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Wheat stripe rusts are responsible for the major reduction in production and economic

losses in the wheat industry. Thus, accurate detection of wheat stripe rust is critical to

improving wheat quality and the agricultural economy. At present, the results of existing

wheat stripe rust detection methods based on convolutional neural network (CNN) are

not satisfactory due to the arbitrary orientation of wheat stripe rust, with a large aspect

ratio. To address these problems, a WSRD-Net method based on CNN for detecting

wheat stripe rust is developed in this study. The model is a refined single-stage rotation

detector based on the RetinaNet, by adding the feature refinement module (FRM) into

the rotation RetinaNet network to solve the problem of feature misalignment of wheat

stripe rust with a large aspect ratio. Furthermore, we have built an oriented annotation

dataset of in-field wheat stripe rust images, called the wheat stripe rust dataset 2021

(WSRD2021). The performance of WSRD-Net is compared to that of the state-of-the-art

oriented object detectionmodels, and results show thatWSRD-Net can obtain 60.8%AP

and 73.8% Recall on the wheat stripe rust dataset, higher than the other four oriented

object detection models. Furthermore, through the comparison with horizontal object

detection models, it is found that WSRD-Net outperforms horizontal object detection

models on localization for corresponding disease areas.

Keywords: arbitrary-oriented, convolutional neural network, deep learning, wheat strip rust, detection

INTRODUCTION

As a widely cultivated crop in the world, wheat is crucial for ensuring food security. Unfortunately,
its production is limited by many diseases (Savary et al., 2012). Among these diseases, stripe
rust is one of the main diseases of wheat (Chen et al., 2007; Wan et al., 2007), which is caused
by the fungus Puccinia striiformis var. tritici (Moshou et al., 2004). Stripe rust occurs primarily
on leaves, in which bright yellow pustules emerge at the early stage of the wheat, and the
pustules are arranged as stripes in linear rows. Stripe rust damages wheat leaves and causes
yield losses under severe epidemics. Therefore, early detection of wheat stripe rust is essential for
sustainable agriculture. The traditional method of disease detection involves manual examination
by either farmers or experts (Duveiller et al., 2007), which can be time-consuming and high
labor-costing, proving infeasible for millions of small and medium-sized farms around the world.
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To identify the diseases based on early symptoms, various

spectroscopic and imaging techniques have been proposed by

many researchers (Huang et al., 2007; Belasque et al., 2008; Qin
et al., 2009; Mahlein et al., 2013; Zhang et al., 2014; Barbedo
et al., 2015). Although these techniques can make a relatively

rapid diagnosis for crop diseases, expensive and bulky sensors are

required for such method.
With the development of computer vision, different

researchers have addressed identification of crop disease by

computer vision technologies (Rastogi et al., 2015; Ma et al.,
2017; Hossain et al., 2018; Jian-Jun et al., 2019; Larijani et al.,
2019; Pandey et al., 2021). These methods use the images

captured by the common cameras to identify crop diseases, thus

getting rid of the constraints of time-cost and expensive and

bulky sensors (Martinelli et al., 2015). However, these methods
need to design manual feature extractors, and are only suitable
for crop images in an ideal experimental environment.

In recent years, as a new breakthrough in the field of computer
vision, deep learning methods have been used to deal with
various problems in the agricultural field. Many researchers
have utilized various deep learning techniques for identification
of crop disease (Liang et al., 2019; Zeng and Li, 2020; Zhao
et al., 2020). Amanda et al. (2017) applied transfer learning to
train a deep convolutional neural network to identify cassava
disease. Ferentinos (2018) trained and evaluated specific CNN
architectures to form an automated plant disease detection and
diagnosis system based on simple leave images of healthy and
diseased crops. Joshi et al. (2020) proposed a convolutional
neural network VirLeafNet to classify the leaves of Vigna mungo
into healthy, mild disease, and severe disease categories. They
segmented images to better extract features, and then augmented
them to increase the number of images in dataset. Hence,
robustness of the training model is enhanced.

However, the abovementioned works just realized the
identification of diseases but paid no attention to where the
diseases are. The detection of disease region in field scenarios is
also very important. It can help farmers and agricultural experts
better identify the specific location of crop diseases in complex
field scenarios (especially those disease symptoms that are not
obvious and easy to be confused in the image). In addition, a
complex field background can make it challenging to recognize
the crop disease and misguide the classifier when the target
disease region is not salient. Therefore, crop disease detection can
also improve classification performance by removing irrelevant
background features. Of course, many crop disease detection
researches have been proposed (Inkyu et al., 2016). (Fuentes
and Park, 2017) used the state-of-the-art generic object detection
approaches, namely, Faster RCNN and SSD, for localizing crop
leaves and disease spots with good performance. Lu et al.
(2017) presented an in-field automatic wheat disease diagnosis
system based on a weak supervised deep learning framework,
which integrates wheat disease identification and localization
for disease areas with only image-level annotation for training
images in wild conditions. Zhang et al. (2021) designed a multi-
feature fusion Faster R-CNN method (MF3 R-CNN) to detect
soybean leaf disease in complex scenes. They also developed
a synthetic soybean leaf disease image dataset to tackle the

problem of insufficient datasets. Although these methods can
perform well on crop disease detection tasks, it is still challenging
to obtain good performance from wheat stripe rust images
in wild scenarios containing various challenges. The ultimate
goal of disease detection is to quantify the occurrence level
of disease by evaluating the incidence rate of disease (disease
leaf/spike/plant ratio) and disease severity (damaged area). To
assess the incidence rate of disease, we need to detect the damaged
leaves accurately. Assessing the disease severity requires the
accurate calculation of crop damage area. Therefore, accurate
detection of diseases and a more compact indication of the scope
of diseases are the premise of quantifying the occurrence level
of diseases. However, in real-world applications, the orientation
of the wheat stripe rust regions is arbitrary, and applying the
horizontal bounding boxes (HBBs) to oriented object detection
would lead to excessive redundant background regions in the
HBB, as illustrated in Figure 1. This is not conducive to
accurately calculating the damaged area of leaves to determine
the severity of wheat stripe rust in future work. Additionally,
since the arbitrary-oriented wheat stripe rust regions generally
have a large aspect ratio, the use of general horizontal detectors
tends to produce missing detection. This is not conducive to
the accurate calculation of wheat stripe rust incidence rate in
future work. Finally, multiple horizontal boxes overlap, making
it difficult for farmers or agricultural experts to examine the
real location of the disease. So, the horizontal detection methods
cannot be directly applied in wheat stripe rust detection.

To solve the abovementioned problems, the idea of arbitrary-
oriented object detection proposed in the fields of text detection
(Zhou et al., 2017; Liao et al., 2018; Yuan et al., 2020) and
remote sensing image detection (Yang et al., 2019b; Zhang et al.,
2019; Yi et al., 2020) was used for reference, i.e., adding angle
prediction on the basis of general object detector can realize the
accurate positioning of object instances in any direction. This
method can further refine the horizontal circumscribed rectangle
of object predicted by the general object detector, and calculate
the minimum area of the object circumscribed rectangle, which
is conducive to estimating the damaged area of the disease in
future work. At the same time, it can improve the performance of
the algorithm for dense disease detection in complex scenes. We
developed WSRD-Net, a refined single-stage oriented detector
based on RetinaNet (Lin et al., 2017). On the basis of RetinaNet,
it adds the feature refinement module (FRM) and designs the
horizontal-to-oriented anchor mechanism. However, most of
the existing disease images in public datasets are based on
horizontal annotation, which is unsuitable for our WSRD-Net
method. To advance the research of wheat stripe rust detection,
we established the WSRD2021, a new in-field wheat stripe
rust dataset based on oriented annotation in this work. We
conducted extensive experiments on theWSRD2021 dataset, and
the detection results of ourWSRD-Net method outperform other
state-of-the-art detection frameworks on theWSRD2021 dataset.
The main contributions of this work include the following
three aspects:

(1) WSRD-Net is developed to detect wheat stripe rust, which
can realize precise localization of arbitrary-oriented wheat
stripe rust.
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FIGURE 1 | Comparison of horizontal object detection and oriented object detection results. (A) Horizontal object detection and (B) oriented object detection.

(2) WSRD-Net can solve the feature misalignment problem
for wheat stripe rust with a large aspect ratio detection by
introducing FRM and using horizontal-to-oriented anchor
mechanism to improve speed and accuracy.

(3) A new in-field wheat stripe rust dataset WSRD2021 based
on oriented annotation is established to demonstrate the
effectiveness of the developed method as well as build a
benchmark for subsequent works.

MATERIALS AND METHODS

Wheat Stripe Rust Dataset Construction
The dataset construction includes the acquisition of wheat stripe
rust images, dataset annotation, and dataset division. A flowchart
of dataset establishment is shown in Figure 2.

In-field Wheat Stripe Rust Images Acquisition
Wheat stripe rust images were collected in wheat fields in various
counties in the Anhui Province. Images of wheat stripe rust were
collected around themiddle of April every year, as the disease was
in the incidence stage at that time. Some human and material
resources were devoted to collecting wheat stripe rust images.
RGB images of wheat stripe rust were taken from the front and
back of wheat leaves using a mobile phone because the symptoms
of wheat stripe rust on the front and back of the leaves are
different. Disease images were saved in a JPG format, and we
selected 979 high-quality images to establish our dataset.

Oriented Object Annotation of Wheat Stripe Rust

Images
In general horizontal detectors, objects are always represented
by HBB, as shown in Figure 3A. A HBB is usually represented
by (x, y, w, h), where (x, y) represents the coordinates of the
center point of the bounding box, w represents the width of
the bounding box, and h represents the height of the bounding
box. In most cases, HBB can accurately represent the location
information of the object. In the above scenes, the objects can
appear in various orientations and park densely. Therefore,
an oriented bounding box (OBB) is introduced to accurately
represent objects with arbitrary directions in dense scenes. As
shown in Figure 3B, an object is defined as OBBs with five
parameters (x, y, w, h, θ). The coordinate (x, y, w, h) represents
the geometric center, height, and width of the bounding box.
The θ represents the angle of the long side to the x-axis.
Data labeling is performed by a professional plant protection
personnel using roLabelImg software (Cgvict, 2017). The labeled
disease location coordinates and category are saved as an
XML file.

After image annotation, the collected dataset is
randomly divided into training and testing sets with the
ratio to the total images of 0.8 and 0.2, respectively.
Then, the dataset of collected images is named as
Wheat Stripe Rust Dataset 2021 (WSRD2021), and
some examples of WSRD2021 are illustrated in
Figure 4.
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FIGURE 2 | Flowchart of dataset establishment.

FIGURE 3 | Object annotation. (A) Horizontal object annotation (HBB) and (B) oriented object annotation (OBB).

FIGURE 4 | Some examples of WSRD2021 dataset.

Frontiers in Plant Science | www.frontiersin.org 4 May 2022 | Volume 13 | Article 876069

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liu et al. WSRD-Net

FIGURE 5 | Characteristics of dataset. (A) Orientation histogram for all instances; (B) aspect ratio histogram for all instances; and (C) number of instances for all

images.

Characteristics of Data
Wheat stripe rusts on wheat leaves have a high diversity of
orientations. As shown in Figure 5A, the regions of wheat stripe
rust have arbitrary angles in (0◦, 180◦). The arbitrary angle
distribution of WSRD2021 provides a new dataset for oriented
object detection research.

In oriented object detection, the aspect ratio of the instance
greatly influences the detection result. We calculate the aspect
ratios of each instance in our dataset, as shown in Figure 5B. The
stripe rust spots of wheat in our dataset are slender, and the aspect
ratios are large. We can observe that the aspect ratio of instances
in our dataset varies greatly. Moreover, more than 75% of the
instances have a large aspect ratio (aspect ratio>3) in our dataset.

The number of instances per image is an important property
for the object detection dataset. In our dataset, the number of
instances in the image is related to the severity of the occurrence
of wheat stripe rust. The more severe the wheat stripe rust is in
the wheat field, the more instances are present in the image. We
count the number of instances in each picture, and the result is
shown in Figure 5C. It can be seen that the number of instances
per image in our dataset varies widely, and the instance can be
very dense (up to 16 instances per image) or very sparse (only
one instance per image). Moreover, more than 60% of the images
have multiple instances (the number of instances ≥ 3).

Proposed Method
R3det (Yang et al., 2019a) model, whose FRM can solve the
feature misalignment problem, is very suitable for detecting
wheat stripe rust with large aspect ratios, dense distribution,
and arbitrary orientations. Therefore, the R3det model is used
for wheat stripe rust detection. Figure 6 shows a schematic
representation of WSRD-Net framework used in this study.
WSRD-Net is a refined, single-stage oriented detector based on
the RetinaNet (Lin et al., 2017), consisting of a single FCN
comprised of a ResNet-FPN backbone network, two task-specific
subnetworks, and the FRM. The backbone is responsible for
extracting a multiscale feature map over the original image
via a set of basic conv + relu + pooling layers. The first

subnet is used to perform object classification, and the second
subnet performs bounding box regression. The FRM is used
to continuously refine the predicted bounding box to improve
the regression accuracy. The whole process includes two stages,
namely, the coarse stage and the refined stage. In the coarse
stage, the horizontal anchors are used to regress oriented anchors,
and then, the oriented anchors are used in the subsequent
refined stages to obtain the final detection results under
arbitrary orientations.

Horizontal-to-Oriented Anchor Mechanism
At present, most general detectors use the horizontal anchor. The
horizontal anchor based approach has the advantage of using
the horizontal circumscribing rectangle of the ground-truth to
calculate intersection-over-union (IoU), which can reduce the
use of anchor points and match more positive samples, but
introduces a large number of non-object or regions of other
objects. Many efficient oriented object detection methods use
the oriented anchor to better locate the object in any direction
and avoid introducing non-object areas. The setting of horizontal
anchors uses scale and aspect ratio parameters. For the detector
based on oriented anchor, more studies add several rotation
angles for each anchor on the basis of scale and aspect ratio
parameters to obtain oriented anchors. However, this setting
increases the number of anchors, thereby reducing the efficiency
of the model.

Considering the advantages and disadvantages of horizontal
and oriented anchors, WSRD-Net adopts horizontal-to-oriented
anchor mechanism. In the coarse stage, horizontal anchors
(Figure 7A) are first generated from predefined anchors to
improve the speed and generate more candidate boxes. Assume
that one anchor is denoted as a 5-tuple (x, y, w, h, θ0), where
(x, y) indicates the geometric center. The width w is set to the
horizontal side, and the height h is set to the vertical side, θ0
is 0. We obtain the oriented anchor by learning the offset of
the five parameters of the horizontal anchor and the oriented
ground-truth. In the subsequent refined stage, the oriented
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FIGURE 6 | Schematic representation of WSRD-Net framework. The model uses ResNet as a backbone and builds a feature pyramid network (FPN) on top of the

ResNet architecture. Two task-specific subnetworks and FRM. “A” denotes the number of anchors on each feature point, “C” denotes the number of categories, and

“5” indicates the coordinates and orientation of the bounding box.

FIGURE 7 | Example of horizontal anchors and refined oriented anchors. (A) Horizontal anchors of the coarse stage and (B) oriented anchors are used in the refined

stage.

anchors (Figure 7B) are used for regression to obtain more
accurate location.

In WSRD-Net, the size of the horizontal anchor changes from
32 × 32 to 512 × 512 on the P3-P7 characteristic diagram of the
pyramid. At each pyramid level, the aspect ratio of the anchor is
(1, 1/2, 2, 1/3, 3, 1/5, 5), and the scale is (20, 21/3, 22/3).

Oriented Bounding box
To predict objects, the previous general detectors represent
horizontal rectangle by four parameters (x, y, w, h) and regress

horizontal rectangle. In this study, five parameters (x, y, w, h, θ)
are used to represent an arbitrary-oriented rectangle. Therefore,
it calls for predicting an additional angle offset in the regression
subnet, and then, the learning target is calculated as:

t∗x = (x∗ − xa)/wa, t
∗
y= (y∗ − ya)/ha

t∗w = log(w∗/wa), t
∗
h = log(h∗/ha), t

∗
θ = θ∗ − θa (1)

tx = (x− xa)/wa, ty = (y− ya)/ha

tw = log(w/wa), th = log(h/ha), tθ = θ/θa
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FIGURE 8 | Feature misalignment and the core idea for FRM. (A) Feature misalignment of the coarse stage; (B) location of center points for original horizontal anchor

and refined anchor in the feature grid; (C) not aligned feature is used in the refined stage; and (D) aligned features are used in the refinement stage by reconstructing

the feature map.

where x, y, w, h, θ denote the center coordinates of
the box, width, height, and angle, respectively. Variables
x∗, xa, x represent values related to the ground-truth box, anchor
box, and predicted box, respectively; the same is applicable for
y, w, h, and θ .

Feature Refinement Module
In many proposed refined detectors, the same feature map
is used to calculate multiple classifiers and regressors.
However, the location changes of the bounding box will

cause feature misalignment. Feature misalignment occurs
during the refinement process of bounding box, resulting
in inaccurate features, which can be disadvantageous
for the detection of wheat stripe rust with a large
aspect ratio.

Specifically, each feature point on the featuremap corresponds
to several anchors. One of the anchors can be considered for
example, and the center of the anchor is the feature point on
the feature map. As shown in Figure 8A, in the coarse stage, the
original horizontal anchor (orange box) is regressed to the OBB
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FIGURE 9 | Feature refinement module.

(yellow one) as a result. From the feature grid (Figure 8B), we
can see that the anchor feature is extracted from the orange point
by using the full convolution network. However, the center point
(yellow point) of the OBB is not aligned with the feature points
(orange point) on the original feature map. If we use the original
feature map in the refined stage, it means that the feature of the
refined anchor is still extracted from the orange point, resulting in
feature inconsistency (Figure 8C). The misalignment of anchor
feature and anchor position will severely affect the detection
performance. Therefore, the FRM is used to solve the problem of
feature misalignment.

The FRM can find the corresponding feature area of the
current OBB by calculation, and achieve the purpose of feature
alignment by featuremap reconstruction, as shown in Figure 8D.
The structure of the FRM is shown in Figure 9. The FRM consists
of a feature fusion module and a feature reconstruction module.
In the feature fusion module, the feature map F1 output from
FPN is sent to two parallel convolution layers. The first one
passes through a 5 × 1 convolutional layer and then passes
through a 1 × 5 convolutional layer, and the second one is
with one 1 × 1 convolutional layer. The 5 × 1 convolutional
layer can better capture vertical features, which is good for
detecting instances with height greater than width, while 1 ×

5 convolutional layer can better capture horizontal features,

which is suitable for detecting instances with width greater than
height. The outputs of two feature maps from the two parallel
convolution layers are fused into a new feature map F2 by
element-wise addition.

Some redundant OBBs generated from the coarse stage
are discarded by bounding box filtering, that is, only the
OBB with the highest score of each feature point is retained.
The retained OBB and feature map F2 act as input in
the feature reconstruction module, and the reconstructed
feature map F3 acts as output. Specifically, the retained
OBBs (one center point and four corner points) are mapped
back to the feature map F2 by bilinear interpolation, and
the feature vector of the corresponding feature point is
obtained. Then, each feature vector is superimposed on the
original feature map F1 for fusion to obtain the refined
feature map. Finally, the refined feature map and feature
map F2 are fused to obtain the reconstructed feature map
F3. To accurately obtain the location feature information
of the OBB, the bilinear feature interpolation method is
adopted, as shown in Figure 10. According to the known
values of A11 =

(

x1, y1
)

,A12 = (x1, y2),A21 = (x2, y1) and
A22 = (x2, y2), the point C (x, y) to be interpolated is
calculated. First, B1 and B2 are obtained by linear interpolation
in the X direction, and then C (x, y) is obtained by linear
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interpolation in the Y direction. Feature interpolation can be
formulated as follows:

f
(

x, y
)

=
f (A11)

(x2 − x1)
(

y2 − y1
) (x2 − x)

(

y2 − y
)

+
f (A21)

(x2 − x1)
(

y2 − y1
) (x− x1)

(

y2 − y
)

+
f (A12)

(x2 − x1)(y2 − y1)
(x2 − x)(y− y1)

+
f (A22)

(x2 − x1)(y2 − y1)
(x−x1)(y−y1) (2)

FIGURE 10 | Bilinear feature interpolation.

where f (A11) represents the feature vector of the point A11, the
same as f (A12), f (A21) , and f (A22). x1, y1 denote the coordinate
value of point A11 on the X and Y axes, x1, y2 denote the
coordinate value of point A12 on the X and Y axes, x2, y1 denote
the coordinate value of point A21 on the X and Y axes, and x2, y2
denote the coordinate value of point A22 on the X and Y axes.

Skew IoU
General horizontal object detection methods use IoU
computation for the axis-aligned strategy to choose the
positive samples. The overlap image of the two HBBs is a
rectangle, as shown in Figure 11A. However, the OBB in
oriented object detection can be generated in any orientation.
The overlap of the two OBBs may be irregular polygons,
as shown in Figure 11B. Thus, using the IoU computation
method like in general horizontal object detection may lead
to an inaccurate IoU of the skew interactive bounding box,
and further ruin the bounding box prediction. Therefore,
we use skew IoU (S-IoU) (Ma et al., 2018) to solve this
problem; the overlapping area (B1∩B2) of two oriented
rectangles is calculated by triangulation method. The S-IoU
between two oriented rectangles can be calculated by the
following equation:

S-IOU =
area(B1 ∩ B2)

area(B1 ∪ B2)
(3)

where B1 and B2 represent two oriented rectangles.

Loss Function
In our wheat stripe rust dataset, there are many objects with
large aspect ratios. These wheat stripe rusts with a large aspect
ratio are sensitive to S-IoU. As shown in Figure 12, the predicted
OBB and oriented ground-truth of wheat stripe rust in each
group have the same height and width. The two groups have
the same change in angle and different aspect ratios. As a result,

FIGURE 11 | Examples of standard IoU and S-IoU computation. (A) Standard IoU and (B) S-IoU.
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FIGURE 12 | Comparison between S-IoU and Smooth L1 loss.

the two groups have the same smooth L1 loss value and a quite
different S-IoU.

To trainWSRD-Net, we adopted a new derivable approximate
S-IoU loss function. Compared with the standard smooth L1
loss function, the new loss can obtain more accurate rotation
estimation. In particular, the angle loss is added to the regression
loss, and the multi-task loss function of WSRD-Net is defined
as follows:

L =
λ1

N

∑

i

oi
Lreg(vi, v

∗
i)

∣

∣Lreg(vi, v∗i)
∣

∣

∣

∣f (S-IOU)
∣

∣ +
λ2

N

∑

i

Lcls(pi, p
∗
i) (4)

Lreg(v, v
∗) = Lsmooth−l1(vθ , v

∗
θ )− IOU(v{x,y,w,h}, v

∗
{x,y,w,h}) (5)

where i is the index of anchor, N is the number of anchors, and
the value of oi represents the binary value (oi = 1 is foreground
and oi = 0 is background). v is the predicted offset vector, and
v∗ is the target vector of ground-truth. The value of p∗i represents
the ground-truth label, pi is the classification confidence of i-th
sample.

(

x, y, w, h, θ
)

represent the center coordinates of the
box, width, height, and angle, respectively. S-IOU is the overlap of
the predicted OBB and oriented ground-truth. The default values
are λ1 =1 and λ2 =1. The classification loss Lcls is focal loss
(Lin et al., 2017). The function f (S-IOU) = 1 − S-IOU is the

loss function related to S-IoU. The function IOU( .) is a HBB IoU
calculation function.

Evaluation Metrics
The S-IoU between oriented boxes is used to distinguish
detection results. If the S-IoU between a detection bounding box
and a ground-truth is higher than a given threshold, then the
detection box is considered to be true-positive (TP), otherwise,
it is considered to be false-positive (FP). If a ground-truth
box has no matching detections, it is considered to be a false-
negative (FN). The Precision and Recall are then computed by
the following equations:

P =
TP

FP + TP
(6)

R =
TP

FN + TP
(7)

where P is Precision; R is Recall; TP is the total number of
correctly detected wheat stripe rusts; FP + TP represents
the total number of detected wheat stripe rusts;
FN + TP represents the total number of true wheat
stripe rusts.
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The Precision-Recall (P-R) curve, widely known as the P-
R curve for evaluating the performance of an object detection
algorithm, was used to assess the models. The area under
this precision-recall curve is the Average Precision (AP). In
this study, AP is selected as the primary evaluation metric in
comparison experiments. We also apply the other two metrics
to evaluate the performance of all detection models: Recall
and FPS.

EXPERIMENTAL RESULTS

Implementation Details
Pytorch framework over python 3.7 was used to implement the
developed network architectures of WSRD-Net and all other
state-of-the-art models. Models were trained on an Ubuntu 18.04
server with one 24GB memory NVIDIA TITAN RTX GPU card.
WSRD-Net and all other state-of-the-art models are trained for
24 epochs with a batch size of 4 examples. The initial learning
rate forWSRD-Net is 4e-3, and the learning rate is reduced at the
8th, 16th, and 20th epoch. The initial learning rate of all other
state-of-the-art models is 0.01, and the learning rate is reduced at
the 12th, 16th, and 22nd epoch. Multiscale (1,333, 800), (1,700,
1,000), (2,000, 1,200) training is adopted in all models. The other
parameters of models used in this study are consistent with their
default parameters without any adjustment.

Comparison Results
To verify the performance of WSRD-Net, the comparison
experiments with the four state-of-the-art oriented object
detectionmodels, namely, Faster R-CNNOBB (Ding et al., 2021),
RetinaNet OBB (Ding et al., 2021), Faster R-CNN OBB + Dpool
(Dpool by replacing RoI Align in Faster R-CNN OBB) (Ding
et al., 2021), and Faster R-CNN OBB + RT (Faster R-CNN OBB
+ RoI Transformer, RoI Transformer by replacing RoI Align in
Faster R-CNN OBB) (Ding et al., 2021) are conducted. These
models use ResNet50 as the backbone. The same dataset was used
for training and testing the four models, respectively. Detection
results are presented in Table 1; the AP of RetinaNet OBB, Faster
R-CNN OBB, Faster R-CNN OBB + Dpool, and Faster R-CNN
OBB + RT are 38.7, 56.7, 56.1, and 60.6%, respectively. The
WSRD-Net has a significantly higher AP (60.8%) than the other
four models, demonstrating that WSRD-Net performs better in
detecting the wheat stripe rust. Additionally, we also evaluate
the Recalls of WSRD-Net and the four state-of-the-art oriented
object detection models. The Recall value (73.8%) of WSRD-Net
is high for wheat stripe rust as summarized in Table 1.

Meanwhile, Figure 13 presents some examples of localization
for wheat stripe rust areas by four different models based on
oriented object detection. The ground-truth image in the first row
only contains one diseased leaf, the ground-truth image in the
second row contains multiple diseased leaves, and ground-truth
image in the third row contains a leaf with a large aspect ratio.
These examples show that the four oriented object detection
models can effectively identify and locate the wheat stripe rust
areas in natural fields. However, there are still some subtle
differences. In the first row, all models perform well on the
image containing only one wheat stripe rust. The second row

TABLE 1 | Detection results of WSRD-Net compared with the state-of-the-art

oriented object detection models.

Model AP (%) Recall (%)

RetinaNet OBB 38.7 55.7

Faster R-CNN OBB 56.7 71.1

Faster R-CNN OBB + Dpool 56.1 71.1

Faster R-CNN OBB + RT 60.6 72.9

WSRD-Net 60.8 73.8

of wheat stripe rust is densely distributed; WSRD-Net, Faster
R-CNN OBB, and Faster R-CNN OBB + RT provide good
detection results, while RetinaNet OBB has poor performance
due to feature misalignment. In the third row, RetinaNet OBB
and Faster R-CNN OBB result in a most partial localization for
a large aspect ratio in the wheat stripe rust area. Faster R-CNN
OBB + RT has two prediction bounding boxes on a single wheat
stripe rust area. Only the WSRD-Net can accurately detect stripe
rust with a large aspect ratio. Comparatively, WSRD-Net can
more precisely locate the disease area and improve the overall
performance due to the addition of FRM to solve the problem
of feature misalignment.

Comparison With the Other Backbones
To further verify the effectiveness of WSRD-Net approach,
four influential backbones, including ResNet50, ResNet101 (He
et al., 2016), ResNext50, and ResNext101 (Xie et al., 2017),
were used for comparative experiments. The AP and Recall
under four backbones are summarized in Table 2. It can be
observed that WSRD-Net using ResNet50 and ResNet101 as
backbone achieves the best performance with the highest AP
(60.8%). WSRD-Net using ResNet101 as backbone achieves the
highest Recall (75.3%). Among these results, the lowest AP
occurs in using ResNext101 as the backbone. Network deepening
does not significantly improve the performance of the model,
mainly because the shallow convolution layer extracts relatively
small features, and extensive information is extracted by deeper
convolution. However, the wheat stripe rusts of our dataset are
relatively small, there is no need to use high-level semantic
information, and ResNet50 is enough.

By comparing the AP and Recall, it can be seen that using
ResNet101 as the backbone performs best on our dataset.
Considering the deep layers of ResNet101 network will reduce
the detection efficiency, so we choose ResNet50 as the backbone
of WSRD-Net.

Comparison With Horizontal Detection
Models
The visualization of detection results between the horizontal
detectionmodels andWSRD-Net is given in Figure 14. Although
the horizontal detection model can effectively identify and locate
the wheat stripe rust in the natural field, it also contains excessive
redundant background area. As the image only contains one
diseased leaf in the first row, the Faster R-CNN (Ren et al.,
2017) and Cascade R-CNN (Cai and Vasconcelos, 2018) models
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FIGURE 13 | Visualization of the comparison results with other oriented object detection models.

accurately detect diseased areas. In the second row, as the
image contains multiple diseased leaves, the large aspect ratio
of wheat stripe rust, and park densely, the NMS algorithm
using a HBB tends to produce missing detection. In addition,
multiple horizontal boxes overlap, making it difficult to see the
real location of the disease. Comparatively, WSRD-Net can more
accurately locate the wheat stripe rust, especially in most images
containing multiple diseased leaves. Experimental results show
that the performance of WSRD-Net in detecting the wheat stripe
rust is superior to the horizontal detection models.

Detection Efficiency
Wehave compared the speed ofWSRD-Net with the state-of-the-
art oriented detection models and horizontal detection models
on our dataset. All models adopt multi-scale (1,333, 800), (1,700,
1,000), (2,000, 1,200) training, and single-scale (1,333, 800)
testing, and the result is summarized in Table 3. For comparison
with the state-of-the-art oriented detection methods, when the
same backbone (ResNet50) is applied, the Faster R-CNN OBB +

TABLE 2 | AP and Recall comparison with the other backbone.

Backbone AP (%) Recall (%)

ResNet50 60.8 73.8

ResNet101 60.8 75.3

ResNext50 51.9 69.2

ResNext101 51.6 69.0

RT and Faster R-CNN OBB + Dpool methods have a little lower
speed, and WSRD-Net and RetinaNet OBB models achieve the
relatively high speed (6.8 and 7.0 fps, respectively). The two-stage
algorithm based on RoI operation does not share the amount
of computation, which limits the computational efficiency of
the two-stage algorithm, so WSRD-Net is faster than the two-
stage algorithm. Furthermore, although WSRD-Net adds FRM
module based on RetinaNet, the speed of WSRD-Net is only
slightly lower than RetinaNet OBB. This is because the FRM
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FIGURE 14 | Visualization of the comparison results with horizontal detection models.

module added in WSRD-Net filters out some redundant boxes
by the bounding box filtering mechanism after the coarse stage,
reducing the number of boxes, thus speeding up the model.
Table 3 also summarizes the speed of oriented detection models
and that of the horizontal detection models, namely, Faster-
RCNN and Cascade R-CNN. Due to different R-anchor strategies
and other network designs of oriented detection models, the
network becomes more complex. We can observe that oriented
detection models act twice more than the Faster-RCNN and
Cascade R-CNN approaches.

DISCUSSION

In this section, the comparison experiment between the WSRD-
Net and state-of-the-art shows that the WSRD-Net is superior to
the state-of-the-art (refer to Table 1 and Figure 13). In addition,
the visualization of the detection result between the WSRD-Net
and horizontal detection models indicates that the WSRD-Net is
superior to the horizontal detection models (refer to Figure 14).
WSRD-Net gets rid of the limitation of the non-maximum
suppression (NMS) technique as post-processing, as it will result
in missed detection of objects densely arranged in any direction
along the horizontal line. This reduces the missing detection

TABLE 3 | Speed comparison with the state-of-the-art oriented detection

methods and horizontal detection models.

Model no. Speed (fps)

WSRD-Net 6.8

RetinaNet OBB 7.0

Faster R-CNN OBB 6.7

Faster R-CNN OBB + Dpool 6.5

Faster R-CNN OBB + RT 6.6

Faster R-CNN 14.6

Cascade R-CNN 14.3

rate in dense scenes of wheat stripe rust, improves the detection
accuracy, and helps to accurately calculate the incidence rate
of wheat stripe rust. Compared with the horizontal detection
method in previous studies, the orientation-based approach
of WSRD-Net is able to obtain the minimum circumscribed
rectangle of the damaged area with less background area,
which is conducive to accurately counting the damaged area
of leaves to determine the severity of wheat stripe rust in
future work.
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CONCLUSION AND FUTURE WORK

Accurate detection of wheat stripe rust is very important
to improve wheat yield and quality. Due to the arbitrary-
oriented wheat stripe rust and large aspect ratio, these issues
bring big challenges for the task of detection of accurate
wheat stripe rust. In this study, a wheat stripe rust detection
method based on oriented object detection, WSRD-Net, is
proposed for the detection of in-field wheat stripe rust. Also,
we have built an oriented annotation dataset of in-field wheat
stripe rust images, called the wheat stripe rust dataset 2021
(WSRD2021). We exploit five different oriented object detection
models to perform wheat stripe rust detection on the newly
collected in-field dataset WSRD2021. The optimal AP obtained
by WSRD-Net is 60.8%, and the experimental results indicate
that WSRD-Net can effectively detect the wheat stripe rust
in the complex scenes, and is superior to the state-of-the-
art. Moreover, the experimental comparison with horizontal
detection models indicates that oriented object detection can
lead to more accurate localization for disease areas than
horizontal detection.

Despite the fact that we implement an oriented object
detection method for the wheat stripe rust detection in the
field and achieve successful performance in our dataset, there
are some limitations for future study. First, our dataset only
contains 979 images of a disease, with a single type of
data and a small amount of data. So, our dataset needs
to be extended to some different diseases of different crops
sharing similar characteristics with current wheat stripe rust.
For our wheat stripe rust dataset, the size difference of the
disease area is large, and the edge characteristics are not
obvious. So, WSRD-Net can be adapted or modified to better
fit our wheat stripe rust dataset. Finally, WSRD-Net only
pays attention to identifying disease categories and locating
corresponding disease areas, but does not calculate the damaged
area of the disease, which is also significant for monitoring of
crop disease.

In the near future, we will concentrate on expanding the
dataset and developing a more robust and powerful oriented
object detection model based on the current model to fit our
dataset. Moreover, we will design a method to calculate the
damaged area of diseases to estimate the severity of crop diseases.
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