Skip to main content
. 2022 Jun 7;29(7):5313–5352. doi: 10.1007/s11831-022-09766-z

Table 8.

Parameter setting of HIOAs

Algorithms Parameters Description Value initialized
Corona virus Herd Immunity Optimization (CHIO) C0 Number of initial infected case 1
Max_Itr Maximum number of iterations 1000
HIS Population Size 50
BRr Basic Reproduction Rate 0.01
MaxAge Maximum age of the infected cases 100
HIP Herd Immunity Population [0 or 1]
R Random Number [0,1]
Aj Age Vector 1
Sj Status Vector 1
Forensic-Based Investigation Optimization (FBIO) N Population Size 50
rand Random Number [–1,1]
rand1 Random Number [0,1]
rand2 Random Number [0,1]
Α Effectiveness coefficient [–1,1]
Political Optimizer (PO) N Number of parties, constituencies, and members in each party 5
Tmax Total number of iterations 500
r Random Number [0,1]
ƛ party switching rate 1
Battle Royale Optimization (BRO) iter Maximum number of iterations 500
Population_size Population Size 50
Threshold Threshold 3
r Random Number [0,1]
Heap-Based Optimizer (HBO) T Maximum number of iterations 500
r Random Number [0,1]
p Random Number [0,1]
N Size of Population 50
D Number of Dimension (variables) 30
C Number of Cycles (c = T/25) 8
Human Urbanization Algorithm (HUA) t Number of Iterations 500
R Random Number [0,1]
Ri Random Number [–1,1]
K Controlling diversification and intensification of adventurers 2
Ripmk Balancing between diversification and intensification in searching the city’s boundaries 1
N Population Size 50
Particle Swarm Optimization (PSO) C1 Acceleration coefficients 2
C2 Acceleration coefficients 2
n Population Size 50