparable to that of traditional medical devices and can be used for the same
purposes as traditional devices, including the study of human emotions. Many studies have proven that ECG which is
associated with autonomic nervous system’s (ANS) physiological responses can be used to identify human emotions.8–11

Different emotions influence human heart activities differently; these influences may be hidden in the ECGwave and can
be detected through closer monitoring of the main features of ECG, namely, heart rate (HR) and heart rate variability
(HRV).

Previous research on human emotions has primarily relied on either direct analysis of 1-D data12–14 or the conversion of
1-D data to a 2-D spectral image15 prior to identifying the emotions. Despite this, majority of the portable devices record
the ECG signal as images (2-D images) in a PDF file rather than as raw numerical data (1-D data).16–18 The example of a
PDF-based 2-D ECG is depicted in Figure 2. Due to this problem, researchers were required to convert the PDF file of the
ECG into 1-D data before performing further emotion analysis, adding complexity to the pre-processing process. On this
account, given the positive results obtained in monitoring and diagnosing cardiovascular-related diseases, the efficacy of
2-D ECG in emotion studies also warrants further investigation.

Figure 1. The Pwave, QRS complex, and Twave in the standard electrocardiogram (ECG). This figure has been
reproduced with permission from Ref. 7.

REVISED Amendments from Version 1

The main points suggested by reviewers were considered in the new version to improve the quality of the manuscript.
As suggested by reviewers, some changes have been made to the introduction part, where the subsections “emotion
model” and “electrocardiogram & emotion” have been removed and the explanation of what ECG images are added in
the manuscript. We expanded the related works section with Table 1, which compares several previous studies that used
1-D and 2-D ECG. In this new version, we better describe the proposed method for both input formats, including the
preprocessing of ECG signals and the transformation from 1-D to 2-D ECG. The results have been updated according to the
results of the latest experiment. Additionally, the analysis of the computing complexity was added along with the text in
Table 7. The discussion and conclusion parts also go through some modifications to address comments and suggestions
from the reviewer.

Any further responses from the reviewers can be found at the end of the article
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As far as our knowledge is concerned, despite numerous attempts to recognize emotions using ECG signals, the effects of
employing various types of ECG inputs to recognise emotions in the emotion recognition system (ERS) have yet to be
closely studied. In addition, there is no consensus on whether or not the type of ECG input format affects the emotion
classification accuracy. Therefore, to address this gap, the contribution of this study is to compare emotion classification
performance using 1-D and 2-D ECGs to investigate the effect of the ECG input format on the ERS.

This study analysed ECG data from the DREAMER dataset, a multimodal database. In DREAMER, ECG signals were
recorded from 23 participants using 18 audio-visual stimuli for the elicitation of various emotions. The Augsburg
BioSignal Toolbox (AUBT)19 and the Toolbox for Emotional Feature Extraction from Physiological Signals (TEAP)20

were used to help extract features from the 1-D ECG. Prior to emotion classification, the dimension of the extracted
ECG features was reduced using linear discriminant analysis (LDA). On the other hand, the 2-D ECG was obtained by
converting the 1-D ECG, and six different feature extractors were used to extract features from the 2-D ECG, namely
Oriented FAST and Rotated BRIEF (ORB), Scale Invariant Feature Transform (SIFT), KAZE, Accelerated-KAZE
(AKAZE), Binary Robust Invariant Scalable Keypoints (BRISK), and Histogram of Oriented Gradients (HOG). The
Support Vector Machine (SVM) classifier is used, and the ERS results for both ECG inputs are compared to examine the
effect of signal input on ERS performance. The finding indicates no substantial difference between the two ECG inputs
since both produce a promising outcome within same range of accuracy for emotion recognition.

The next section discusses related works. The following section describes the dataset and the proposed methods in depth.
The results are then provided. Finally, the study is concluded in the final section.

Related works
Researchers in the emotion recognition field have been proposing multiple approaches using electrocardiogram signals.
For instance,Minhad, Ali, and Reaz21 used 1-DECG to classify emotions of happiness and anger. They achieved 83.33%
accuracy using the SVM classification method. Besides, Tivatansakul and Ohkura22 used 1-D ECG from the AUBT
dataset to detect emotions for the emotional healthcare system. K-Nearest Neighbour (KNN) successfully classified three
emotions (joy, anger, and sadness) with an accuracy 85.75%, 82.75%, and 95.25%, respectively. TheMPED database for
ERS was proposed by Song et al.23 using ECG numerical data to recognise discrete emotions (joy, humour, disgust,
anger, fear, sadness, and neutrality). Attention Long Short-Term Memory (A-LSTM) was used as a feature extractor to
extract the frequency and time-domain features from the physiological signal. TheA-LSTMwas used as a classifier along
with SVM, KNN, and Long Short-Term Memory (LSTM). Averagely, A-LSTM achieved better results of 40% to 55%
compared to those of other classifiers.

Katsigiannis and Ramzan13 suggested that ERS should use low-cost and off-the-shelf devices to collect ECG signals
based on numerical format. Their dataset was called DREAMER, and the classification using SVM with a radial basis
function kernel successfully achieved 62.37% for valence and arousal. This dataset is adopted here. Additionally,
numerous other researchers also used the ECG signals from the DREAMER dataset to perform emotion recognition.

Figure 2. The example of 2-D ECG in a PDF file.
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For instance, 1-D ECGdata from theDREAMER dataset is utilized byWenwenHe et al.24 that suggested an approach for
emotion recognition using ECG contaminated by motion artefacts. The proposed approach improved classification
accuracy by 5% to 15%. Additionally, Pritam andAli25 also employed 1-D ECG from the DREAMER dataset to develop
the self-supervised deep multi-task learning framework ERS, which consists of two stages of learning: ECG represen-
tation learning and emotion classification learning. The accuracy gained in this study was greater than 70%. Hasnul
et al.12 also used the 1-D ECG by DREAMER dataset to compare the performance of two feature extractor toolboxes.
They noted that the dataset’s size and the type of emotion classified might affect the suitability of the extracted features.

As mentioned before, the 2-D ECG was widely used for a variety of other purposes, including human authentication,
ECG classification, and cardiovascular-related diseases. For example, Ref. 26 and Ref. 27 developed authentication
systems based on printout-based 2-D ECG and 2-D ECG spectral images that achieved greater than 99% accuracy using
CNN. Additionally, Klosowski et al.28 reached the highest accuracy rate of 100% by classifying ECG signals into several
categories, including normal ECG, brachy cardia, and premature ventricular contraction (PVC). Meanwhile, Ref. 4 and
Ref. 29 employ 2-D ECG to detect and diagnose cardiovascular disease, specifically myocardial infarction (MI) and
arrhythmia. Additionally, Mandal et al.5 published a study comparing 1-D and 2-D ECGs for the diagnosis of Ventricular
Arrhythmia. They concluded that both ECG inputs are effective at detecting the disease.

Despite rising popularity among medical practitioners in assessing patients’ cardiac disease, 2-D ECG remains
inadequate compared to 1-D ECG usage as a type of input in emotion recognition studies. As a result, the number of
studies employing 1-D ECG in ERS is higher than that utilizing 2-D ECG in ERS. However, rather than employing a
printout-based 2-D ECG, emotion researchers classified human emotions using 2-D ECG spectral images. For example,
Ref. 15 determines the R-peaks of the electrocardiogram prior to generating the R-R interval (RRI) spectrogram.
Following that, CNN was used to classify the emotions, with an accuracy rate greater than 90%. Elalamy et al.30 used
ResNet-50 to extract features from a 2-D ECG spectrogram. Then, Logistic Regression (LR) was employed as a classifier
and achieved an accuracy of 78.30% in classifying emotions.

Table 1 summarises these works, including the reference to the work, the dataset details (number of participants,
number of stimuli), the signal used, the ECG input, the purpose of thework, the features extracted, the classifiers, and their
accuracy—the accuracy denoted by an asterisk (*) refers to the accuracy of works that do not mainly focus on ERS.

Although considerable research has been conducted using ECG for ERS, the majority of research has focused on 1-D
ECG analysis rather than 2-D ECG analysis, despite the fact that systems based on 2-D ECG have achieved excellent
results in detecting cardiovascular-related diseases and human authentication. Additionally, no comparison of 1-D and
2-DECG input was found in the emotion studies. As a result, it is unknownwhether the ECG input format has an effect on
the ERS’s emotional classification accuracy. The significance of this study is that it compares emotion classification
performance between 1-D and 2-D ECGs to determine the effect of the ECG input format on the ERS.

Methods
In this section, the details of the dataset are described, and the experimental setup for 1-D and 2-DECGs is explained. The
current study began in September 2020. MATLAB version 9.7 was utilized for data conversion and feature extraction,
whereas Python version 3.8.5 was used for feature dimension reduction (for 1-D ECG) and classification. The analysis
code used in this study is available from GitHub and archived with Zenodo.47

The dataset (DREAMER)
This study used ECG signals from Katsigiannis and Ramzan13 called DREAMER. The DREAMER dataset is a freely
accessible database of electroencephalogram (EEG) and electrocardiogram (ECG) signals used in emotion research.
However, EEG signals were removed from this study because the primary focus is on ECG signals. The ECG was
recorded using the SHIMMER ECG sensor at 256 Hz and stored in 1-D format. The DREAMER dataset contains
414 ECG recordings from 23 subjects who were exposed to 18 audio-visual stimuli designed to evoke emotion. Each
participant assessed their emotions on a scale of 1 to 5 for arousal, valence, and dominance. However, because this study
was primarily concerned with arousal and valence ratings, participants’ evaluations of dominance were discarded. The
summary of the DREAMER dataset is tabulated in Table 2.

Experimental setup
1) 1-D ECG

The proposed ERS for 1-D ECG consists of three stages: feature extraction, feature dimension reduction, and emotion
classification. The structure of the proposed 1-D ECG-based ERS is illustrated in Figure 3.
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Two open-source toolboxes, namely, Augsburg BioSignal Toolbox (AUBT)19 and Toolbox for Emotional feature
extraction from Physiological signals (TEAP),20 were employed to facilitate feature extraction from the ECG signals.
AUBT provides tools for the analysis of physiological signals such as the ECG, RESP, EMG, and GSR. These tools are
available for Windows with MATLAB 7.1. On the other hand, TEAP is compatible with the MATLAB and Octave
software packages operating on Windows and can analyse and compute features from physiological data such as EEG,
GSR, PPG, and EMG.

The AUBT and TEAP feature extractors were included with the Low Pass Filter (LPF), a filter meant to reject all
undesirable frequencies in a signal. The LPF was one of the most widely used filters before the computation of statistical
features for physiological signals.31,32 As a result, automated 1-D ECG pre-processing utilizing LPF was performed in
this study to reduce muscle and respiratory noise in ECG signals.

AUBT extracted 81 features in the time and frequency domains from each 1-D ECG signal, including the mean,
median, and standard deviation for each PQRST wave, HRV, frequency spectrum range, and amplitude signal. Sixteen
(16) statistical features are extracted, including mean, IBI, HRV, and multiscale entropy in the time and frequency
domains. Table 3 and Table 4 provide abbreviations and descriptions of AUBT and TEAP features, respectively.

Table 2. The summary of the DREAMER dataset.

No of subject 23

No of videos 18 audio-visual stimuli

Type of stimuli Audio-video

Used Signal (Hz) ECG (256)

Rating scales Valence, Arousal

Rating values 1–5

Figure 3. The overall structure of 1-D ECG-based ERS.
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Additionally, to prevent the “Curse of Dimensionality,” dimensionality reduction is employed to further reduce the
number of high-dimensional features to low-dimensional features. The dimensions of the features were decreased using
linear discriminant analysis (LDA), a well-known approach for reducing the dimensions of features.33 LDA is a
supervised algorithm that can reduce dimensionality while retaining as much class-discrimination information as
possible. Following that, the low-dimensional features were fed into a Support Vector Machine (SVM) classifier for
emotion classification. The following section will outline the classifying process.

2) 2-D ECG

The duration of the ECG recording varies according to the duration of the video (average = 199 seconds). AsKatsigiannis
and Ramzan proposed, this study analysed the final 60 seconds of each recording to allow time for a dominant emotion to
emerge.13 Following that, 1-D ECG was pre-processed using a simple MATLAB function by Ref. 34 to eliminate
baseline wander caused by breathing, electrically charged electrodes, or muscle noise. The signal was then divided into
four segments corresponding to 15 seconds each. Then, usingMATLABversion 9.7, the 1-DECGwas transformed into a
2-D ECG (Figure 4). The image has a width of 1920 pixels and a height of 620 pixels.

Due to the fact that the 2-D ECG was converted to a rectangle shape, it is not easy to resize the photos to the standard
input image sizes of 224�224 and 299�299. As a result, the converted 2-D ECG was resized to 60% of its original
size using Python version 3.8.5. This scale percentage was chosen after considering the quality of the image, the type of
feature extractor used, and the computational cost the system can afford. The coloured images were converted into
greyscale images. Then, binarization of the image using anOtsu’s automatic image thresholdingmethod35was done. This
method ascertains the optimal threshold values from pixel values of 0 to 255 by calculating and evaluating their within-
class variance.36

The area of interest for 2-D ECG is laying on the PQRST waves, making the peaks detector the best approach to be
employed. Therefore, six different feature extractors that could extract peaks, edges, or corners were applied to extract
features from 2-D ECGs using Python version 3.8.5:

Table 3. Features extracted from Augsburg Bio-signal Toolbox (AUBT).

Features Description

P, Q, R, S, T P-, Q-, R-, S-, T-peaks (ECG)

HRV Heart rate variability

Ampl Amplitude signal

Mean Mean value

Median Median value

Std Standard deviation

Min Minimum value

Max Maximum value

SpecRange Mean of the frequency spectrum in a given range

Table 4. Features extracted from Toolbox for Emotional feature extraction from Physiological signals (TEAP).

Features Description

meanIBI Mean inter-beat interval

HRV Heart Rate Variability

MSE Multiscale entropy at 5 levels

sp0001/0102/0203/0304 Spectral power 0-0.1 Hz, 0.1-0.2 Hz, 0.2-0.3 Hz, 0.3-0.4 Hz

energyRatio Spectral energy ratio between f<0.08 Hz/f>0.15 Hz and f<5.0 Hz

tachogram_LF/MF/HF Spectral power in tachogram (HRV) for low, medium, and high frequencies.

tachogram_energy_ratio Energy ratio for tachogram spectral content (MF/(LF+HF))
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1. ORB37: ORB features are invariant to rotation and noise because they are a combination of Features from
Accelerated Segment Test (FAST) detection and Binary Robust Independent Elementary Features (BRIEF)
description methods.

2. SIFT38: SIFT identifies feature points by searching for local maxima on the images using Difference-of-
Gaussians (DoG) operators. The description approach generates a 16x16 neighbourhood around each identified
feature and sub-blocks the region. SIFT is also rotation and scale invariant.

3. KAZE39: KAZE is based on the scale of the normalised determinant of the Hessian Matrix, with the maxima of
detector responses being captured as feature points using a moving window. Additionally, KAZEmakes use of
non-linear space via non-linear diffusion filtering to reduce noise while keeping the borders of regions in
images.

4. AKAZE40: AKAZE is a more sophisticated version of KAZE that is based on the Hessian Matrix determinant.
Scharr filters were employed to enhance the quality of the invariance rotation, rendering AKAZE features
rotation- and scale-invariant.

5. BRISK41: While searching for maxima in the scale-space pyramid, BRISK detects corners using the AGAST
algorithm and filters them using the FAST Corner Score. Additionally, the BRISK description is based on the
recognised characteristic direction of each feature, which is necessary for rotation invariance.

6. HOG42: HOG is a feature descriptor that is used to compute the gradient value for each pixel. The image shape
denoted the edge or gradient structure derived using a high-quality local gradient intensity distribution.

All of the extractors successfully extracted the ECG features, including the peaks, edges, and corners from the PQRST
waves. The extracted features were then given to the classifier (SVM) to classify the emotions. Figure 5 illustrates the
structure of the proposed 2-D ECG-based.

Support vector machine
Emotion classification was performed using SVM. The SVM works by separating the class data points and drawing a
boundary called the hyperplane between them. Each hyperplane has what are known as “decision boundaries” to
determine which side of each class resides. As reported in previous studies, SVMhas a low computational cost and shows
excellent performance in classifying emotions, as reported in previous studies.13,21,24,43,44

Experimental setting
The scale of self-assessed emotions, which ranges from 1 (lowest) to 5 (highest), was classified using a five-point scale
with middle-point thresholds (an average rate of 3.8). As a result, scales four and five were assigned to the high class,
while the remaining scales were assigned to the low class. This results in an imbalanced distribution of DREAMER
classes: valence has 39% of high valence and 61% of low valence; arousal has 44% of low arousal and 56% of high
arousal.

Figure 4. The 2-D ECG converted from 1-D ECG.
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The hyperparameters for SVM were tuned using an exhaustive parameter search tool, GridSearchCV, from Scikit-learn
that automates the tuning procedure.45 This study tuned only the parameters with a high and relative tuning risk and left
the remainder at their default values because they are the least sensitive to the hyperparameter tuning process, as
suggested by Weerts, Mueller, and Vanschoren.46

The dataset was split into a reasonable proportion of training and testing sets to evaluate the model’s performance on new
unseen data. This study used a stratified train-test split of 80:20 for the training and testing sets. This strategy guarantees
the dataset’s exact proportions of samples in each class are preserved.

Additionally, as we had a small dataset size, this study applied KFold Cross-Validation, with the number of folds set to
10, themost commonly used number in prior research to improve ERS performance. The experimental setting is tabulated
in Table 5.

Figure 5. The overall structure of 1-D ECG-based ERS.

Table 5. The experimental setting values.

Setting Value

SVM hyperparameter Kernel {linear, rbf}

C [0.1,1,10]

Gamma [0.1,1,10]

Train-test split Stratified 70:30

Kfold cross-validation 10
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Results
The testing performance of the ERS in classifying emotions using two different types of ECG data, 1-D and 2-D, is
summarised in Table 6. The result denoted by an asterisk (*) corresponds to the original DREAMER publication
13, whereas the best accuracy and F1 score for classifying valence and arousal were bolded and shaded.

For 1-D input, the features extracted using the TEAP feature extractor obtain the best valence performance with an
accuracy of 65.06% and an F1 score of 75.63%. The best arousal performance is obtained using features extracted by the
AUBT feature extractor, which has a 57.83% and a 44.44% F1 score.

On the other hand, the KAZE feature extractor achieves the best valence performance with 2-D input, achieving 62.35%
accuracy and a 49.57% F1 score. Simultaneously, with 59.64% accuracy and a 59.71% F1 score, the AKAZE feature
extractor achieves the best performance in arousal emotion.

For comparison purposes, the computation time for both ECG inputs was recorded and reported in Table 7. The average
time required to compute 1-D is 1.58� 0.07 seconds. In comparison, the average computation time for 2-D is 3377.425�
3138.875 seconds. Therefore, according to the observation, 2-D took the longest computation time, whereas 1-D obtained
the shortest.

Discussion & conclusions
The results indicate that both inputs work comparably well in classifying emotions. This finding is demonstrated by the
fact that the best valence performance was obtained using a 1-D ECG, and the best arousal performance was acquired
using a 2-D ECG. Additionally, ERS with 1-D ECG was combined with dimensionality reduction, called LDA. The

Table 6. Testing emotion classification accuracy and F1-score for 1-D and 2-D electrocardiogram (ECG).

Type of ECG input Feature extractor Valence Arousal

Accuracy F1-Score Accuracy F1-Score

1-D *AUBT and BioSig 62.37 53.05 62.37 57.98

AUBT 63.86 72.73 57.83 44.44

TEAP 65.06 75.63 54.22 42.42

2-D ORB 61.75 47.76 56.33 40.59

KAZE 62.35 49.57 56.33 40.59

SIFT 61.14 46.4 56.33 40.59

AKAZE 61.75 47.76 59.64 59.71

BRISK 61.75 47.76 56.02 40.23

HOG 61.14 46.4 56.33 40.59

Table 7. Computation Time for Each Feature Extractor using Support Vector Machine (SVM).

Type of ECG input Feature extractor Computational time (sec)

Valence Arousal

1-D AUBT 1.65 1.63

TEAP 1.51 1.55

2-D ORB 1473.07 1461.77

KAZE 4486.27 6034.26

SIFT 239.31 238.55

AKAZE 2950.23 3308.23

BRISK 4926.46 3610.64

HOG 6516.30 6431.28
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presence of LDA improved the ERS performance in valence emotion but not in arousal. In terms of computational cost,
1-D ECG is better to 2-D ECG since it requires less computation time.

However, it is worth mentioning that the results obtained using 2-D ECG demonstrated potential for use as an input
modality for the ERS. Additionally, 2-D ECGs are appealing because the format enables the use of a variety of image-
based methods such as image augmentation to increase the data size, convolution neural networks (CNN), and the
application of transfer learning from models trained using large data. To summarise, the ERS performance of the two
ECG inputs is comparable since both yield a promising outcome for emotion recognition.

Data availability
Source data
The DREAMER dataset was first presented here: https://doi.org/10.1109/JBHI.2017.2688239 and can be found on
Zenodo. Access is restricted and users are required to apply. The decision whether to grant/deny access is solely under the
responsibility of the record owner.

Extended data
Analysis code available from: https://github.com/nr-isml/ECG-Numerical-Vs.-Image-Data-for-Emotion-Recognition-
System

Archived analysis code as at time of publication: https://doi.org/10.5281/zenodo.5542739.47

License: Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0
Public domain dedication).
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The paper titled “Evaluation of electrocardiogram: numerical vs. image data for emotion 
recognition system” looks interesting. Although it is a short paper, I found it interesting and am 
positive about this work, but it should go through some modification:

Figure 2 should be redrawn, only providing the reference is not enough to present a figure ○
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or image in the article. 
 
The ECG signals used in this work contain some baseline wandering. It should be removed 
before further analysis. A simple technique with Matlab code is described in Rahman et al  
(2019)1 to remove baseline wander. I am expecting a result comparing the emotion 
recognition rate before and after the baseline wander removal from the ECG signal. 
 

○

In addition to that, is it possible to use LSTM to the ECG time series to find the accuracy of 
the emotion recognition from ECG signals? 
 

○

Please provide detailed information about transforming the signal to image conversion. 
 

○

The reference-related comparison and discussion should be completed in the result and 
discussions. If possible, avoid referencing in the Conclusion section.

○
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Author Response 20 May 2022
Sharifah Noor Masidayu Sayed Ismail, Multimedia University, Bukit Beruang,, Malaysia 

The paper titled “Evaluation of electrocardiogram: numerical vs. image data for 
emotion recognition system” looks interesting. Although it is a short paper, I found it 
interesting and am positive about this work, but it should go through some 
modification: 
 
We appreciate your feedback and suggestions. We have revised the manuscript as needed. 
 
 
Figure 2 should be redrawn, only providing the reference is not enough to present a 
figure or image in the article. 
 
Thank you for your suggestions. As per your recommendations, we have redrawn the figure 
and an additional note has been added in the legend. As several modifications were made 
to the manuscript, Figure 2 was originally changed to Figure 1. This figure can be found on 
page 4. 
 
 
The ECG signals used in this work contain some baseline wandering. It should be 
removed before further analysis. A simple technique with MATLAB code is described in 
Rahman et al (2019)1 to remove baseline wander. I am expecting a result comparing 
the emotion recognition before and after the baseline wander removal from the ECG 
signal. 
 
Thank you for your suggestion. We did use the method suggested as cited accordingly. 
However, your expectation of having a result comparing the emotion recognition before 
and after the baseline wander removal from the ECG signal is inappropriate for our work 
because the focus of this paper is to compare emotion classification performance using 1-D 
and 2-D ECGs to investigate the effect of the ECG input format on the ERS. 
 
 
In addition to that, is it possible to use LSTM to the ECG time series to find the 
accuracy of the emotion recognition from ECG signals? 
 
As far as we know, it is possible to use LSTM on the ECG time series to find the accuracy of 
emotion recognition from ECG signals. The work by Song et al. used LSTM for the same 
purpose as your concern. Below is the paper, which you can take a look at. We hope it 
answers your question. 
 
T. Song, W. Zheng, C. Lu, Y. Zong, X. Zhang, and Z. Cui, “MPED: A multi-modal physiological 
emotion database for discrete emotion recognition,” IEEE Access, vol. 7, no. October, pp. 
12177–12191, 2019. 
 
 
Please provide detailed information about transforming the signal to image 
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conversion. 
 
Thank you for pointing this out. We have revised the 2-D ECG subsection, where the pre-
processing process until the transformation from 1-D to 2-D is explained in detail. This 
subsection can be found on pages 11 and 12, which can be read as follows: 
 
“The duration of the ECG recording varies according to the duration of the video (average = 
199 seconds). As Katsigiannis and Ramzan proposed, this study analysed the final 60 
seconds of each recording to allow time for a dominant emotion to emerge 13. Following 
that, 1-D ECG was pre-processed using a simple MATLAB function by 34 to 
eliminate baseline wander caused by breathing, electrically charged electrodes, or muscle 
noise. The signal was then divided into four segments corresponding to 15 seconds each. 
Then, using MATLAB version 9.7, the 1-D ECG was transformed into a 2-D ECG (Figure 4). 
The image has a width of 1920 pixels and a height of 620 pixels. 
 
Due to the fact that the 2-D ECG was converted to a rectangle shape, it is not easy to resize 
the photos to the standard input image sizes of 224×224 and 299×299. As a result, the 
converted 2-D ECG was resized to 60% of its original size using Python version 3.8.5. This 
scale percentage was chosen after considering the quality of the image, the type of feature 
extractor used, and the computational cost the system can afford. The coloured images 
were converted into greyscale images. Then, binarization of the image using an Otsu's 
automatic image thresholding method 35 was done. This method ascertains the optimal 
threshold values from pixel values of 0 to 255 by calculating and evaluating their within-
class variance 36” 
 
 
The reference-related comparison and discussion should be completed in the result 
and discussions. If possible, avoid referencing in the Conclusion section. 
 
Thank you for bringing this to our attention. We found your comments extremely helpful 
and have revised them accordingly. The revised text can be read as follows: 
 
“The results indicate that both inputs work comparably well in classifying emotions. This 
finding is demonstrated by the fact that the best valence performance was obtained using a 
1-D ECG, and the best arousal performance was acquired using a 2-D ECG. Additionally, ERS 
with 1-D ECG was combined with dimensionality reduction, called LDA. The presence of LDA 
improved the ERS performance in valence emotion but not in arousal. In terms of 
computational cost, 1-D ECG is better to 2-D ECG since it requires less computation time. 
 
However, it is worth mentioning that the results obtained using 2-D ECG demonstrated 
potential for use as an input modality for the ERS. Additionally, 2-D ECGs are appealing 
because the format enables the use of a variety of image-based methods such as image 
augmentation to increase the data size, convolution neural networks (CNN), and the 
application of transfer learning from models trained using large data. To summarise, the 
ERS performance of the two ECG inputs is comparable since both yield a promising outcome 
for emotion recognition.”  
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The authors use the DREAMER dataset to compare the emotion recognition performance of 
features extracted from the time-series ECG signal versus features extracted from images of the 
ECG wave signal. An SVM model is used as the classifier. 
 
Overall, the structure of the report is not coherent, the related work is incomplete, and the 
motivation for this work is not convincing. Furthermore, many important details are missing about 
the dataset and the methods used which makes it difficult to trust the results and the comparisons 
they make with other works. 
 
Detailed comments: 
 
Structure: several improvements to be made, information seems to be scattered throughout the 
article. For example, information about the dataset is present in both the introduction and 
methods sections. It is best to keep this information in the same section. Same for the related 
works. 
 
Authors should give a brief explanation on what are ECG wave images in the introduction, 
otherwise readers in the emotion recognition field might confuse them with spectrograms which 
are more widely used in the field. It may also be better to change the term "numerical data" to 
"time-series data" or "1D data" (2D being an image). 
 
Typo on page 3: EGC instead of ECG. 
 
From the references pertaining to the use of ECG images (1-6, 23,24) only half actually use ECG 
wave images (2,4,23,24). The rest either use time-series or convert the time-series to 
spectrograms. The ones that do use ECG images, mainly analyze individual beats and not the 
entire ECG wave in order to detect medical heart issues. For the emotion recognition use-case it is 
necessary to analyze significantly larger regions of the signal than individual beats. 
 
In emotion recognition, it is common to transform the ECG signal into a spectrogram image. The 
authors do not cite any work mentioning this method. 
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Authors do not include any references to other works that use the DREAMER dataset ECG signals 
for emotion recognition, here are some: 
 
Wenwen He et al. 2021 Emotion Recognition from ECG Signals Contaminated by Motion Artifacts1 
Pritam Sarkar et al. 2020 Self-supervised ECG Representation Learning for Emotion Recognition2 
 
I also came across another publication of some of the co-authors which would be advantageous to 
reference: 
 
Muhammad Anas Hasnul et al. 2021 Evaluation of TEAP and AuBT as ECG’s Feature Extraction 
Toolbox for Emotion Recognition System3 
 
In the Emotion model paragraph (page 3): it is still unclear which model of emotions was used, 
Ekman or Russell? Authors say "the latter" (referring to Russel) but then mention binary 
classification which may be confusing since the arousal/valence space is continuous making it a 
regression problem or at least multiclass and not binary. Authors should re-word this part to make 
it clear. 
 
Referring to wearable ECG devices, the authors state: "However, most of these devices store the 
ECG as images instead of raw numerical data". No references or other market analysis is provided 
to show that this is the case. The use of ECG wave images for emotion recognition is not properly 
motivated. I fail to see any advantage of using ECG wave images over the time-series data unless 
ECG time-series data is not available. 
 
How was the data annotated in the DREAMER dataset? Were they continuous annotations or a 
single annotation per video clip? This is very relevant to include in the article. A few more words 
about the dataset are needed like a short description of the experimental protocol. 
 
Arousal/valence rating values are ranging from 1 to 5 in the DREAMER dataset. The authors never 
explain how they split them into two classes (high/low) for the binary classification. 
 
Authors do not include sufficient information on how the time-series ECG data was converted to 
an image (resolution, compression, windowing), or how the data was treated in general. Did the 
authors use the entire ECG signal for each video? Was there any windowing? Since the authors did 
not properly summarize the dataset (how were the videos annotated?) it is difficult to grasp or 
guess on how the data was processed. 
 
None of the cited literature used any of the image feature extraction methods that the authors 
used, and the authors did not discuss their reasoning for why they selected those image feature 
extraction methods and not the ones established in the ECG image analysis literature that they 
cited. Some more illustrations of these features may be useful besides the one in Figure 5 in order 
to convince the readers. 
 
Support vector machine: It is not clear what preprocessing steps were applied to the data. For 
example in the DREAMER dataset baseline they only use the last 60s of data for each film clip. 
 
Data was divided 80:20 and 10-fold cross-validation was used. The authors do not specify exactly 
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how the data was split (see DREAMER dataset paper section V as an example). From reading this 
part, I can only assume that all data from all participants was used for each fold (general model), 
something that is diverging from how the data was split in the DREAMER dataset paper (they 
made models for each individual participant). Therefore any comparisons to the results of the 
DREAMER baseline are invalid. 
 
Results: If the classes are unbalanced (as the DREAMER dataset paper indicates) accuracy is not 
valid on it's own, include f1 score, and/or Cohen's Kappa. 
 
Discussion: "Ref. 11" has nothing to do with the statement in that paragraph. LDA was actually 
applied in the DREAMER dataset paper and they reported that there were no significant 
differences in performance. 
 
References 
1. He W, Ye Y, Pan T, Meng Q, et al.: Emotion Recognition from ECG Signals Contaminated by 
Motion Artifacts,. International Conference on Intelligent Technology and Embedded Systems (ICITES), 
2021. 2021. 125-130 Publisher Full Text  
2. Sarkar P, Etemad A: Self-supervised ECG Representation Learning for Emotion Recognition. IEEE 
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reasons outlined above.

Author Response 20 May 2022
Sharifah Noor Masidayu Sayed Ismail, Multimedia University, Bukit Beruang,, Malaysia 

The authors use the DREAMER dataset to compare the emotion recognition 
performance of features extracted from the time-series ECG signal versus features 
extracted from images of the ECG wave signal. An SVM model is used as the classifier. 
 
Overall, the structure of the report is not coherent, the related work is incomplete, 
and the motivation for this work is not convincing. Furthermore, many important 
details are missing about the dataset and the methods used which makes it difficult 
to trust the results and the comparisons they make with other works. 
 
Thanks for taking the time to review our manuscript. We have revised the manuscript based 
on your comments and suggestions accordingly. 
 
 
Structure: several improvements to be made, information seems to be scattered 
throughout the article. For example, information about the dataset is present in both 
the introduction and methods sections. It is best to keep this information in the same 
section. Same for the related works. 
 
Thanks for pointing this out. We agree with your suggestion and have attempted to address 
the issues. Therefore, we have revised each section as per suggestions by revising the 
information written in the manuscript accordingly. The revised part can be found on pages 
3 until 13. 
 
 
Authors should give a brief explanation on what are ECG wave images in the 
introduction, otherwise readers in the emotion recognition field might confuse them 
with spectrograms which are more widely used in the field. It may also be better to 
change the term "numerical data" to "time-series data" or "1D data" (2D being an 
image). 
 
Thank you for drawing our attention to this. As you mentioned, we have added an 
explanation of what ECG wave images are in the Introduction section that reads as follows: 
 
“Fundamentally, ECG is used to measure electrical activity in the human heart by attaching 
electrodes to the human body. Due to the continual blood pumping action to the body, the 
electrical activity of the heart can be found in the sinoatrial node. The electrocardiogram 
signal is composed of three basic components: P, QRS, and T waves (Figure 1). P waves are 
produced during atrium depolarization, QRS complexes are produced during ventricular 
depolarization, and T waves are produced during ventricle recovery. 
 
Despite this, majority of the portable devices record the ECG signal as images (2-D images) 
in a PDF file rather than as raw numerical data (1-D data) 16 – 18. The example of a PDF-
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based 2-D ECG is depicted in Figure 2. Due to this problem, researchers were required to 
convert the PDF file of the ECG into 1-D data before performing further emotion analysis, 
adding complexity to the pre-processing process. On this account, given the positive results 
obtained in monitoring and diagnosing cardiovascular-related diseases, the efficacy of 2-D 
ECG in emotion studies also warrants further investigation.” 
 
Additionally, we also added Figure 2 that shows the snippet of the 2-D ECG from the PDF 
file. This figure can be found on page 4. 
 
Furthermore, as per suggestion, we have changed the terms "numerical data" to "1D ECG" 
and "wave images" to "2-D ECG". 
 
 
Typo on page 3: EGC instead of ECG. 
 
Thank you so much for catching these glaring and confusing errors, which we have now 
corrected. 
 
 
From the references pertaining to the use of ECG images (1-6, 23,24) only half actually 
use ECG wave images (2,4,23,24). The rest either use time-series or convert the time-
series to spectrograms. The ones that do use ECG images, mainly analyze individual 
beats and not the entire ECG wave in order to detect medical heart issues. For the 
emotion recognition use-case it is necessary to analyze significantly larger regions of 
the signal than individual beats. 
 
Based on your comment, we have revised our Related Works section and corrected them 
accordingly. Additionally, we added the summary of existing works that use 1-D and 2-D 
ECG input with their purposes, tabulated in Table 1. The revision of these issues can be 
found on page 4 until 8. 
 
 
In emotion recognition, it is common to transform the ECG signal into a spectrogram 
image. The authors do not cite any work mentioning this method. 
 
Thanks for pointing this out. We agree with your comments. Therefore, we have revised our 
Related Works section and provided improvements through the fourth paragraph on page 
6: 
. 
“Despite rising popularity among medical practitioners in assessing patients' cardiac 
disease, 2-D ECG remains inadequate compared to 1-D ECG usage as a type of input in 
emotion recognition studies. As a result, the number of studies employing 1-D ECG in ERS is 
higher than that utilizing 2-D ECG in ERS. However, rather than employing a printout-based 
2-D ECG, emotion researchers classified human emotions using 2-D ECG spectral images. 
For example, 15 determines the R-peaks of the electrocardiogram prior to generating the R-
R interval (RRI) spectrogram. Following that, CNN was used to classify the emotions, with an 
accuracy rate greater than 90%. Elalamy et al. 30 used ResNet-50 to extract features from a 
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2-D ECG spectrogram. Then, Logistic Regression (LR) was employed as a classifier and 
achieved an accuracy of 78.30% in classifying emotions.” 
 
Additionally, in Table 1, the ECG input was listed as either 1-D or 2-D ECGs, where 2-D was 
further categorised into standard 2-D ECG or spectral 2-D ECG. 
 
 
Authors do not include any references to other works that use the DREAMER dataset 
ECG signals for emotion recognition, here are some: 
  
Wenwen He et al. 2021 Emotion Recognition from ECG Signals Contaminated by 
Motion Artifacts 
 
Pritam Sarkar et al. 2020 Self-supervised ECG Representation Learning for Emotion 
Recognition 
  
I also came across another publication of some of the co-authors which would be 
advantageous to reference: 
  
Muhammad Anas Hasnul et al. 2021 Evaluation of TEAP and AuBT as ECG’s Feature 
Extraction Toolbox for Emotion Recognition System. 
 
Thank you for the paper suggested. We have added the reference according to your 
recommendation, which you can find on page 6 as follows: 
 
“Additionally, numerous other researchers also used the ECG signals from the DREAMER 
dataset to perform emotion recognition. For instance, 1-D ECG data from the DREAMER 
dataset is utilized by Wenwen He et al. 24 that suggested an approach for emotion 
recognition using ECG contaminated by motion artefacts. The proposed approach improved 
classification accuracy by 5% to 15%. Additionally, Pritam and Ali 25 also employed 1-D ECG 
from the DREAMER dataset to develop the self-supervised deep multi-task learning 
framework ERS, which consists of two stages of learning: ECG representation learning and 
emotion classification learning. The accuracy gained in this study was greater than 70%. 
Hasnul et al. 12 also used the 1-D ECG by DREAMER dataset to compare the performance of 
two feature extractor toolboxes. They noted that the dataset's size and the type of emotion 
classified might affect the suitability of the extracted features.” 
 
 
In the Emotion model paragraph (page 3): it is still unclear which model of emotions 
was used, Ekman or Russell? Authors say "the latter" (referring to Russel) but then 
mention binary classification which may be confusing since the arousal/valence space 
is continuous making it a regression problem or at least multiclass and not binary. 
Authors should re-word this part to make it clear. 
 
Thank you for pointing this out. The reviewer is correct; the original phrase is confusing. 
Therefore, we have removed this part to avoid any further confusion. Furthermore, this 
concern has been changed and revised to make it more straightforward and 
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understandable. The revised text was located in the experimental setting subsection under 
the Method section on page 13: 
 
“The scale of self-assessed emotions, which ranges from 1 (lowest) to 5 (highest), was 
classified using a five-point scale with middle-point thresholds (an average rate of 3.8). As a 
result, scales four and five were assigned to the high class, while the remaining scales were 
assigned to the low class.” 
 
 
Referring to wearable ECG devices, the authors state: "However, most of these devices 
store the ECG as images instead of raw numerical data". No references or other 
market analysis is provided to show that this is the case. The use of ECG wave images 
for emotion recognition is not properly motivated. I fail to see any advantage of using 
ECG wave images over the time-series data unless ECG time-series data is not 
available. 
 
Thank you for drawing our attention to this, and we agree with the comments. Therefore, 
we have cited the necessary references and revised the statement as per the suggestion. 
The revised text can be found on page 4 as follows: 
 
“Previous research on human emotions has primarily relied on either direct analysis of 1-D 
data 12 – 14 or the conversion of 1-D data to a 2-D spectral image 15 prior to identifying the 
emotions. Despite this, majority of the portable devices record the ECG signal as images (2-
D images) in a PDF file rather than as raw numerical data (1-D data) 16 – 18. The example of a 
PDF-based 2-D ECG is depicted in Figure 2. Due to this problem, researchers were required 
to convert the PDF file of the ECG into 1-D data before performing further emotion analysis, 
adding complexity to the pre-processing process. On this account, given the positive results 
obtained in monitoring and diagnosing cardiovascular-related diseases, the efficacy of 2-D 
ECG in emotion studies also warrants further investigation.” 
 
 
How was the data annotated in the DREAMER dataset? Were they continuous 
annotations or a single annotation per video clip? This is very relevant to include in 
the article. A few more words about the dataset are needed like a short description of 
the experimental protocol. 
 
Thank you for bringing this issue to our attention. The short description of the DREAMER 
dataset has been improved to address this issue. The revised text was located in the 
Method section under a subsection called "The dataset (DREAMER") on page 8: 
 
“This study used ECG signals from Katsigiannis and Ramzan 13 called DREAMER. The 
DREAMER dataset is a freely accessible database of electroencephalogram (EEG) and 
electrocardiogram (ECG) signals used in emotion research. However, EEG signals were 
removed from this study because the primary focus is on ECG signals. The ECG was 
recorded using the SHIMMER ECG sensor at 256 Hz and stored in 1-D format. The DREAMER 
dataset contains 414 ECG recordings from 23 subjects who were exposed to 18 audio-visual 
stimuli designed to evoke emotion. Each participant assessed their emotions on a scale of 1 
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to 5 for arousal, valence, and dominance. However, because this study was primarily 
concerned with arousal and valence ratings, participants' evaluations of dominance were 
discarded.” 
 
 
Arousal/valence rating values are ranging from 1 to 5 in the DREAMER dataset. The 
authors never explain how they split them into two classes (high/low) for the binary 
classification. 
 
Thank you for bringing this to our attention. We have improved this part by adding an 
explanation of how we categorise emotions into two classes. The explanation can be found 
on page 13: 
 
“The scale of self-assessed emotions, which ranges from 1 (lowest) to 5 (highest), was 
classified using a five-point scale with middle-point thresholds (an average rate of 3.8). As a 
result, scales four and five were assigned to the high class, while the remaining scales were 
assigned to the low class.” 
 
 
Authors do not include sufficient information on how the time-series ECG data was 
converted to an image (resolution, compression, windowing), or how the data was 
treated in general. Did the authors use the entire ECG signal for each video? Was there 
any windowing? Since the authors did not properly summarize the dataset (how were 
the videos annotated?) it is difficult to grasp or guess on how the data was processed. 
 
We agree with this comment. Therefore, we improved the explanation part of pre-
processing the 2-D ECG. The improvised text can be found in the first and second 
paragraphs of subsection 2-D ECG on page 11. 
 
“The duration of the ECG recording varies according to the duration of the video (average = 
199 seconds). As Katsigiannis and Ramzan proposed, this study analysed the final 60 
seconds of each recording to allow time for a dominant emotion to emerge 13. Following 
that, 1-D ECG was pre-processed using a simple MATLAB function by 34 to 
eliminate baseline wander caused by breathing, electrically charged electrodes, or muscle 
noise. The signal was then divided into four segments corresponding to 15 seconds each. 
Then, using MATLAB version 9.7, the 1-D ECG was transformed into a 2-D ECG (Figure 4). 
The image has a width of 1920 pixels and a height of 620 pixels. 
 
Due to the fact that the 2-D ECG was converted to a rectangle shape, it is not easy to resize 
the photos to the standard input image sizes of 224×224 and 299×299. As a result, the 
converted 2-D ECG was resized to 60% of its original size using Python version 3.8.5. This 
scale percentage was chosen after considering the quality of the image, the type of feature 
extractor used, and the computational cost the system can afford. The coloured images 
were converted into greyscale images. Then, binarization of the image using an Otsu's 
automatic image thresholding method 35 was done. This method ascertains the optimal 
threshold values from pixel values of 0 to 255 by calculating and evaluating their within-
class variance 36” 
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None of the cited literature used any of the image feature extraction methods that 
the authors used, and the authors did not discuss their reasoning for why they 
selected those image feature extraction methods and not the ones established in the 
ECG image analysis literature that they cited. Some more illustrations of these 
features may be useful besides the one in Figure 5 in order to convince the readers. 
 
Thank you for pointing this out. Cite literature either using their own algorithm to detect 
peaks on PQRST waves or automatically extracting ECG features using a deep learning 
system. However, we had included our reason for employing these image feature extraction 
methods, which we believed could add a valuable contribution to the state-of-the-art. 
Additionally, we removed Figure 5 and replaced it with the description of each feature 
extractor to help convince the readers. The revised text can be found on pages 11 and 12: 
 
“The area of interest for 2-D ECG is laying on the PQRST waves, making the peaks detector 
the best approach to be employed. Therefore, six different feature extractors that could 
extract peaks, edges, or corners were applied to extract features from 2-D ECGs using 
Python version 3.8.5: 
1. ORB 37: ORB features are invariant to rotation and noise because they are a combination 
of Features from Accelerated Segment Test (FAST) detection and Binary Robust 
Independent Elementary Features (BRIEF) description methods. 
2. SIFT 38: SIFT identifies feature points by searching for local maxima on the images using 
Difference-of-Gaussians (DoG) operators. The description approach generates a 16x16 
neighbourhood around each identified feature and sub-blocks the region. SIFT is also 
rotation and scale invariant. 
3. KAZE 39: KAZE is based on the scale of the normalised determinant of the Hessian Matrix, 
with the maxima of detector responses being captured as feature points using a moving 
window. Additionally, KAZE makes use of non-linear space via non-linear diffusion filtering 
to reduce noise while keeping the borders of regions in images. 
4. AKAZE 40: AKAZE is a more sophisticated version of KAZE that is based on the Hessian 
Matrix determinant. Scharr filters were employed to enhance the quality of the invariance 
rotation, rendering AKAZE features rotation- and scale-invariant. 
5. BRISK 41: While searching for maxima in the scale-space pyramid, BRISK detects corners 
using the AGAST algorithm and filters them using the FAST Corner Score. Additionally, the 
BRISK description is based on the recognised characteristic direction of each feature, which 
is necessary for rotation invariance. 
6. HOG 42: HOG is a feature descriptor that is used to compute the gradient value for each 
pixel. The image shape denoted the edge or gradient structure derived using a high-quality 
local gradient intensity distribution.” 
 
 
Support vector machine: It is not clear what preprocessing steps were applied to the 
data. For example, in the DREAMER dataset baseline they only use the last 60s of data 
for each film clip. 
 
Thank you for this comment. The pre-processing part can be found in the Methods section 
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under the 1-D ECG and 2-D ECG subsections. The pre-processing for 1-D ECG can be read as 
follows: 
 
“The AUBT and TEAP feature extractors were included with the Low Pass Filter (LPF), a filter 
meant to reject all undesirable frequencies in a signal. The LPF was one of the most widely 
used filters before the computation of statistical features for physiological signals 31, 32. As 
a result, automated 1-D ECG pre-processing utilizing LPF was performed in this study to 
reduce muscle and respiratory noise in ECG signals.” 
 
Whereas the pre-processing for 2-D ECG can be read as follows: 
 
“The duration of the ECG recording varies according to the duration of the video (average = 
199 seconds). As Katsigiannis and Ramzan proposed, this study analysed the final 60 
seconds of each recording to allow time for a dominant emotion to emerge 13. Following 
that, 1-D ECG was pre-processed using a simple MATLAB function by 34 to eliminate 
baseline wander caused by breathing, electrically charged electrodes, or muscle noise. The 
signal was then divided into four segments corresponding to 15 seconds each. Then, using 
MATLAB version 9.7, the 1-D ECG was transformed into a 2-D ECG.” 
 
 
Data was divided 80:20 and 10-fold cross-validation was used. The authors do not 
specify exactly how the data was split (see DREAMER dataset paper section V as an 
example). From reading this part, I can only assume that all data from all participants 
was used for each fold (general model), something that is diverging from how the data 
was split in the DREAMER dataset paper (they made models for each individual 
participant). Therefore, any comparisons to the results of the DREAMER baseline are 
invalid. 
 
Thank you for pointing this out. We have addressed this issue by adding a new subsection 
under Method, namely, Experimental Setting. This subsection is located on pages 13 and 14, 
and can be read as follows: 
 
“The hyperparameters for SVM were tuned using an exhaustive parameter search tool, 
GridSearchCV, from Scikit-learn that automates the tuning procedure 45. This study tuned 
only the parameters with a high and relative tuning risk and left the remainder at their 
default values because they are the least sensitive to the hyperparameter tuning process, as 
suggested by Weerts, Mueller, and Vanschoren 46. 
 
The dataset was split into a reasonable proportion of training and testing sets to evaluate 
the model's performance on new unseen data. This study used a stratified train-test split of 
80:20 for the training and testing sets. This strategy guarantees the dataset's exact 
proportions of samples in each class are preserved. 
 
Additionally, as we had a small dataset size, this study applied KFold Cross-Validation, with 
the number of folds set to 10, the most commonly used number in prior research to 
improve ERS performance.” 
 

 
Page 28 of 33

F1000Research 2022, 10:1114 Last updated: 06 JUN 2022



Additionally, the summary of the experimental setting values has been tabulated in Table 5 
on page 14. 
 
 
Results: If the classes are unbalanced (as the DREAMER dataset paper indicates) 
accuracy is not valid on its own, include f1 score, and/or Cohen's Kappa.. 
 
Thank you for your suggestions. As per your recommendations, we have included the F1-
score along with the accuracy to address the unbalanced class distribution issue. This result 
can be found in Table 6 on page 14. 
 
 
Discussion: "Ref. 11" has nothing to do with the statement in that paragraph. LDA was 
actually applied in the DREAMER dataset paper and they reported that there were no 
significant differences in performance. 
 
Thank you for your great observations. We have revised that part as needed. Regarding the 
LDA, we agree with you. However, as far as we know, LDA was used for classification 
purposes in the DREAMER dataset paper but not for dimension reduction.  
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The paper presents a comparison of the Emotion Recognition System (ERS) performance using 
ECG image and ECG numerical data. DREAMER dataset containing 23 ECG recordings has been 
used for experimentation. ECG numerical data has been converted to ECG images for comparison. 
The proposed method consists of feature extraction, dimension reduction, and emotion 
classification. Arousal and Valence accuracy have been compared using different feature 
extractors on ECG image and numerical data. ORB, SIFT, KAZE, AKAZE, BRISK, and HOG have been 
used to extract features from ECG image data whereas TEAP and AUBT have been used to extract 
features from ECG numerical data. It has been concluded that ECG numerical data provides better 
performance of emotion classification in comparison to ECG image data. 
 
The authors have done a good job in addressing a typical issue. However, there are many aspects 
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that need attention. Hence, the following suggestions should be addressed to enhance the quality 
of the manuscript.

Literature survey is poor. More number of related state-of-the-art works should be cited. 
There is no citation of the work taking into account both ECG image and ECG numerical 
data. 
 

1. 

It has been mentioned that the converted ECG images have been resized to 60% of the 
original size to reduce the computational time. What is the reason for choosing 60%? 
 

2. 

There is no analysis of the computational complexity of the proposed method. 
 

3. 

In Table 4, emotion classification accuracies for both ECG image and ECG numerical data 
have been provided. Can these accuracy values be accepted in practical applications?  
 

4. 

There is no comparison of the proposed method with state-of-the-art methods. 
 

5. 

References should be complete in all respect and in a uniform style. A few exceptions are 1, 
32, 39, 40.

6. 

 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes
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Sharifah Noor Masidayu Sayed Ismail, Multimedia University, Bukit Beruang,, Malaysia 

The paper presents a comparison of the Emotion Recognition System (ERS) 
performance using ECG image and ECG numerical data. DREAMER dataset containing 
23 ECG recordings has been used for experimentation. ECG numerical data has been 
converted to ECG images for comparison. The proposed method consists of feature 
extraction, dimension reduction, and emotion classification. Arousal and Valence 
accuracy have been compared using different feature extractors on ECG image and 
numerical data. ORB, SIFT, KAZE, AKAZE, BRISK, and HOG have been used to extract 
features from ECG image data whereas TEAP and AUBT have been used to extract 
features from ECG numerical data. It has been concluded that ECG numerical data 
provides better performance of emotion classification in comparison to ECG image 
data. 
 
The authors have done a good job in addressing a typical issue. However, there are 
many aspects that need attention. Hence, the following suggestions should be 
addressed to enhance the quality of the manuscript. 
 
Thank you for taking the time to review our manuscript. We reviewed the comments and 
made improvements based on the comments provided accordingly. 
 
 
Literature survey is poor. More number of related state-of-the-art works should be 
cited. There is no citation of the work taking into account both ECG image and ECG 
numerical data. 
 
We have revised Section Related Works as per the suggestion by adding more related state-
of-the-art work citations. The revised part is on pages 5 until 8. We also include the 
summary information about the existing works that employed 1-D and 2-D ECG input, which 
is tabulated in Table 2 on pages 6 through 8. Furthermore, the work that considers both 
ECG images and ECG numerical data is also included in this section. This work can be found 
on page 6, which reads as follows: 
 
"Additionally, Mandal et al. 5 published a study comparing 1-D and 2-D ECGs for the 
diagnosis of Ventricular Arrhythmia. They concluded that both ECG inputs are effective at 
detecting the disease." 
 
 
It has been mentioned that the converted ECG images have been resized to 60% of the 
original size to reduce the computational time. What is the reason for choosing 60%? 
 
Thank you for drawing our attention to this. We have improved the explanation of this 
matter in the manuscript. You can find the text on page 11 that reads as follows: 
 
“Due to the fact that the 2-D ECG was converted to a rectangle shape, it is not easy to resize 
the photos to the standard input image sizes of 224×224 and 299×299. As a result, the 
converted 2-D ECG was resized to 60% of its original size using Python version 3.8.5. This 
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scale percentage was chosen after considering the quality of the image, the type of feature 
extractor used, and the computational cost the system can afford.” 
 
 
There is no analysis of the computational complexity of the proposed method. 
 
Thank you for pointing out this matter. We have included the analysis of the computational 
complexity under the result section, tabulated in Table 7, which discussed the time analysis 
of both inputs used to train and test the ERS model. The analysis was located on page 14:  
 
“For comparison purposes, the computation time for both ECG inputs was recorded and 
reported in Table 7. The average time required to compute 1-D is 1.58 ± 0.07 seconds. In 
comparison, the average computation time for 2-D is 3377.425 ± 3138.875 seconds. 
Therefore, according to the observation, 2-D took the longest computation time, whereas 1-
D obtained the shortest.” 
 
Additionally, the analysis of the computational time was touched on in the Discussion and 
Conclusion section as follows: 
 
“In terms of computational cost, 1-D ECG is better to 2-D ECG since it requires less 
computation time.” 
 
 
In Table 4, emotion classification accuracies for both ECG image and ECG numerical 
data have been provided. Can these accuracy values be accepted in practical 
applications? 
 
Thank you for pointing this out. For your information, our results have been updated 
according to the result of the latest experiment. This result is tabulated in Table 6 on page 
13. Based on this result, the accuracy and F1-score achieved for this study are on par with 
the existing works, which shows that our ERS model can be accepted in practical 
applications. However, this does not rule out the possibility of improving this result, as there 
is much more room to improve the ERS performance to develop a more robust ERS in the 
future. 
 
 
There is no comparison of the proposed method with state-of-the-art methods. 
 
A comparison with existing work (DREAMER) has been provided for 1-D ECG. This 
comparison can be found in the result section on page 15, tabulated in Table 6. However, no 
existing work using the 2-D ECG of the DREAMER dataset has been reported. Therefore, no 
comparison can be made. 
 
 
References should be complete in all respect and in a uniform style. A few exceptions 
are 1, 32, 39, 40. 
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Thank you for bringing our attention to this. We have revised the references and citation 
part accordingly and completed it in all respects and in a uniform style as per suggestions.  
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