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Abstract 
The field of animal science, and especially animal nutrition, relies heavily on modeling to accomplish its day-to-day objectives. New data streams 
(“big data”) and the exponential increase in computing power have allowed the appearance of “new” modeling methodologies, under the 
umbrella of artificial intelligence (AI). However, many of these modeling methodologies have been around for decades. According to Gartner, 
technological innovation follows five distinct phases: technology trigger, peak of inflated expectations, trough of disillusionment, slope of enlight-
enment, and plateau of productivity. The appearance of AI certainly elicited much hype within agriculture leading to overpromised plug-and-play 
solutions in a field heavily dependent on custom solutions. The threat of failure can become real when advertising a disruptive innovation as sus-
tainable. This does not mean that we need to abandon AI models. What is most necessary is to demystify the field and place a lesser emphasis 
on the technology and more on business application. As AI becomes increasingly more powerful and applications start to diverge, new research 
fields are introduced, and opportunities arise to combine “old” and “new” modeling technologies into hybrids. However, sustainable application 
is still many years away, and companies and universities alike do well to remain at the forefront. This requires investment in hardware, software, 
and analytical talent. It also requires a strong connection to the outside world to test, that which does, and does not work in practice and a close 
view of when the field of agriculture is ready to take its next big steps. Other research fields, such as engineering and automotive, have shown 
that the application power of AI can be far reaching but only if a realistic view of models as whole is maintained. In this review, we share our view 
on the current and future limitations of modeling and potential next steps for modelers in the animal sciences. First, we discuss the inherent 
dependencies and limitations of modeling as a human process. Then, we highlight how models, fueled by AI, can play an enhanced sustainable 
role in the animal sciences ecosystem. Lastly, we provide recommendations for future animal scientists on how to support themselves, the 
farmers, and their field, considering the opportunities and challenges the technological innovation brings.

Lay Summary 
Modeling in the animal sciences has received a boost by large-scale adoption of sensor technology, increased computing power, and the fur-
ther development of artificial intelligence (AI) in the form of machine learning (ML) and deep learning (DL) models. Together with open-source 
programming languages, extensive modeling libraries, and heavy marketing, modeling reached a larger audience via AI. However, like most 
technological innovations, AI overpromised. By adopting an almost singular model-centric view to solving business needs, models failed to 
integrate with existing business processes. Models, especially AI, need data and both need humans. Together, they need room to learn and fail 
and by offering them as the end-solution to a problem, they are unable to act as sparring partners for all relevant stakeholders. In this article, 
we highlight fundamental model limitations exemplified via AI, and we offer solutions toward a more sustainable adoption of AI as a catalyst 
for modeling. This means sharing data and code and placing a more realistic view on models. Universities and industry both play a fundamental 
role in offering technological prowess and business experience to the future modeler. People, not technology, are the key to a more successful 
adoption of models.
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Introduction
An individual’s perception of what a model is depends on 
the scientific field that individual is working in. For math-
ematicians, a model is made up of formulas (Grimm et al., 
2020), but for a social scientist, a (mental) model can be 
made entirely out of text (Johnson-Laird and Byrne, 1993). 
Where these models find commonality across disciplines is 
that they both share an intention to discover, describe, pre-
dict, and mimic worldly processes. By using mathematics, 
statistics, and content knowledge, scientists create models to 
make sense of physical and biological phenomena (Alber et 
al., 2019). Herein we discuss primarily on the formula-based 
models (as opposed to text-based or conceptual models), as it 
is the most applicable to the animal sciences.

The field of animal science, and especially animal nutri-
tion, relies heavily on modeling to accomplish its day-to-day 
objectives. Models are often used to estimate how animals 
are projected to grow and determine the animal weight at 
slaughter, and for how long they should be fed to reach 
that objective in both group-based (van Milgen et al., 2008; 
NRC, 2012; NASEM, 2016) or individual-based manage-
ment strategies (Tedeschi et al., 2004). Models can esti-
mate milk production, fetal development, and the amount 
of nutrients needed to maximize estimated performance or 
decrease production costs (Dourmad et al., 2008; Weiss, 
2021). Models have been demonstrated as tools to decrease 
the environmental impact of feeding animals by reducing 
nutrient excretion excess (Tedeschi et al., 2004; Dumas et 
al., 2010; Pomar et al., 2019b). Animal production prac-
tices can be modeled to estimate outcomes and provide 
eco-friendly solutions (Cadéro et al., 2020; Menendez and 
Tedeschi, 2020).

Mathematical modeling (MM), or systems biology, uses 
equations to represent complex biological phenomena and 
predict outcomes (France, 2008). But the model itself can be 
a combination of different classes or model types—mecha-
nistic and empirical models, static and dynamic models, and 
deterministic and stochastic models (Thornley and France, 
1984). To define these terms, a static model predicts a single 
time point, whereas a dynamic model considers changes over 
time (typically via a series of integrated differential equations 
or time step loops). A deterministic model typically consid-
ers the “average” animal; however, individual animals can be 
simulated with great reductions in modeling efficiency; fur-
ther reduced by the implementation of discrete-time events. 
Whereas a stochastic model is composed of probabilistic 
and models variation. Then we have empirical models that 
describe correlations in the data (e.g., y = mx + b), vs. mech-
anistic models, which aim to reflect underlying causal path-
ways. To conceptualize the latter, if a cow is represented by 
level i, then the organs may be represented by level i − 1, 
cells as level i − 2, and the herd by level i + 1, and a mecha-
nistic model may predict level i outcomes with a mathemati-
cal description of level i − 1 (always a level lower) attributes 
(Thornley and France, 1984).

In practice, the distinction of a model being a specific “type” 
is blurry at best as a mechanistic model may contain empirical 
elements, and a deterministic model can have a strategic vari-
ation or stochastic attributes introduced (e.g., inputs), but not 
throughout. Many of the most advanced models are a hybrid-
ization of approaches, for example, the new INRA feeding 
system for ruminants (Noziere et al., 2018).

Models are helpful in guiding the animal scientist to make 
informed decisions, but they require adaptation to the nature 
of the underlying data being captured (Petrie and Watson, 
2013; Tedeschi and Fox, 2020). Traditional animal science 
models are mechanistic by nature, and work in a retrospec-
tive manner, meaning they use data from past populations to 
predict future outcomes of similar populations. In the new era 
of smart-livestock farming (SLF) or precision livestock farm-
ing (PLF; Tedeschi et al., 2021) such models might not be as 
successful mainly because these models were not developed 
to handle massive amounts or specific types of data such as 
images and audio files (Tedeschi, 2019). It is here that the field 
of artificial intelligence (AI), and more specifically machine 
learning (ML) and deep learning (DL), provide added ben-
efit. Designed for iterating through a multitude of possible 
solutions in unstructured datasets, these models update 
themselves.

If traditional approaches keep modeling in a customary 
manner without including new technologies, they may reach a 
certain level of stagnation (Tedeschi, 2019; Ellis et al., 2020). 
They often represent an average response, in a typical condi-
tion, at a certain point in time (Pomar et al., 2003; France, 
2008). In addition, they can take quite a long time to develop 
as they evolve via experimental design, and by the discov-
ery of new biological facts that alter the initial representa-
tion (Tedeschi, 2006; Dumas et al., 2008; Pomar and Remus, 
2021). Their strength in capturing biology may perhaps also 
be their biggest dependency.

The “new” availability of ML models (Ellis et al., 2020) has 
given rise to many types of empirical model categorizations 
to consider. ML models may be categorized as using super-
vised vs. unsupervised learning methods, and to work on data 
that is either continuous or discrete. Supervised learning is 
more familiar to modelers in animal science—whereby the 
inputs and outputs are known, and the goal is for the ML 
algorithm to learn a function that approximates the relation-
ship between input and output data (e.g., linear regression). 
Unsupervised learning, on the other hand, has no labeled out-
puts—the goal is to infer the natural structure present within 
a set of data points (e.g., principal component analysis).

In terms of data type, these models may be developed on 
continuous data (individual numeric data points) or discrete 
(categorical data). The latter is perhaps where real innovation 
has evolved—partnering ML models with nonnumerical data 
types (including images, audios, videos, etc.). However, audio-
visual data are made of pixels, and each pixel contains numer-
ical values. As a result, the data is transformed into a matrix 
of integers requiring linear algebra to reach the proper form 
before being included in DL models. A classification summary 
of the model, including ML and DL models, can be found in 
Ellis et al. (2020).

The appearance of these “new” modeling methodologies 
has certainly elicited much hype within agriculture and well 
beyond. However, many of these modeling methodologies 
have been around for decades (Fradkov, 2020)—it is the new 
data streams (“big data”) with an exponential increase in 
computing power that have allowed new use of these meth-
odologies to solve new problems (Wu et al., 2016).

One way to examine the emergence of big data, and the 
extensive marketing around the potential of ML models to 
address a suite of problems, is to take a close look at the 
Gartner Hype Cycle (Figure 1). The Hype Cycle tracks tech-
nological developments across time with five distinct phases: 



Jacobs et al. 3

“Technology Trigger,” “Peak of Inflated Expectations,” 
“Trough of Disillusionment,” “Slope of Enlightenment,” and 
“Plateau of Productivity” (Linden and Fenn, 2003). There is 
even a specific cycle for AI (Dedehayir and Steinert, 2016). 
Each phase of the Hype Cycle has its own role to play. The 
“Innovation Trigger” is when the public becomes aware of 
the innovation. Based on the scientific breakthrough or appli-
cability of the innovation, this may result in a hype. Investors 
and early adopters become very much interested which will 
lead to a “Peak of Inflated Expectations.” New technology 
is being trialed and proof-of-concepts emerge. This is when 
the phrase “do not miss the train” is frequently being used. 
More specifically, this is also where data science has resided 
for the past 5 yr. When the excitement subsides, the “Trough 
of Disillusionment” sets in. Interest wanes as the applicability 
of the innovation is not as far-reaching as believed, and its 
potential is much more dependent on the status of the (com-
mercial) world. This stage is necessary to reach the “Slope of 
Enlightenment.” Here, early adopters begin to realize more 
fully how sustainable adoption of the technology looks like, 
subsequently leading to the “Plateau of Productivity.” This 
last stage is far less than what the first two stages ever prom-
ised, but it is here that the innovation has found its niche. 
Although the Hype Cycle sounds very appealing and intui-
tive, it is not without its incongruences and inconsistencies 
(Dedehayir and Steinert, 2016).

At the time of writing this review, both ML and DL (the 
latter referring to neural networks with more than one hid-
den layer; Dargan et al., 2020) have just passed the “Peak of 
Inflated Expectations” moving straight ahead for the “Trough 
of Disillusionment” (Chen and Asch, 2017; Lokhorst et 
al., 2019). According to the Hype Cycle, this is inevitable 
“healthy” technological development and “what goes up 
must come down” (Fenn and LeHong, 2011). And after 10 yr 
of exponential growth in computing power and model devel-
opment, the hype of what AI could theoretically accomplish 
is being caught up by the actual situation of where the over-
all business is and most companies are, technologically. As 
a result, most data science projects never make it into pro-
duction meaning that the model never sees the outside world 
(Weiner, 2020). This does not mean that we need to abandon 
ML/DL (Chen and Asch, 2017). What is most necessary is 

to demystify the field (Aho et al., 2020) and place a lesser 
emphasis on technology and more on business application.

Not every technology makes it to the production phase 
and technologies can be placed back in the curve (Dedehayir 
and Steinert, 2016). The problem with the often-cited Hype 
Cycle is that it showcases “old” technology and rebrands it as 
something new. For instance, a linear regression model that 
estimates its parameters via Maximum Likelihood, and not 
Ordinary Least Squares, is a model that acquires its solution 
through an iterative process. ML models require iterations 
(Vartak et al., 2015), but the method itself is much older 
than the term “machine learning” (Rosenblatt, 1958). As 
such, many labels in Hype Cycle are simply rebrands or the 
use of semantics—renaming and reframing of old concepts 
(Dedehayir and Steinert, 2016).

The aim of this review article is to share one view on the 
limitations and potential next steps for modeling and data 
analytics in the animal sciences. We discuss the inherent 
dependencies and limitations of modeling as a human pro-
cess. Then, we highlight how models, including AI, can play a 
more sustainable role in the animal sciences ecosystem. Lastly, 
we make recommendations toward future animal scientists 
on how to support themselves, the farmers, and their field 
considering the opportunities and challenges technological 
innovation brings.

Models have Limitations
Model transparency is key
The scientific cycle (or “scientific method” or “research 
cycle”), describes a circular process in which a research ques-
tion leads to a hypothesis, which leads to an experiment, 
which leads to an analysis, and from which then a conclusion 
can be derived (Figure 2; Bunge, 2001). Since the endeavor of 
answering research questions often leads to more questions, 
science represents a perpetual circular process of increasing 
knowledge.

The process of learning and discovery can be mathematically 
considered as Bayesian analysis. Contrary to the Frequentist 
approach of accepting or rejecting a null hypothesis (Mayo 
and Cox, 2006), Bayesian inference supports uncertainty and 
the fluidity of evidence. Here, models play a pivotal role in con-
necting new information (the likelihood) to previous knowledge 
(prior knowledge; Wagenmakers et al., 2008). The result is a 

Figure 1. Gartner Hype Cycle showing technological evolvement. 
There are five distinct phases: “Technology Trigger,” “Peak of Inflated 
Expectations,” “Trough of Disillusionment,” “Slope of Enlightenment,” 
and “Plateau of Productivity.” Adapted from Gartner and the Gartner 
Hype Cycle. https://www.gartner.com/en/research/methodologies/
gartner-hype-cycle.

Figure 2. The scientific cycle describes a circular process in which a 
research question leads to a hypothesis, which leads to an experiment, 
followed by analysis, and from which then a conclusion can be derived.

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
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new “understanding of the world” which is labeled “posterior 
knowledge” (Figure 3). Mathematically, posterior knowledge is 
literally the product of previous knowledge (the prior) and con-
temporary data (the likelihood). The Bayes’ theorem postulates 
that the probability of an outcome is a weighted combination 
of both old and new information. As a result, new information 
is placed in context and all probabilities are conditional on the 
past. Hence, to Bayesian theorists, the parameter estimates of 
a model, or the model itself, have (has) an expiration date that 
ends when a new dataset emerges.

The Bayesian framework integrates past and current 
knowledge via models, modelers, and actionable cycles. To 
allow a model to learn continuously, a tremendous amount of 
work on both data and model architecture is required using 
many iterations of the scientific cycle. A recent article showed 
that when given the exact same dataset, 49 researchers-mod-
elers reached completely different solutions (Schweinsberg et 
al., 2021). With such a finding, how can anyone ever pro-
claim to have found the correct answer to a research question 
(Rosen, 2016)?

Likewise, an experiment is a contemporary product of the 
science known, the data available, and the capabilities and 
assumptions of the researcher. Even if you design the optimal 
study, randomize it perfectly, block for influential variables, 
and blind yourself throughout the experiment all the way up 
to the analysis phase, you will still end up (unintentionally) 
influencing the results of the study via unconscious choices. 
This does not mean that the experiment has been done incor-
rectly, or that the findings cannot be trusted. It only means 
that science is a human process (Hull, 2010). To acknowledge 
this, the intended experimental design needs to be placed in 
a protocol that should be (ideally) published and reviewed 
before conducting the study (Al-Jundi and SAkkA, 2016). 
Such a protocol should also describe how data are to be 
handled and for which purpose. We already see this in med-
icine (Tetzlaff et al., 2012), when researchers set out to do a 
meta-analysis (Higgins et al., 2019), but also in general when 
grant proposals are reviewed. After an experiment has been 
analyzed, deviations from the protocol should be highlighted 
and reasons provided (Rosen, 2016).

Another example can be found in the use of pre-developed 
algorithms. The development of the time-series algorithm 
“prophet” by Facebook has been described in full (Taylor 
and Letham, 2018), and the same can be said for the random 
forest (Breiman, 2001) and gradient boosting model family 
(Friedman, 2002). However, when included in a study to 
predict a particular outcome, the model is often just refer-
enced as being applied. This is not enough detail or transpar-
ency, though, as the same model can be used in a multitude 
of different ways. Instead, descriptions should be provided 
explaining the choices modelers made when feeding a prophet 
or gradient boosting model, and how hyperparameters were 
tweaked to reach their results (Martinez-Moyano, 2012). A 
detailed and clear description of the model, its mathemati-
cal settings (e.g., hyperparameters), as well as the space, time, 
and sample size information regarding the analysis should be 
made available for verification of the reproducibility of an 
ML model (Eddy et al., 2012).

To share accurately and completely what was done, and to 
detect biases, nuances, and specifics, modelers will also need 
to become more comfortable with sharing data and code 
toward an open-science provision (Muñoz-Tamayo et al., 
2022). Sharing via publications alone makes it near impossi-
ble to see how the final model came to be and accurately rep-
licate it as assumptions and choices made are rarely described. 
These modeling decisions introduce bias and variability not 
reflected by standard errors.

To address error and bias, a technique called specification 
curve analysis (SCA) has been proposed (Simonsohn et al., 
2020). The aim of the SCA procedure is to visualize the entire 
model response surface. This method analyzes and shows the 
changes in descriptive and inferential statistics when loop-
ing through all reasonable specifications (Cosme, 2020). For 
example, if the user has included five variables in your model, 
the SCA will run and visualize all possible model combi-
nations, main effects, and up to five-factor interactions. In 
addition, you can specify how you dealt with data, such as 
missing, outliers, and the need to transform. As a result, the 
matrix of possibilities can become quite large, quite fast, and 
SCA will show you how results differ across combinations 

Figure 3. Bayesian analysis of calculating the posterior probability based on prior information and contemporary data (the likelihood).
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of choices. In a sense, an SCA is an extreme sensitivity anal-
ysis. As of now, the technique is still in development, and 
not widely applied, though it may be anticipated to mature 
rapidly and service for more sophisticated models.

Model validation needs to happen externally and 
continuously
A mathematical model cannot be truly validated but only 
allowed to demonstrate that it works within acceptable lim-
its in a determined situation (Tedeschi, 2006). Although con-
tradictory by nature, we define validation as a demonstration 
that a model has acceptable predictive accuracy for the end 
it was developed (Thornley and France, 2007). Models 
are often “validated” by testing them internally in datasets 
(Morota et al., 2018), and this process of internal validation 
can yield decent estimates when the data is sufficient and 
of good quality. To safeguard from overfitting, the datasets 
are split, and the model is repeatedly tested and adjusted via 
cross-validation. The true litmus test of any model is the use 
of an external “validation” set obtained via in vivo experi-
ments (Remus et al., 2020a; Menendez et al., 2022).

Model validation, or calibration, is often conducted once 
but can be extended toward an internal cycle of repeated val-
idation called cross-validation. Singular or repeated, internal 
validation happens mostly via statistical measures. A “vali-
dated” model is then shown to a customer and/or published 
but does not necessarily encompass their visions and/or 
wishes. At least not from the start.

This might not be the most appropriate way to validate 
models, and especially not for a real-time nutrition model. 
Here, the important question is: can this model correctly pre-
dict nutrient requirements in a timely manner for a real ani-
mal or animal group? It is important to keep in mind that, 
with the increased use of sensors, data models need to be able 
to quickly process data that varies within 1 d (and one ani-
mal). Data might also be incomplete, for instance, because of 
mechanical or health problems that resulted in missed infor-
mation. Additionally, some of the assumptions made by the 
modeler, based on average responses presented in the liter-
ature, might not reflect the individual response observed in 
vivo (Daniel et al., 2017; Remus et al., 2020b, 2021). This 
is especially valid if the model in question has a mechanistic 
component.

Modeling animals is not easy as the animals themselves, and 
their requirements, change over time and among themselves 
(Hauschild et al., 2010; Muñoz-Tamayo et al., 2018; Remus 
et al., 2020c). This means that real-time precision feeding and 
nutrition models need to be calibrated for both individual and 
group predictions, ensuring enough flexibility to incorporate 
these variations. It also means that validation needs to be 
continuously monitored, together with potential end-users. In 
the data science field, continuous validation, monitoring, and 
updating of models are placed under the umbrella term ML 
operations (Heck et al., 2021).

Considering the rapid changes described above, it also 
means that conducting experiments on a regular basis 
becomes almost impossible to achieve as they are time-con-
suming and costly. It is not unfair to believe that they might 
even be outdated before they begin.

The need for a data-centric view
PLF involves sensors that capture large amounts of real-time 
information at the farm, herd, or animal level, which are later 

processed to inform the system (Wathes et al., 2008; Pomar et 
al., 2019b). The successful use of precision nutrition requires 
measuring individual key features (e.g., body weight, feed 
intake, backfat thickness, litter size, etc.) dependent on species 
(Pomar and Remus, 2019a, 2021; Gaillard et al., 2020). Using 
measuring devices (e.g., automated scales, automatic feeders, 
and cameras) decreases the workload and increases the effi-
ciency with which data are collected and stored. In addition, 
it improves the model prediction for nutrient requirements, 
thereby decreasing economic and environmental costs linked 
to animal production (Andretta et al., 2016; Pomar et al., 
2019b; Menendez et al., 2022). Although the main success 
is linked to the data processing (model and decision support 
tool), such sensor technologies allow a farmer to obtain data 
that seemed unattainable a few years ago.

With the greater popularization of sensors in the last decade 
(Banhazi et al., 2012; Halachmi et al., 2019; Tedeschi et al., 
2021), data became more abundant and new types of data 
were introduced. It also aided in getting away from silo-data 
sets. This highlighted the importance of calculation methods, 
the second component required within PLF to implement this 
technology in the field successfully (Pomar et al., 2019b). 
Sensors will record different types of data, including images 
and audio files that cannot be integrated into MM, as they 
were not necessarily designed to handle this type of data and 
would require additional development to predict by the sec-
ond/minute/hour. This makes real-time analysis infeasible 
by traditional MM (Parsons et al., 2007). In addition, MM 
are criticized for their complexity and, sometimes, imprac-
tical inputs required to simulate actual conditions (Wathes 
et al., 2008; Ellis et al., 2019; Pomar and Remus, 2019a), 
or even for being slow (Parsons et al., 2007). By contrast, a 
data-driven model predicts based on correlation and there-
fore encloses from linear and nonlinear regression to random 
forests and neural networks (Ellis et al., 2020), which solves 
the complexity and speed problem.

Still, the essential function of a MM is to provide under-
standing and guidance on the decision-making process. Data-
driven (DD) models provide the “fish, but do not teach how 
to fish.” In other words, this type of model can yield good 
predictions, but rarely new knowledge or understanding of a 
process (Ribeiro et al., 2016). Whereas MM models allow the 
study of individual nutrients, metabolites, and their interac-
tions, this advantage is lost in the simplicity of the DD mod-
els (Pomar et al., 2019b). Despite their differences, MM and 
DD models need to be calibrated to gather individual animal 
growth potential to operate in PLF systems (Pomar et al., 
2015). In this case, a difficulty associated with MM is finding 
the correct reference population, highlighting the advantage 
of using DD flexible recursive technologies to obtain a range 
of possible parameters (Wathes et al., 2008; Pomar et al., 
2015, 2019b).

A common mistake still being made is saying that models 
just need more data to work with. What models need is not 
necessarily more data, but the “right type” of data contain-
ing enough variation and granularity (Cirillo et al., 2021). 
It is not easy to predict what type of data a model needs to 
“become better,” and the search for useful data may very well 
extend beyond several scientific research cycles. In fact, data 
collection may by itself profit from several iterations of a ded-
icated scientific cycle in which we hypothesize and test which 
types have merit, look for combinations of data, and see if 
this makes a difference (Cortes-Ciriano et al., 2015).
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However, if data is truly the new gold, the field of model-
ing should be made more familiar with the subject it wishes 
to mine. In fact, the often-used “data = gold” comparison 
is limited by itself, as data is made up of many sources and 
types. Hence, we are not just mining gold (numerical values), 
but also silver (images), diamonds (audio), emeralds (text), 
sapphires (videos), and titanium (management; human-di-
mensions). These seldom coexist, and all require a different 
approach and strategy (Greener et al., 2022).

For instance, the increase in image data has led to the devel-
opment and use of DL models, which are extremely sophisti-
cated neural networks sometimes containing up to trillions of 
connections. From a model-centric perspective, the increased 
usability of image data depends on the innovation of mod-
els. However, a smarter way of developing a DL model is 
to work on the images itself. By approaching the problem 
via a data-centric approach, images can be cropped, twisted, 
augmented, aggregated (pixel Dots Per Inch), and labeled 
(Hinterstoisser et al., 2018). Especially, the latter development 
has seen a sharp increase in the effectiveness of DL models. 
Simply a human telling a model where to look and what 
object to look for. Hence, we believe that an increasing effort 
in fundamental data research (a data-centric paradigm) will 
also help bring the fields of modeling and AI to a new level in 
animal sciences. This is already happening in other fields, such 
as automotive (Greener et al., 2022).

A data-centric focus will help us remove models from a 
pedestal and place them in a more symbiotic relationship with 
humans called Human-Centered AI (Shneiderman, 2022). 
Very much still in the “Innovation Trigger” phase, Human-
Centered AI is a natural evolvement from the heavy AI focus 
of the past 10 yr. Instead of human labor being replaced by 
AI, this new field is all about integration, synchronization, 
and even symbiosis. By letting humans help models, models 
are better able to fit the need of a human. However, to enable 
these developments, data is needed on human–AI interaction. 
For instance, if a model gives advice, does the farmer accept 
that advice, discard it, or act in between? What is the under-
lying reason for the action of the farmer? To assess model 
acceptance, specific data needs to be collected, but to even 
reach the advice phase both modelers and models need data 
as well (Tedeschi and Boston, 2011).

Hence, perhaps the most fundamental shift in the scientific 
cycle would be achieved by sharing data. Model results are 
openly published, but data is rarely if ever shared (Tenopir 
et al., 2011). Although uncomfortable, sharing data and code 
are required for science to prosper (Fecher et al., 2015). By 
restricting knowledge to be obtained mostly via scientific 
articles, it remains unclear how “good” the data is, and the 
extraction itself can be tedious if not impossible. In fact, this 
process can introduce new forms of bias, or at least introduce 
a new set of assumptions. For instance, a meta-analysis con-
taining individual (animal) data is preferred over a meta-anal-
ysis containing only aggregated summaries because it allows 
for less bias (Stewart and Parmar, 1993), and much greater 
flexibility and transparency in the form of meta-regression 
(Thompson and Higgins, 2002).

For a research area to move on faster, collected data need 
to be “open and free.” In addition, societal pressure is asking 
for less experimentation on animals or at the very least to 
include the least number of animals possible within a single 
experiment (Ibrahim, 2006; Daneshian et al., 2011; DeMello, 
2021). This means that experiments will become fragile, and 

their findings highly dependent on the results of other exper-
iments. It also means that the sharing of data will become 
more and more expected, which we are seeing now during 
Covid-19 (Cosgriff et al., 2020).

The need to protect sensitive information, however, can-
not be completely discarded. Companies and individuals need 
to acquire a taste for sharing, and the first steps should be 
beneficial to all. Here, two technological advances will most 
likely play a key role in the years to come: 1) federated learn-
ing and 2) synthetic data. Federated learning (known as col-
laborative learning) is a technique in which an algorithm is 
trained across different data sources (Li et al., 2020). Hence, 
the model is trained, but the data is not exchanged which 
means that a modeler can access models’ results coming from 
different data sources but not the data itself. Multiple ways 
of training a federated model exist, but perhaps the most 
straightforward way of visualizing it is by imagining 10 dif-
ferent data sources being used to train 10 different models. In 
the end, the models are pooled. The technique sounds easier 
than it is, and many caveats exist, but it is an exciting field in 
which data privacy and security remain safeguarded.

Another technological advance is the creation of synthetic 
data (Reiter, 2002; Surendra and Mohan, 2017). This kind 
of data is created via algorithms that have stored the key 
relationships of an actual existing dataset. Many data genera-
tion methods exist, and their possible application extends far 
beyond data privacy and security. By using the variance-co-
variance matrix of a real dataset, synthetic data can be cre-
ated and further augmented to help trained models deal with 
new and unforeseen information (Varga and Bunke, 2003). 
Experiments can be created (Bolón-Canedo et al., 2013), and 
it is not so hard to imagine how multiple synthetic datasets 
can be used to form extensive digital twins (San, 2021). In 
fact, synthetic data can be created in parallel with real-time 
“real” data to conduct a synthetic stress test.

Models cannot prove causality
Pearl describes the ladder of causality, which is made up of 
three rungs: association (seeing), intervention (doing), and 
causality (imagining; Pearl and Mackenzie, 2018). Most of 
us know association via its synonym “correlation” and sta-
tistical models are true masters of the craft. It means that as 
A shifts, B must shift as well, but they do not have to shift 
because of each other.

The second rung, “intervention,” is more difficult to achieve 
and requires the type of experimental design most researchers 
are familiar with (imposing A and watching if B happens). 
Here, a change in A must lead to a change in B, whereas a 
change in B cannot lead to a change in A. In fact, you want 
B to only change because of A. For an intervention to actu-
ally intervene, its action must lead to a singular result, and 
most statistical models are trained to pick up the inference 
if it occurs. However, they do require help in the form of a 
good experimental design, and the field of “statistical signif-
icance” is not without its critics and rightfully so (French, 
1988; Ioannidis, 2005).

The most fascinating rung is that of causality itself, or 
“imagining.” Pearl describes imagining as the ability to con-
jure up a parallel universe in your head and play through fic-
titious scenarios. Whereas an intervention is more difficult to 
prove than an association, it goes without saying that a paral-
lel universe can never be “proven.” Models, however, are reg-
ularly abused to do just that. For instance, imagine a model 
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predicting a suboptimal growth curve in a batch of animals, 
leading to a dietary intervention of the farmer. In the end, the 
curve improved yet never reached its optimal scenario. So, 
in terms of data, we now have an observed growth curve, a 
predicted growth curve, an intervention, and the difference 
between predicted and observed.

Could we proclaim that the intervention has led to the 
improvement in growth? We know an intervention was con-
ducted prior to the improvement (rung two), and we have 
a parallel universe provided by the model showing how the 
curve would have most likely transpired without the inter-
vention (rung three). However, what was predicted to tran-
spire before the intervention happened, deviated noticeably 
from what happened. In addition, this was not an exper-
imental setting in which all known and unknown factors 
where kept constant, and model predictions are inherently 
uncertain. Furthermore, there are no replications conducted, 
and perhaps not even possible anymore due to a changing 
environment.

The key questions to answer now are: 1) what lead to the 
improvement of the growth curve and 2) why did we see this 
specific curve? Was it the action of the farmer, which deviated 
from the advice given? Was it the genetic make-up of the ani-
mal? Its surroundings? Why did one animal adapt better than 
another? And, most importantly, what would have happened 
if the farmer had done nothing? This is when the scientific 
cycle continues, and more research is needed.

A problem here is that models should be created to solve a 
problem, not a system. Describing a problem in such a way 
that it can be adequately modeled is already hard enough, let 
alone an entire system. Hence, perhaps the most dangerous 
thing a modeler can do is proclaim that a model can do more 
than it can. Instead, they should focus on model limitations as 
models in themselves represent a hypothesis of how as system 
is regulated—if it is proved wrong, we learned more. We all 
have models that fail, reveal holes in our knowledge, we do 
experimental work, and redevelop that portion of the model. 
Accepting this will help us to better accept models for what 
they really are, which is a mirror of our contemporary knowl-
edge (Hobbs and Hooten, 2015).

Models need adoption to have an impact
Despite the challenges of model development and imple-
mentation, models are a necessary component in the PLF 
development. This system aims to obtain and process data 
continuously allowing the automated management and feed-
ing of animals (Pomar et al., 2019b). Meaning that the farmer 
can obtain detailed information on animal’s health and 
growth performance in real-time through the system control. 
Such information can allow for early disease detection based 
on changes on feed intake (Colin et al., 2021; Thomas et al., 
2021), or determining optimal slaughter weight. Data on feed 
intake and body weight allow to make decisions in terms of 
right amount and right feed composition to be provided to 
an individual or to a group of animals (Pomar et al., 2019b). 
Depending on the production objectives, the controller can be 
programmed to maximize growth rate, to minimize feed cost, 
to minimize nutrient excretion, or to meet another objective 
(O’Grady and O’Hare, 2017; Pomar et al., 2019b).

Once a model is found adequate for a PLF application 
it must be implemented by the user group. Typically, sen-
sor products come with turn-key solutions, including mod-
els. The turn-key package implies that there is confidence 

in the model’s ability to work with the sensor and provide 
the necessary information. The acceptance of a model is a 
psychological process (Briggs, 2016). To some, the model 
needs to be accurate and precise in its predictions. To oth-
ers, the model needs to be (fully) explainable to justify 
model output (e.g., enteric emission footprint) or to gather 
insights (learning-based outcomes). For the majority, their 
needs are somewhere in between. Whereas “prediction” 
is straightforward in its description (i.e., to foretell what 
has yet to come), the definition of “explanation” is more 
contemporary, and they share overlap (Briggs, 2016). For 
instance, a model that can predict the milk yield of a cow 
within acceptable limits but does so by using the texture 
of the skin, is deemed predictable but not explainable; 
“the mathematical/statistically relationship exists but not 
the understanding of biological process that relate to milk 
yield and skin texture.” To some farmers, a well-predicting 
unexplainable model might not get accepted. To others, it 
does not really matter what is inside the model if important 
technical or financial key performance indicators are met. 
Here, end-users do not question the ability of the model 
to explain but rather gain confidence through repeatabil-
ity of gains in performance. However, open-source mod-
els and more rigorous documentation is shifting scientific 
model development, transparency, and how end results are 
interpreted.

The field of data science has led to an explosion of mod-
els in which a common distinction is made between descrip-
tive, predictive, and prescriptive models (Roy et al., 2022). 
Descriptive models describe past and current processes, 
predictive models aim to predict or forecast the future, and 
prescriptive models provide a recommendation that they 
authoritatively bring forward (Frazzetto et al., 2019). One 
could say that the first type is made for an explanation, 
whereas the other two are future-oriented via prediction. If a 
farmer would use the milk yield model previously described, 
and deploy it as prescriptive, part of the farm would be run 
based on the skin texture of the cows. The choice of model 
depends on the level of understanding of both the modeler 
and the potential user, and the scenario of deployment. 
Often, we see variables included that a specialist would never 
include, because biologically it makes no sense. When com-
plex and nonmeasurable variables are included, or spawned 
inside the model via dimension reduction, the model loses 
its ability to explain. In addition, some of these variables are 
also impossible to measure in real-life, as they are “latent” 
or invisible.

Most modelers will go for a model that has both an accept-
able level of prediction and explanation. However, most 
algorithms are not designed to do both, and with the rise of 
“data science” the focus has clearly shifted toward predic-
tion (Lundberg and Lee, 2017). By using large quantities of 
data, ML/DL models are used to detect unknown cross-cor-
relations with predictive power (Dobson, 2013). As a result, 
these models might have no biological precedence. Being able 
to explain why a highly accurate prediction has become so 
in the first place is a daunting and often overlooked task by 
novice modelers.

AI: From Hype Toward Sustainable Adoption
Synonyms for “hype” include “advertising,” “plugging,” and 
“promotion.” Although hype may aid in getting a technological 
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innovation started, it adds little to establishing a sustainable 
environment in which it can be nurtured, molded, and fur-
ther developed (Christensen, 2013). Perhaps AI would prosper 
more if the focus was not on selling it as an end-solution, but 
rather as a building block amongst other, less technological, 
building blocks. Instead of seeing it as an automatic solution 
toward previously unsolvable problems, we could perhaps 
benefit more if we would approach it as an enabler toward 
possibilities such as environmental sustainability via multi-
scaling (Favino et al., 2016; Khamis et al., 2019), synthetic 
data, and federated learning. Although enabling processes 
should act like a conductor, they require by themselves a lot of 
hard work, time, and money.

The process of accepting and adopting technological devel-
opment is largely dependent on humans. On the far left of 
the bell-shaped distribution called the “Rogers” Adoption 
Curve” (Rogers, 2003) we have “Innovators” who like 
about any technological innovation they can find. Next to 
the “Innovators” are the “Early Adopters.” Then there are 
the “Early Majority,” the “Late Majority,” and finally, the 
“Laggards.” Although it would be great to only have a pop-
ulation of “Innovators,” technology also needs to be adopted 
by the greater target audience population if it is to move from 
hype to normalization. Adoption does not happen overnight 
nor is it guaranteed.

The hype of collecting large amounts of data via sensors 
and using AI may overwhelm livestock producers if the pro-
cess is not directed. In fact, they might not even want these 
changes to happen, or at the very least do not see a bene-
fit (Kelly et al., 2015). For the animal scientist of the future, 
these are feelings and cognitions that need to be acknowledge 
and explored. Just using expensive equipment to collect a lot 
of data paired with sophisticated models for the sake of tech-
nological progress is not a recipe for sustainable adoption.

Dealing with variation
Feeding animals is the biggest environmental and economic 
cost for nonruminants (Andretta et al., 2021b). One of the 
main problems linked to nutritional programs is their gap in 
understanding of animal variability. As animals use and retain 
nutrients differently, it affects the environmental and eco-
nomic performance of a system (Pomar and Remus, 2019b; 
Pomar et al., 2021).

Traditional models have for years tried to explain the nutri-
ent utilization of an average individual. For instance, con-
ventional MM estimates the average population responses 
using historical population information. Many models have 
a matrix of variance (e.g., stochasticity) aiming to simulate 
different animals of the population (e.g., 90th percentile and 
50th percentile). What they do not consider is that a 90th 
percentile animal (e.g., greater feed efficiency) might have 
a greater performance because it presents differences in the 
regulation of biological processes compared to the 50th 
percentile animal (e.g., median feed efficiency; Vigors et al., 
2019; Hu et al., 2022). Instead of explaining variability, these 
models assume that differences among animals are random. 
Therefore, important limitations of these models are the 
assumption that all the individuals of the population have 
the same response to a given nutrient provision and that 
they have not been developed for real-time estimations using 
up-to-date available information (Pomar and Remus, 2019a, 
2021; Pomar et al., 2019a).

With the increasing information on individual perfor-
mance, the rather large variability in metabolic response to 
nutrient intake has highlighted the weakness of MM applied 
for PLF (Pomar and Remus, 2019a, 2021). Real-time nutri-
tion models have focused on decreasing nutrient excess, to 
decrease environmental and production costs (Gauthier et al., 
2019; Pomar and Remus, 2019b; Gaillard et al., 2020). This 
type of approach makes the technology adoption more attrac-
tive to producers once they can see the return on investment.

With the collection of individual growth, and drinking 
and feeding patterns, milk yield and composition or indi-
vidual behavior can be recorded throughout the day (Pomar 
et al., 2015, 2019b; Ellis et al., 2020). Therefore, MM must 
be developed specifically for PLF and operate in real-time at 
the individual or small group level, considering the between- 
and within-animal variation. Growth patterns, nutrient uti-
lization, and behavior vary among animals and herds. There 
are opportunities to combine DD AI with knowledge-driven 
MM to control more complex PLF components. AI thrives in 
large complex datasets, where establishing connections can be 
otherwise difficult due to data complexity, volume, and flex-
ibility to process real-time data from individuals (Tedeschi et 
al., 2021; Thomas et al., 2021). In contrast, knowledge-driven 
MM can simplify complex biological systems based on 
well-established concepts and information (Ellis et al., 2020). 
In both cases, PLF models must be flexible enough to consider 
changes over time for the same animal or herd and among ani-
mals and herds, acknowledging the method limitation while 
using its strength, handling big and complex data. Therefore, 
real-time models are essential in this type of system.

For more complex responses, such as the amount of nutri-
ents needed for fetal development, maintenance, and/or 
growth gray-box models (Roush et al., 2006), there seems to 
be a better chance of success when integrating empirical and 
DD models (Hauschild et al., 2012; Tedeschi, 2019; Gaillard 
et al., 2020).

Gray-box models are the new black
Mechanistic models are often labeled “white-box” models 
because they are fully transparent and manually built from 
the bottom-up based on biological principles. This is contrary 
to “black-box” models of which the input and outputs are 
known, but the “inside function” of the model is not (Estrada-
Flores et al., 2006; Pomar et al., 2015). Despite some authors 
trying to give biological meaning to statistical model coeffi-
cients (Remus et al., 2014; Sauvant and Nozière, 2016), the 
true relationship remains purely mathematical. Gray-box 
models (Figure 4) are integrations of black- and white-box 
models (Estrada-Flores et al., 2006; Roush et al., 2006; Pomar 
et al., 2015) and are known as hybrid models (Estrada-Flores 
et al., 2006; Lo-Thong et al., 2020).

Although the colors have intuitive appeal, they are not the 
best descriptors considering that all models are derived from 
“white-box” mathematical algorithms. In fact, black boxes 
are the direct result of combining known algorithms with 
extreme computing power allowing billions of neural net-
work layers to iterate toward a solution via trillions of tries. 
Because of these developments, the 2020 Gartner Hype Cycle 
for Emerging Technologies has started to include eXplainable 
AI (XAI; Pereira, 2020). For now, the field of XAI is mostly 
focused on visualizing the inner workings of models (Samek 
et al., 2019). For instance, by showing how the different parts 
of a DL model are built up across iterations, the user can get 
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an immediate “feeling” of how the model achieved its result. 
We expect more algorithmic explanatory support in future 
developments of XAI (Samek et al., 2019).

The need to explain the insights of a model has brought 
increased attention to gray-box models (Tedeschi, 2019; Ellis 
et al., 2020). The term hybrid intelligent mechanist model 
(HIMM) is proposed for models that combine AI with mech-
anistic models (Tedeschi et al., 2021). The term gray-box 
also describes a model aiming to understand and explain ML 
models (Pintelas et al., 2020). Although these models have 
received increased attention over the last few years, they are 
not new. In fact, the practice of combining models such as 
neural networks (Roush et al., 2006), a revised simplex algo-
rithm (Parsons et al., 2007), weighted time-series (Hauschild 
et al., 2012) to mechanistic models have been proposed in the 
nonruminant field for almost two decades.

As previously discussed, modeling mimics the scientific 
cycle, and likely due to the need for farm modernization, 
availability of new measuring devices, and a new generation 
thirsty for technology, the new tendency is HIMM which 
will likely focus on combining sophisticated machine and DL 
algorithms to obtain data needed for MM.

Although the use of such models seems tangible for aca-
demics, their adoption and popularization have been limited 
due to the availability of measuring and controlling systems 
allowing their adoption (Pomar and Remus, 2021). Surprising 
enough, factor limiting the adoption of PLF and SLF itself 
was the availability of useful decision support tools (Pomar et 
al., 2019b; Tedeschi et al., 2021). One may assume that data 
scientists, animal scientists, and engineers working together 
are what it will take to make PLF a reality in the field.

Combining white- and black-box approaches allows taking 
advantage of their main strengths. The DD models can be used 
to classify groups, predict outputs where the understanding 
of that prediction is not necessary, and reduce dimensional 
problems (Ellis et al., 2020). Thus, the black-box approach 
(e.g., artificial neural network, random forest, and time-se-
ries) is helpful to estimate the unknown parameters that vary 
among individuals based on real-time measured variables and 
estimates obtained from previously developed algorithms 
(Pomar et al., 2019b). Mechanistic models should be used to 

provide an understanding of a prediction, such as determining 
nutrient requirements, estimating the potential environmental 
and growth impact of nutritional additives, the impact of feed 
composition, and feedstuff changes on growth composition, 
among others (Ellis et al., 2020; Pomar and Remus, 2021). 
Therefore, the gray-box approach allows combining the 
advantages of these two approaches using each method based 
on its strength: data-driven to obtain short-term predictions of 
an input variable and MM can be used as a knowledge-driven 
prediction based on the input offered by the DD.

The modeling enabled precision nutrition approach within 
PLF offers possibilities for decreasing nitrogen, phosphorus, 
greenhouse gas emissions, and production costs (Cadéro et 
al., 2020; Andretta et al., 2021a). Still, the advance of this 
approach depends on a better understanding of biological 
animal variability and the ability to identify this difference 
among animals (Pomar and Remus, 2019b, 2021; Remus et 
al., 2020b). Here, applying DL models on top of vision tech-
nology (Fernandes et al., 2019; Samperio et al., 2021) and 
biosensors (Neethirajan, 2017), might help contribute greatly 
to this development. For instance, the use of simple surveil-
lance cameras allows for counting animals (smaRt Counting, 
Conception Ro-main inc, Saint-Lambert-de-Lauzon, Québec, 
Canada), or detecting sow’s ovulation (Labrecque and Rivest, 
2018). Cameras could potentially be used to estimate body 
composition through DL algorithms (Fernandes et al., 2019). 
Sound recording and video images are being used to detect 
behavior anomalies (Wurtz et al., 2019), and replace the use 
of eartags with automatic recognition (Tassinari et al., 2021). 
From the need to detect and intervene due to an undesired 
behavior or for early disease detection, DL algorithms have 
been developed (Cowton et al., 2018; Liu et al., 2020). What 
all these technologies have in common is the need for certain 
information to be used by a model aiming to identify, feed, or 
treat an individual animal with tailored measures. Hence the 
need to consider which model or combination of models (e.g., 
HIMM) are required to achieve a specific purpose.

Virtual experimentation
Models need time to learn new situations. To allow sustainable 
adoption, models should be allowed to forecast situations and 

Figure 4. Example of a gray-box or hybrid model use within precision (digital) livestock farming systems, adapted from Remus et al. (2021).
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incidences that have never occurred before, and multiple ways 
exist to teach models how to train for such situations (Peng 
et al., 2021). For one, they could be allowed to run what-if 
scenario’s outside of regular conventional bounds using 
enhanced theory and causal hypotheses about the known 
farming system (Rotz, 2018). Another more advanced way 
would be to simulate noisy data via Generative Adversarial 
Networks and create huge volumes of “outside the known 
parameter” data (Creswell et al., 2018). As a result, models 
can be trained to deal with potentially unknown future events 
and provide critical insight in their behavior.

Computer simulation has existed for some time, but the 
field is becoming increasingly more powerful to train models 
on what-has-never-occurred scenarios and on helping mod-
els train other models (i.e., meta modeling; Sutton and Barto, 
2018; Tedeschi and Fox, 2020). Hence, model training is 
shifting, and the trend now is not solely to rely on collecting 
data from the real world, but to venture into the “metaverse” 
or “virtual world” and create and develop various “what-if 
scenarios” (Owens et al., 2011). Thereby converting the vir-
tual digital world into trillions of terabytes of data for a mea-
ger cost.

A successful model deployment, here, would most likely 
relate to a model being able to make choices on its own 
based on the goals and boundaries provided. For instance, 
these prescriptive models could be deployed to oversee the 
development of optimal growth curves and adjust the feed of 
the animal once deviations are predicted (Risbey et al., 1999; 
Pomar and Remus, 2021; Zuidhof, 2021). This would require 
real-time tracking of feed and growth curves, among many 
other parameters. By being allowed to make direct real-time 
adjustments, the model is also able to assess its own impact 
and retrain itself by estimating the impact of its “choices.”

The evaluation process can be repeated many times over, 
both internally when building the model (e.g., cross-valida-
tion) as well as externally (via Bayesian Inference and a test 
set). The internal validation mimics faster and smaller itera-
tions of the Scientific Cycle, as all model aspects undergo a 
“stress test” (Browne, 2000). During such a test, the response 
of the model is tested under extreme conditions to ensure that 
it is obeying the laws of physics. The benefit of this exercise 
is that the modeler will acquire additional information on the 
strengths and weaknesses of the model, its dependency on the 
training data, and thus its likely ability to deal with new and 
unforeseen scenarios. Of course, not all questions may neces-
sarily be answered in a single build, and so each model needs 
to be rebuilt several times using new tests sets; an iterative 
process (e.g., experiments; Browne, 2000; Sterman, 2000).

The most exhaustive stress test for a model may be com-
mercial deployment. It is here that the model is asked to mimic 
the real-life scenario of the farm and show that it can simulate 
an actual environment. If the same type of data on which the 
model was built also flows within the farm, the model should be 
able to create a digital copy within a few iterations. However, 
this is seldom the case, and most farms only have in part the 
data a model needs to provide acceptable performance. As a 
result, models (regardless of type) can severely underperform 
compared with training scenarios. Modelers should expect 
this to happen frequently, and internally stress their models 
to different levels of digital maturity. This will help them offer 
solutions more quickly or communicate to the customer what 
is best attainable given the limitations of the farm, creating 
clear expectations for data collection requirements.

These situations also lend themselves to opportunities if 
the modeler and the potential user are willing. Despite not 
having shown an acceptable performance, the model should 
still be allowed to continue learning from the new situation 
and to see how far it can go with the limited data at hand. 
Comparing model performance across different scenarios can 
lead to fundamental insights in the necessities of the model. 
In addition, it can show the consumer the importance of col-
lecting more (granular) data.

Since a model can theoretically act as a digital twin (Smith, 
2018), it should be allowed to work through hypothetical 
scenarios. These scenarios can be univariate, changing one 
parameter at a time, or multivariate in which multiple inter-
acting variables are altered. To validate different model sce-
narios the changes must be conducted according to a plan, 
and the results must be benchmarked to the predicted results 
(Koketsu et al., 2010). This is an excellent result of external 
evaluation. The downside of this approach however is that it 
can take quite some time before benchmark results are avail-
able. If something goes amiss during that period, or if influ-
ential changes are made, the model needs to be rerun to take 
these changes into account. Predictions up to the rerun can be 
verified, but the use of the model is quite ad hoc or has at the 
very least considerable lag time in response. This is because 
models are often run once, prior to a new batch, and then 
verified after the batch has ended. There is often no inter-
mittent verification nor auto-adjustment when the variables 
that flow in the model show unexpected patterns that could 
heavily impact the (predicted) results. Consequently, there is a 
need for real-time models to have built in warning systems to 
identify extreme outliers which indicate a true anomaly from 
the animal or a sensor error.

Next Steps for Animal Scientists
Content experts are often paired with statisticians or data sci-
entists in a data-heavy project. Despite the intuitive appeal 
of joining complementary minds, pairing also requires solid 
communication and project management. The mind of one 
researcher needs to be “transferred” to the other, and vice 
versa, and commercially it means having to pay for two sal-
aries instead of one. There is little evidence that pairing will 
lead to better results. Scientists are trained to complete the 
scientific cycle by themselves, and a big part of this cycle is 
the design, conduct, and analysis of experiments. Although 
curricula for “design of experiments” differs from that of 
“systems modeling,” “data science,” or “biostatistics” there is 
an unmistakable overlap.

Despite the explosion of easy-to-use software appli-
cations, knowing how to code in multiple programming 
languages is a fundamental skill that requires honing and 
shaping and continual practice. In a sense, the field of com-
puter science will merge with every other research field to 
date, and primary schools (K-12), universities and compa-
nies need to support their students and workforce in achiev-
ing desirable levels of competency; programming is the new 
“second language” of the digital world. As a result, some 
universities have started to offer minor tracks in data sci-
ence and modeling that accompany the core base of the ani-
mal scientist. It is good to focus but even better to integrate.

Future scientists should embrace being asked to handle big-
ger, more granular data like audio or image files. Not only will 
these experiences add additional capabilities to the resume of 
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the researcher, but it will also mean acquiring a more holistic 
and agnostic view of models.

Learn how to program and get dirty
Admittedly, animal scientists do not always wish to become 
computer scientists. Driven by time constraints and a lack of 
mathematical knowledge, most researchers will turn to fully 
functioning and documented libraries instead of building 
algorithms from scratch(Menendez et al., 2022). Although 
such behavior is understandable, it is also concerning as the 
fields of modeling and statistics are heavily dependent on 
assumptions (mathematical and statistical principles; Von 
Bertalanffy, 2010). There is, of course, merit in not having 
to recreate past work, but it remains the responsibility of 
the researcher to know what is and what is not possible and 
what kind of assumptions underlie each model. Besides sci-
entific principles, statistical principles need to be adopted as 
well, and every model deployed by the researcher needs to be 
understood and documented at the level where they can be 
explained and shared with others.

A great animal scientist does not need to be a great mathe-
matician. For them, the integration of modeling and statistics 
needs to be as close as possible to their field of interest. For 
instance, an animal scientist that wants to specialize on how 
piglets develop needs to understand which data types are col-
lected during that phase, and how to best apply the appro-
priate type models on them, interpret results (analysis), and 
generate inferences (synthesis). By connecting the techniques 
as close as possible to the interest of the scientist, any addi-
tional requested effort fits the greater good.

Regardless of your level of interest in models or data, you 
will need to learn how to program. Although there is cer-
tainly a role to be played in primary or high school, it is 
not until university that most animal scientists get to explore 
the scientific cycle. This is also when an understanding of 
data and modeling becomes more important. To the inter-
ested student, there is already a lot of material available in 
the form of online courses which exist to teach almost every 
topic related to basic science, modeling, and statistics. From 
algebra and calculus to full-fledged courses on systems mod-
eling and machine or DL. Many of these courses are pro-
vided via high-ranking universities, and for a minor fee and 
a passed test the online student can obtain a certification of 
completion. The ability to now be trained via any remote 
place in the world by a prestigious university is truly the mar-
vel of our time.

However, courses do not constitute work experience, and 
the transition from university to a first job can feel like step-
ping into another world. Although they help you build tech-
nological prowess, on-line courses cannot show you how to 
deal with situations that you and your model have never faced 
before. To build experience, you need to fail, and an on-line 
exam is not the same as a disappointed customer who no lon-
ger trusts your nutritional or management recommendations. 
It is in those moments where most of us develop grit, expand 
key principles of programming and modeling to achieve cus-
tom solutions, and gain a more realistic view of models and 
their potential use.

Universities would do well to offer students these useful, 
and sometimes painful experiences, by pairing them to the 
real-life issues livestock producers face. Not only will these 
assignments shape the modeling base of the student, but it 
will also highlight what truly matters to a livestock producer. 

Including the expectations they have from a modeling solu-
tion and the perquisites for implementing one. Most impor-
tantly, future animal scientists can see for themselves how a 
changing world also impacts requirements.

The role of industry
The greatest asset any company has is its (future) work-
force, especially in a science-heavy field such as agriculture. 
Considering the increased use of sensors for automatic data 
collection and the ever-present promise of AI, it is no surprise 
that many have invested in “data science.” Unfortunately, 
companies believed that by hiring one or two data scien-
tists, or by building a multidisciplinary team, dormant data 
could now be automatically transformed into sustainable 
revenue. As a result, ML now finds itself in the “Trough of 
Disillusionment.”

For a company to utilize models and data analytics and 
thus embark on data science, it needs to become a data sci-
ence company. Not only are basic investments in model-
ing and statistics needed, but models also need a technical 
basis on which to be deployed. Building these data lakes 
and accompanying data pipelines requires continued invest-
ment in a non-sexy topic that has no immediate return of 
investment. Without these fundamental basic steps, models 
cannot support further automation, and as result of mis-
placed investments and unreasonable expectations, most 
companies have either disbanded or outsourced their data 
science teams.

To adopt and harness the potential of digitalization and AI, 
the industry needs to join forces. Large companies need to 
work with smaller start-ups and scale-ups to combine money 
and a large customer base with the technological prowess and 
more agility (Menendez et al., 2022). To remain successful, 
companies need to hire analytical savvy people and support 
universities in training them; not only by funding research but 
also by offering real-world cases that could profit all parties 
involved. Here, companies can direct universities in extending 
their curricula by showing the needs of the industry whereas 
universities can showcase cutting-edge technology. The big-
gest benefactor of the symbiosis will be the student—the 
future employee.

Conclusions and Perspectives
Technological adoption can be a bumpy road. The scientific 
cycle can be long and requires many iterations to build knowl-
edge. The same holds true for data science. As AI becomes 
increasingly more powerful and applications start to diverge, 
new research fields are being created. Sustainable application 
is still many years away and companies and universities alike 
do well to remain at the forefront. This requires investments 
in hardware, software, and analytical talent. It also requires 
a solid connection to the outside world to test what does and 
does not work in practice and to critically determine when the 
field of agriculture is ready to take its next big steps. Other 
research fields, such as engineering and automotive, have 
shown that the application power of AI can be far-reaching. 
This is because there is a uniformity and consistency from the 
production-consumer-and-regulatory level making. As agri-
culture, specifically, animal science and livestock production 
strive to be far reaching, it must determine what and where 
models and precision technology will be the most successful 
in both the short and long term.
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