
Erratic spatiotemporal vegetation growth anomalies drive
population outbreaks in a trans-Saharan insect migrant
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Hu et al. (1) propose that vegetation growth in “kernel”
regions of the Savanna/Sahel during January/February is
key to explain population abundances of the painted lady
butterfly (Vanessa cardui) in Europe. We identify issues in
their rationale and provide evidence toward an alternative
scenario.

First, Hu et al. (1) conjecture that, in exceptional years,
substantial breeding of V. cardui occurs in the African
Savanna/Sahel at the peak of the dry season, but no
ground-truthed evidence is provided. This hypothesis chal-
lenges previous research in Africa, including models based
on breeding data (2, 3), and the authors refer to their
results as “counterintuitive.” We inspected the leaf area
index (LAI) in Hu et al.’s kernels and show that the values
are steadily low, with no peaks in the dry season that may
indicate substantial herbaceous coverage at any scale
(Fig. 1A). We argue that the low signal of vegetation growth
found by Hu et al. likely corresponds to woody plants
(Fig. 1B), which may store water (4, 5) but are not V. cardui
larval hosts (2, 3).

Second, Hu et al.’s (1) approach assumes that key
breeding localities explaining outbreaks are recurrent
across events, excluding the possibility that migratory
steps and breeding groups from successive generations
could be linked every year to slightly different configura-
tions. Additionally, their models were constrained to
account for only a few predetermined regions and months.
Given the low philopatry of V. cardui and the erratic nature

of exceptional climatic events, we demonstrate a different
approach that avoids a predetermined spatiotemporal par-
tition. We inferred monthly, highly positive vegetation
growth anomalies in the species’ African range, using a
suite of satellite-derived layers, for the 1994–2020 period,
and visually inspected their geographical distribution (Fig. 2).
We find that 1) the four major butterfly abundance peaks
documented in Europe were closely preceded by vegetation
growth anomalies outside the kernels; 2) these anomalies
were located at different suitable spatiotemporal breeding
grounds in North Africa, the Middle East, and the Afrotropics
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Fig. 1. (A) Comparative Copernicus LAI (6) values for Hu et al.’s (1) kernels across years (1998–2019) during the wet (August) and the dry (January) seasons.
LAI values indicate the degree of vegetation coverage. Dry season values are steadily lower across time, showing no transient herbaceous growth compara-
ble to that of the wet season. A wider SD interval in the wet season illustrates the presence of both areas covered by contiguous herbaceous growth (high
LAI) and areas covered by only patchy woody growth (low LAI), whereas the narrow SD interval of the dry season is attributable to areas with active woody
plants alone. (B) Illustrative example of high-resolution Sentinel-2 images (10 m) for a quadrant of Hu et al.’s eastern kernel. LAI values for two nested areas
are plotted for specific days during both seasons, showing a contrasting signal between herbaceous and woody growth, reinforcing the evidence that Hu
et al.'s vegetation growth detection is probably mostly driven by woody plants across their kernels.
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(3); 3) the contribution of the kernels to the overall winter
and early spring vegetation growth in Africa was minimal;
and 4) remarkable variability exists between remote sensing
methods, which could affect correlations.

Hu et al.’s (1) modeling exercise, although limited by
arguable assumptions, illustrates that climate in Africa
could explain abundances of insects migrating to Europe,
a view that we share. However, we dispute the nature
and strength of the correlation found in their kernels.
Based on our analyses, we argue that it is highly unlikely
that this correlation represents substantial breeding and
the source of outbreaks, although it could represent a
side effect of biologically meaningful climatic anomalies
occurring in other areas/times. Our results provide a
grounded alternative scenario where the strongest vege-
tation growth events preceding butterfly outbreaks in
Europe constitute the most logical environmental drivers,

even if their unpredictable localization renders them
hardly detectable using pixel-based correlations. This pat-
tern agrees with the view that populations of migratory
insects are dynamic and opportunistically exploit vege-
tation within their suitable seasonal range, making
them true spatiotemporal riders of erratic vegetation
resources.
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Fig. 2. Time series plots of butterfly abundance in Europe (1994–2020): Butterfly Monitoring Scheme (BMS) densities (black lines) and Global Biodiversity
Information Facility (GBIF) overall counts (dashed gray lines). High positive vegetation growth anomalies (Z score ≥ 3/EOT ≥ 500; green lines) in Africa and
the Middle East from November to June consistently predate outbreaks (orange rectangles). Vegetation anomalies are based on the normalized difference
vegetation index (NDVI) and the enhanced vegetation index (EVI) from the global inventory monitoring and modeling system (GIMMS) (7) and the moderate
resolution imaging spectroradiometer (MODIS) (8) satellite databases (0.08° and 0.05° spatial resolution, respectively), and two algorithms: standardized dif-
ference vegetation index (SDVI) and empirical orthogonal teleconnection (EOT) (9). Vegetation growth anomalies at Hu et al.’s (1) kernels (red lines) are also
shown, but no peaks are detected preceding outbreaks. Maps indicating high positive vegetation anomalies (green pixels) are shown for the four main his-
torical outbreaks in Europe. Red polygons delimit Hu et al.'s kernels, depicting the very few monthly vegetation growth anomalies (red pixels) in January of
the outbreak year.
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