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We study within a fully kinetic framework the generation of “seed” magnetic fields
through the Weibel instability, driven in an initially unmagnetized plasma by a large-
scale shear force. We develop an analytical model that describes the development
of thermal pressure anisotropy via phase mixing, the ensuing exponential growth of
magnetic fields in the linear Weibel stage, and the saturation of the Weibel instability
when the seed magnetic fields become strong enough to instigate gyromotion of
particles and thereby inhibit their free-streaming. The predicted scaling dependencies
of the saturated fields on key parameters (e.g., ratio of system scale to electron skin
depth and forcing amplitude) are confirmed by two-dimensional and three-dimensional
particle-in-cell simulations of an electron–positron plasma. This work demonstrates
the spontaneous magnetization of a collisionless plasma through large-scale motions
as simple as a shear flow and therefore has important implications for magnetogenesis
in dilute astrophysical systems.
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The origin and evolution of cosmic magnetism remains one of the most profound
mysteries in astrophysics and cosmology (1, 2). Observations of Faraday rotation, Zeeman
splitting, and synchrotron emission suggest pervasive ∼μG magnetic fields in our Galaxy
and in the intracluster medium (ICM) of galaxy clusters (3–5). It is widely believed (6–8)
that such dynamically important magnetic fields first arose as weak “seed” fields generated
by cosmic batteries, subsequently amplified to currently observed levels by the turbulent
dynamo—a fundamental plasma process that converts the mechanical energy of plasma
motions into magnetic energy through electromagnetic induction. However, neither the
origin problem—what are the physical mechanisms underpinning these batteries—nor the
dynamo problem—how magnetic fields are amplified and sustained by turbulent plasma
motions—are well understood.

There are two broad perspectives on the origin of cosmic seed magnetic fields: a
primordial origin and a galactic origin. In the former, seed fields are generated before
recombination or the era of structure formation. The earliest seed fields can be generated
by exotic early-Universe mechanisms during inflation and cosmological phase transitions
(e.g., refs. 9–11). At later times during the radiation-dominated era, seed fields can
be produced through plasma fluctuations (12) or nonzero vorticity (13, 14) [the well-
known Biermann battery (15)]. These mechanisms potentially explain the pervasiveness
of magnetic fields, but with predicted amplitudes that are typically weak (∼10−20 G)
(16–19). Scenarios based on a galactic origin postulate that seed fields are generated
through gravitational collapse or collision-related events occurring during structure forma-
tion and stellar evolution in the early Universe (at redshift z ∼ 10). In this scenario, seed
fields are generated by various fluid or plasma-kinetic instabilities, such as the magneto-
rotational (Balbus–Hawley) instability (20) in accretion disks, the Rayleigh–Taylor insta-
bility (21) in stars and supernova remnants, the Kelvin–Helmholtz instability (22–25) at
the shear surface of astrophysical jets, and the Weibel instability (26, 27) in collisionless
shocks. The Biermann battery, aside from operating due to cosmological-scale vorticity,
can also create seed fields in rotating stars (15, 28). Such seed fields, generated locally
within stars or galaxies, are typically much stronger than the primordial seed fields and can
potentially be transported into and diluted throughout the intergalactic medium (IGM) or
early ICM by powerful galactic winds or jets (29–31). However, to what extent these mech-
anisms can contribute to the global magnetization of the ICM and IGM is still unclear
(10, 11, 32).

Among the above-mentioned instabilities, the Weibel instability is particularly versatile.
In an unmagnetized, collisionless plasma, its only requirement is directional anisotropy in
the thermal motions of the charged particles—an essential feature of dilute astrophysical
plasmas such as the IGM and ICM—and can produce seed fields with near-equipartition
strength, albeit on microscopic plasma-inertial length scales (26, 27, 33). As a plausible key
ingredient of magnetogenesis (34, 35), the Weibel instability has been studied extensively
in contexts typically with a counter-streaming configuration, such as collisionless shocks
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occurring in both the relativistic (36–38) and subrelativistic (39,
40) regimes, in the large interpenetrating structures of intergalac-
tic plasmas (34, 35), and in laser-plasma experiments (41, 42).
Despite the fact that the Weibel instability can be easily triggered
through thermal anisotropy alone, its role in a global context
(beyond local shocks), such as low-Mach-number turbulence in
galaxy clusters and in the IGM, has not been considered. Such
contexts, however, are important to the magnetogenesis problem
because of their relevance to turbulent dynamo processes (43).

Once formed, seed magnetic fields are thought to be amplified
and sustained by the turbulent plasma dynamo after reionization,
when the baryonic material in the universe becomes electri-
cally conducting. Previous dynamo studies—whether conducted
within the framework of magnetohydrodynamics (43–45) or,
more recently, using a kinetic description (46–48)—assumed
the existence of a seed field as an initial condition and thus
did not address its origin. The possibility that, in a collisionless
plasma (e.g., the IGM/ICM), the turbulent motions of dynamo
may themselves give rise to seed fields, and thus magnetize the
plasma noninductively, has not been adequately explored. This
idea presents intriguing questions that have not yet been answered;
namely, how, exactly, are seed fields generated by generic large-
scale motions? What are the strength and morphology of these
self-consistently produced seed fields? Can they seed the plasma
dynamo, thereby yielding a fully ab initio solution to the problem
of magnetogenesis?

In this work, we aim to understand how an initially unmagne-
tized plasma may magnetize itself through kinetic instabilities aris-
ing self-consistently under the action of large-scale flows, which
are ubiquitous and driven by a variety of large-scale processes in as-
trophysical environments. In unmagnetized, collisionless environ-
ments, the plasma flows are not of a purely fluid nature; instead,
they are subject to phase mixing and Landau damping. As we
will show, these cause the plasma-distribution function to become
anisotropic in velocity space, thereby providing free energy for
microscopic instabilities, such as Weibel, to grow rapidly on top
of the slowly varying macroscopic flows. The Weibel instability
produces fluctuations that extract free energy from the thermal
anisotropy and generate kinetic-scale seed magnetic fields. As the
Weibel magnetic field grows, the plasma becomes magnetized,
leading to the saturation of the instability and modifying the
macroscopic transport properties of the turbulence.

At plasma-kinetic scales, any macroscopic flow may be viewed
locally as a shear flow and/or a compressional flow. In this paper,
we focus on how an externally driven shear flow can spontaneously
magnetize the plasma. We adopt a fully kinetic framework, in
which the kinetic physics of both particle species is treated self-
consistently. The sequence of events through which the plasma
becomes magnetized involves multiple stages, each of which we
consider in detail. In the following sections, we present an analyt-
ical model describing this phenomenon, which we then show is
supported by first-principles numerical simulations. Fundamen-
tally, our calculations show that a large-scale shear flow provides
an efficient mechanism for the self-magnetization of astrophysical
plasmas.

Theory

Formulation of the Problem and Dimensionless Parameters.
Consider a three-dimensional (3D) system initialized with a uni-
form static Maxwellian plasma and negligible electromagnetic
fields. The plasma has both negative and positive charges; a
subscript s is added to quantities to represent these two species
(s ∈ {e, i} for an electron–ion plasma and s ∈ {e, p} for an

electron–positron plasma). Each species is represented by its dis-
tribution function in phase space fs(t ,x , v), mass ms , and
temperature Ts . We limit our discussion to the subrelativis-
tic regime, in which the thermal and flow velocities of both
species are much smaller than the speed of light c. In this limit,
the bulk flow velocity U s(t ,x )≡

(∫
d3v v fs

)
/ns(t ,x ), where

ns(t ,x )≡
∫

d3v fs is the density, and the thermal pressure ten-
sor, Ps(t ,x )≡

∫
d3v ms(v −U s)(v −U s)fs , are two basic

quantities characterizing the bulk and thermal motions of the
plasma, respectively.

In this initially unmagnetized Maxwellian system, we consider
a shear flow driven continuously by a time-independent external
body force F ext,s(x ) =msa(x ).* The force is in the ŷ direction
with a sinusoidal spatial variation in the x̂ direction, giving rise
to a species-independent acceleration a(x ) = a0 sin (2πx/L)ŷ ,
where a0 is the constant amplitude of the acceleration, and L is
the system scale.

We define three time-dependent dimensionless parameters
to represent the evolution of the system’s energetics. The first
is the Mach number Ms ≡

√
〈U 2

s 〉/vths , where Us = |U s |,
vths ≡

√
Ts(t = 0)/ms is the initial thermal speed, and

〈. . .〉 denotes a volume average. The Mach number squared
M 2

s ≈ 〈Pbulk,s〉/ 〈Ps〉, where Pbulk,s ≡msnsU
2
s is twice

the bulk kinetic energy density (ram pressure) and Ps ≡
nsTs ≈msnsv

2
ths is the thermal pressure of plasma, the latter

approximation being accurate if the temperature Ts does not
change significantly over time.

The second dimensionless quantity is the thermal pressure
anisotropy, Δs ≡

√
〈(Pmax,s/P⊥,s)2〉 − 1, where Pmax,s is the

maximum eigenvalue of the local thermal pressure tensor Ps ,
and P⊥,s is the average of the other two eigenvalues associated
with the two directions perpendicular to that of Pmax,s . Under
the assumption of small pressure anisotropy (Ps ≈ P⊥,s ), we
have Δs ≈ 〈ΔPs〉 / 〈Ps〉, where ΔPs ≡ Pmax,s − P⊥,s repre-
sents the free-energy density stored in pressure anisotropy. Our
definition of pressure anisotropy is different from the commonly
used definition in terms of P⊥ and P‖ based on a preferred
magnetic-field direction. In the absence of magnetic fields, we
identify the local maximum thermal-pressure component and use
it as a preferred direction.

Finally, the third dimensionless quantity is the inverse plasma
beta, β−1

s , where βs ≡ 〈Ps〉 / 〈B2/8π〉 and B(t ,x ) is the
magnetic-field strength. It represents the magnetic energy density
normalized to the thermal pressure and is thus the main
quantitative characteristic we use to diagnose the growth of
magnetic fields. It is effectively zero when the magnetic field
is initially negligible. By analyzing the evolution of M 2

s , Δs ,
and β−1

s , we learn the energy partition among different energy
reservoirs. In the following subsections, we describe distinct stages
of the evolution as the system is continuously driven by the
external shear force.

*This study investigates the kinetic effects that spontaneously emerge on top of a large-
scale shear flow. The only purpose of the external force is to provide such a macroscopic
flow. To achieve this, we consider a gravity-type body force that leads to the same body
acceleration a0 for both species and drives a hydrodynamic flow. One can alternatively
consider the body force applied with equal magnitude to both species. In this case,
electrons will more readily respond to the force because of their smaller inertia, resulting
in an electric current and electromagnetic fields. These detailed dynamics occur on the
electron plasma-oscillation time scale and are not considered in this paper. The choice
between the same body acceleration or the same body force for the two species does not
affect the comparison of our theory to the numerical simulations we performed, as the
latter consider a pair plasma (in which case both approaches are equivalent).
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Fig. 1. Contours of fs (Eq. 2) integrated over vz at different moments of time. The location x = 0 with maximum shear is chosen, and â0 = 0.2π2. The distribution
is distorted by the phase mixing of momentum.

Unmagnetized Stage. In the unmagnetized stage, the electro-
magnetic fields are negligible. The system can thus be described
by the following nonrelativistic Vlasov equation for each species,
where the only acceleration is supplied by the external force:†

∂fs
∂t

+ vx
∂fs
∂x

+ a0 sin
(
2π

L
x

)
∂fs
∂vy

= 0. [1]

This unmagnetized system is one-dimensional in position space,
and so the convective term, v · ∇fs , reduces to vx∂x fs . The exact
solution of Eq. 1 can be obtained by the method of characteristics:

fs(t , x , v) = fM,s

(√
v2
x + v2

z + ṽy
2

)
,

ṽy ≡ vy +
La0
2πvx

[
cos

(
2π

L
x

)
− cos

(
2π

L
(x − vx t)

)]
.

[2]

Here, fM,s is the initial Maxwellian distribution for each species
fs(0, x , v) = fM,s(|v |) ≡ n0s/(

√
2πvths)

3 exp(−|v |2/2v2
ths),

where n0s is the initial density. Under the normalization
t̂ = tvths/L, v̂ = v/vths , x̂ = x/L, and â0 = a0L/v

2
ths , Eq. 1

can be reduced to the dimensionless form ∂t̂ fs + v̂x∂x̂ fs +
â0 sin(2πx̂ )∂v̂y fs = 0; this form shows that â0 is the only
dimensionless free parameter controlling the overall dynamics.
In this solution, fs remains Maxwellian in vz , and, therefore, one
of the eigenvectors of the local pressure tensor Ps is fixed in the

†No charge separation, and thus no electrostatic field, is expected if both species have the
same body acceleration. Indeed, the solution for fs (Eq. 2) does not give rise to any charge
separation, consistent with the assumption.

z-direction with its corresponding eigenvalue Pzz ,s . The other
two eigenvectors corresponding to the largest and smallest
eigenvalues of Ps , denoted as Pmax,s and Pmin,s , are thus in
the x–y plane.

In Fig. 1, we show a visualization of the evolution of fs
(Eq. 2) integrated over vz in the vx -vy phase space for the choice
â0 = 0.2π2 ≈ 2. The solution is plotted at x = 0, where the
maximum shear occurs. The sinusoidal acceleration a gives rise
to an x-dependent bulk flow U s = Us(t , x )ŷ . The transport of
this nonuniform y-momentum is carried by particles streaming
in the x direction with their thermal speeds. This gives rise to
the phase-mixing feature indicated in Fig. 1 by the distortion
of fs in velocity space. The anisotropy developed in fs leads to
the generation of thermal pressure anisotropy, Δs(t)—a purely
kinetic phenomenon, which would be absent if the plasma were a
collisional fluid.

To obtain the early-time behavior, we can take the second-order
Taylor expansion of Eq. 2 for ε≡ tvths/L	 1; the obtained fs
at positions with maximum shear is found to be a multivariate
normal distribution and becomes tri-Maxwellian in the coordinate
system, in which the axes are along the principal axes of Ps

(SI Appendix, section 1A). In this limit, the evolution of Ms(t)
and Δs(t) are:

Ms(t) =
1√
2
â0

tvths

L
+O(ε3), [3]

Δs(t) =
3π

2
√
2
â0

(
tvths

L

)2

+O(ε3). [4]
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Both Ms and Δs increase on the thermal-crossing time scale,
L/vths , of their corresponding species. Up to second order in ε, the
bulk flow velocity, obtained by taking the first moment of Eq. 2, is
simply Us(x , t)ŷ = a(x )t—identical to the fluid-level behavior
for constant acceleration by a constant external force.

At later times, the Mach number Ms (calculated by taking the
first moment of Eq. 2) asymptotes to a constant value; this occurs
due to phase mixing of the particles in the x direction. One can
estimate the steady-state value of Ms by noting that the average
particle will accelerate until it drifts across the characteristic length
scale of the box in the x direction and the local sign of the
external force changes. This takes a time ≈L/(2πvths), during
which the particles will accelerate to a characteristic bulk flow
speed of U sat

s ≈ a0L/(2πvths).‡ This provides us with a saturated
Mach number for each species of

M sat
s ≡ U sat

s

vths
≈ a0L

v2
ths2π

=
â0
2π

. [5]

We denote by τ0 (≈ 1/2π) the moment of time that M sat
s is

reached, normalized to L/vths . Eq. 5 indicates that the dimen-
sionless parameter â0 represents the characteristic Mach number
of the system.

This estimation of M sat
s is predicated on the fact that the

electromagnetic field remains negligible up until the saturation
time. Realistically, however, the Weibel instability will be triggered
by the developing pressure anisotropy and generate magnetic fields
strong enough to affect the evolution of the background flow
and the pressure anisotropy on a short time scale (which we
refer to as τlin and introduce in the next subsection). In most
astrophysical environments, the time scale for the growth of the
Weibel magnetic fields is asymptotically small compared to the
fluid time scale (L/vths )—we refer to this as the asymptotic
regime. In this regime, the unmagnetized solution (Eq. 2), which
does not contain the physics of Weibel instability, is only valid
at very early times (on the fluid time scale) of the evolution
tvths/L	 1, during which the expressions for Ms(t) and Δs(t)
(Eq. 3 and Eq. 4) are good approximations.

Linear Weibel Stage. To describe the rapid growth of Weibel
magnetic fields on the slowly evolving (driven shear-flow) back-
ground, we use the unmagnetized solution, Eq. 2, as the back-
ground equilibrium, based on which we perform linear theory of
the Weibel instability. Because the growth rate of this instability
is proportional to the plasma frequency, ωps , of each species, the
electron Weibel instability is much faster than that of ions. We
thus consider only the electron Weibel instability, triggered by
the electron pressure anisotropy Δe (the following discussion,
and, in particular, the derived scaling laws, also applies to an
electron–positron plasma); the interested reader is referred to
SI Appendix, section 1 for a detailed derivation.

‡The effect of phase mixing on the saturation of the flow can be interpreted as an effective
viscosity, as we now describe. In the absence of the imposed shear flow, the particles in the
collisionless, unmagnetized plasma that we consider would have an infinitely long mean
free path. However, in the presence of the shear flow, when particles travel a distance on
the order of the characteristic length of the gradient of the shear flow (L/2π), the accelera-
tion exerted on them changes sign and thus changes the direction of particle motion along
the y axis. This is similar to a particle-scattering process, setting an effective mean free path
λmfp � L/2π and giving rise to an effective viscosity νeff,s � vthsλmfp for the fluid of both

species. The associated viscous force on the bulk flow, Fν,s(t, x) � msνeff,s∇2Us(t, x)ŷ ,
is initially small, but increases with Us . Eventually, it becomes comparable to the external
force on the bulk fluid, Fν,s(t, x) � Fext,s(x), causing the bulk flow to stop accelerating.
This force-balance condition, combined with the estimation of λmfp and νeff,s , leads
to Eq. 5.

In the asymptotic regime, the magnetic growth rate, set by the
most unstable mode, is found to scale as

γB ≡ d lnB

dt
∼Δ3/2

e ωpe
vthe

c
, [6]

corresponding to the wavenumber

kw 
Δ1/2
e /de , [7]

where de ≡ c/ωpe is the electron skin depth. These scalings are
the same as the canonical electron Weibel instability assuming a
bi-Maxwellian plasma (33).

Given the time-scale separation γB � ∂tΔe/Δe ∼ ∂tγB/
γB ∼ vthe/L, we can integrate Eq. 6 to obtain the evolution of
the magnetic field. Assuming a constant mean thermal pressure
of the system, the time evolution of β−1

e (representing magnetic
energy) can then be written as

β−1
e 
 β−1

0 exp

[
â
3/2
0

2

(
tvthe

L

)4
L

de

]
, [8]

where β−1
0 is determined by the initial magnetic-field perturba-

tion at kw. This equation features an important length ratio,L/de ;
the length-scale separation L/de � 1 is equivalent to the time-
scale separation ω−1

ps (c/vthe)	 L/vthe , the same as the sepa-
ration required to perform this linear theory (γB � ∂tΔe/Δe )
with a factor of Δ3/2

e difference.
Because of the superexponential growth of the Weibel insta-

bility in our system, nonlinear effects occur very soon after the
exponent in Eq. 8 becomes of order unity (with logarithmic
corrections due to the initial value of βe and the exact number
of e-folds). At this point, the increasingly rapid depletion of the
free energy by the Weibel instability balances its supply through
phase mixing, whereupon Eq. 8 is no longer valid. We denote this
moment of time corresponding to the end of the linear Weibel
stage, normalized to L/vthe , as τlin. At τlin, the exponent in Eq. 8
reaching order unity yields the scaling τlin ∼ (L/de)

−1/4
â
−3/8
0 .

The dependence of Δe on L/de and â0 follows from Eq. 4:

Δe(τlin)∼
(

L

de

)−1/2

â
1/4
0 , [9]

which is essential for estimating the saturation level of Weibel
magnetic fields, as we now explain.

Saturation of Weibel Instability. At τlin, Δe reaches its maxi-
mum value, and the width of the forming Weibel filaments (the
wavenumber of the Weibel modes) is determined by the value of
Δe(τlin) (Eq. 7). After τlin, the electron Weibel instability enters
its nonlinear stage, during which we expect the anisotropy Δe ,
and thus the growth rate γB , to decrease rapidly as the free energy
is converted into magnetic energy. However, the length scale of
the Weibel filaments should not change significantly in this stage,
instead remaining similar to that set by Δe(τlin). This is because
the magnetic growth rate during the nonlinear stage is small
compared to that of the linear stage. Although the wavenumber
of the most unstable mode decreases together with Δe , we do
not expect it to acquire much energy (an expectation confirmed
by our simulation results discussed in Numerical Experiment).
Accordingly, the magnetic-energy-containing scale should remain
similar to that achieved at the end of linear stage, when the
magnetic growth rate is maximal and the Weibel filaments are fully
formed. Other processes that can change the length scale of Weibel
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fields, such as the tilting of filaments due to the background
shear flow and the coalescence of filaments, occur on time scales
much longer than the inverse Weibel growth rate and can thus be
neglected before Weibel saturation occurs.

As the magnetic field becomes stronger, it affects the trajectories
of particles and gradually magnetizes them. Eventually, the elec-
tron Larmor radius, ρe , becomes comparable to the length scale of
the magnetic field, k−1

w , at which point electrons are “trapped” in
the Weibel filaments. This particle-trapping condition, kwρe ∼ 1,
is commonly believed to lead to the saturation of the electron
Weibel instability (e.g., refs. 33 and 49). It follows from Eq. 7
and Eq. 9 that the dependence of kwde on L/de and â0 satisfies

kwde ∼
(

L

de

)−1/4

â
1/8
0 . [10]

Thus, the dominant Weibel wavelength, λw = 2π/kw, is a hybrid
scale, intermediate between L and de :

λw ∼ L1/4d3/4
e â

−1/8
0 . [11]

The average electron Larmor radius can be estimated as ρe 

β
1/2
e de ; Together with Eq. 7, the trapping condition, kwρe ∼ 1,

provides the estimate of the value of β−1
e at saturation β−1

e,sat ∼
Δe(τlin). Combined with Eq. 9, this expression becomes

β−1
e,sat ∼

(
L

de

)−1/2

â
1/4
0 . [12]

Eq. 11 and Eq. 12 provide the main deliverable of this study—the
scaling dependence of the length scale [∝(kwde)

−1] and ampli-
tude (∝β−1

e,sat) of the saturated seed magnetic fields on the two
key dimensionless parameters: â0 and L/de . The â0 parameter is
determined by the shear rate of the system, and L/de quantifies
the separation between fluid and kinetic dynamics in the system.

Our model is predictive in the asymptotic regime of large-scale
separation, in which the short-time (tvth/L� 0.1) approximation
of the unmagnetized solution (Eqs. 3 and 4 and Eqs. 6 and
7) must be valid during the growth of the Weibel seed fields
(at tvth/L
 τlin), i.e., τlin � 0.1. (We found that the deviation
between the second-order expansion and the full solution becomes
noticeable at tvth/L≈ 0.1.) The weak scaling dependence of
τlin ∼ (L/de)

−1/4 then suggests that a significantly larger-scale
separation, L/de � 104, is required to access the deep asymptotic
regime, as pertains to astrophysical environments. In regimes
lacking such sufficient scale separation—e.g., systems achievable
in numerical simulations and laboratory laser experiments—our
model is unable to provide definite scaling laws. This is be-
cause systems with relatively small L/de lack sufficient time-
scale separation; i.e., at the moment when the Weibel mag-
netic fields are rapidly growing, fs already deviates significantly
from a Maxwellian distribution and possesses a complex form
(e.g., Fig. 1, Lower). Therefore, explicit analytical expressions for
Δe , γB , and kw do not exist in those nonasymptotic regimes.
In order to apply our model to systems with finite values of
L/de , and to test it with direct numerical simulations, we fol-
low the same theoretical arguments used in this section, while
setting undetermined power-law indices for the counterparts of
Eqs. 4–7, based on which we derive the scalings of kw and β−1

e,sat
in the nonasymptotic regime (as functions of undetermined expo-
nents). The detailed derivation is shown in SI Appendix, section 2,
and its numerical validation is shown in SI Appendix, section 4.

Numerical Experiment

Simulation Setup. To test our model, we perform first-principles
particle-in-cell simulations using the code ZELTRON (50) of
an initially unmagnetized plasma driven by an external shearing
force. Due to the high computational cost inherent to this prob-
lem, our simulations are performed using an electron–positron
plasma (s ∈ {e, p}) . In the case that the external force causes the
same body acceleration to both species, giving rise to a hydrody-
namic flow, the evolution of an electron–positron system should
be similar to an electron–proton plasma within the characteristic
electron time scale (before the subsequent ion Weibel instability
becomes active). In the remainder of the paper, we drop the
subscript s and use vth and ωp to represent thermal velocity
and plasma frequency for both electrons and positrons. We set
the initial temperatures to θ ≡ T/mec

2 = 1/16 (so that the
thermal motions of the particles are subrelativistic). The thermal
velocity is vth ≡

√
T/me =

√
θc. The system is initialized with

uniform Maxwellian distributions and no electromagnetic fields
and is continuously driven by an external mechanical force F ext =
mea0 sin (2πx/L)ŷ . We parameterize the acceleration amplitude
a0 = S0(π

2θec
2/L), where S0 is a parameter we control in the

simulations and is related to the normalized forcing amplitude as
S0 = â0/π

2. We analyze in detail one single representative case:
a 3D run with L/de = 128 and S0 = 0.2. These values of L/de
and S0 allow us to have both a separation between the fluid-scale
and Weibel dynamics and a long enough time interval to test our
predictions for the unmagnetized stage.

Time Evolution of Key Parameters. The measured Mach number
M, pressure anisotropy Δ, and plasma beta β are identical be-
tween the two species and are therefore written without a species
subscript. Fig. 2 compares the time evolution of M 2, Δ, β−1,
and γB/ωp. The evolution of the system can be divided into
four stages: the initial unmagnetized stage, the linear Weibel stage
(tvth/L� τlin), the nonlinear Weibel stage (τlin < tvth/L≤ τsat),
and a prolonged stage after the saturation of Weibel instability
(tvth/L> τsat) . We describe each distinct stage qualitatively to
reveal the physical picture of the whole process.
Growth of pressure anisotropy during the unmagnetized stage.
In the unmagnetized stage, the measured evolution of M (t) and
Δ(t) (shown in Fig. 2) agrees reasonably well with the analytical
prediction obtained by numerically integrating the exact solution
of fe in Eq. 2 (shown by the dotted curves). The slight departure
from the prediction at very early times is due to numerical noise
from the finite number of particles. The development of thermal
pressure anisotropy Δ is due to the phase mixing of particles

Fig. 2. Time evolution of M2, Δ, β−1, and γB/ωp. Dotted lines show the
analytical results calculated with the unmagnetized solution Eq. 2.
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Fig. 3. Visualization of magnetic-field amplitude at τlin (Left), τsat (Center), and the end (Right) of the simulation.

and is a purely kinetic feature of the collisionless plasma. We
have predicted that, in an unmagnetized plasma, the bulk flow
velocity, and thus M, should saturate due to phase mixing. This is
indeed observed in the numerical results as the M 2 curve reaches
a plateau after τ0 (≈ 0.25; dotted vertical line).
Growth of magnetic fields during the linear Weibel stage. With
the development of pressure anisotropy (Δ), the magnetic fields,
and thus β−1, start to grow rapidly as a result of the Weibel insta-
bility. Fig. 2 shows that in this linear Weibel stage, the measured
magnetic growth rate, γB ≡ d lnB/dt , also increases with time,
suggesting a superexponential growth of magnetic fields. Magnetic
fields with clear Weibel-type filamentary structures emerge on
∼de scales from the initial random noise (Fig. 3, Left).

We identify a noteworthy moment of time, τlin (≈0.45; vertical
dashed line in Fig. 2), when the system’s dynamics change in a
qualitative manner. This is the time at which both Δ and γB reach
their maxima and then start a sharp downturn, while M 2 deviates
from the plateau and starts to increase again. The β−1 continues
to grow, but at a relatively smaller rate. At τlin, both Δ and
M 2 begin to depart from the (unmagnetized) analytical solution.
These observations suggest that τlin is the moment at which the
Weibel magnetic fields have reached a magnitude sufficient to
affect the dynamics of the plasma—i.e., nonlinear effects become
important.

Power spectra of fluctuations (integrated isotropically in
wavenumber [k ] space) at τlin are shown in Fig. 4, Left. The
power spectrum of the bulk flow, K (k), is concentrated at
the system scale where the flow is driven. In contrast, the
power spectrum of the magnetic field, M (k), peaks at ∼de
scale, consistent with the structure of the magnetic filaments

shown in Fig. 3, Left. We define the magnetic-energy-containing
scale (shown by the blue vertical dashed line in Fig. 4) as
ξM ≡

∫
dk k−1M (k)/

∫
dk M (k), which is expected to relate to

the wavenumber of the most unstable Weibel modes as kwξM ∼ 1.
The dashed magenta curve shows the probability density function
(PDF) of electron Larmor radius, ρe ≡mevthc/(eB), where
vth and B correspond to the local temperature and magnetic
field on the numerical grid. The local temperature is calculated
by averaging the three diagonal elements of the local thermal
pressure tensor. At τlin, the plasma remains unmagnetized as the
Larmor radii of the majority of particles are generally of order
L/2π, substantially larger than the scale of the magnetic field ξM .
The evolution of the magnetic spectrum is shown in Fig. 5. In
the linear Weibel stage, the amplitude of the spectrum increases
rapidly, while its peak has a slight shift to the larger wavenumbers,
consistent with the increase of Δ during this stage.
Saturation of Weibel instability during the nonlinear stage. After
τlin, the Weibel instability enters its nonlinear stage, in which the
Weibel magnetic fields are strong enough to affect the particle
trajectories and affect the overall plasma dynamics. The pressure
anisotropy Δ decreases as its free energy is depleted by the Weibel
instability, resulting in a drop in γB (Fig. 2). The nonlinear Weibel
instability saturates at the moment of time that we denote as
τsat (≈0.61) . At this time, β−1 saturates (at the value that we
call β−1

sat ), γB drops to a minuscule value, and Δ reaches its
local minimum because the depletion of free energy in pressure
anisotropy stops as Weibel instability saturates. We use the local
minimum of Δ in simulations to identify τsat.

The configuration of magnetic fields at τsat is shown in Fig. 3,
Center. The filamentary structures become more prominent with

Fig. 4. Magnetic (blue) and kinetic (orange) energy spectra at τlin (Left), τsat (Center), and the end (Right) of the simulation. The electron skin depth de (dotted
vertical lines), magnetic energy integral scale ξM (dashed vertical lines), and the PDF of Larmor radius ρe (magenta dashed curve) are shown for reference.
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Fig. 5. Time evolution of magnetic energy spectrum.

stronger field amplitudes, and the filaments become progressively
tilted due to the large-scale shear flow along the y axis. The spectra
during this stage are shown in Fig. 4, Center. The characteristic
scale of the magnetic field ξM has increased by about 50% as
a combined effect of the decreasing unstable wavenumber due
to the decreasing Δ and the tilting of filaments. The relatively
modest increase in ξM justifies our assumption in Theory that
the length scale of magnetic fields at τsat is similar to that at τlin.
In contrast, the magnetic energy has increased by more than an
order of magnitude between τlin and τsat. This rapid growth of the
magnetic field’s amplitude and the slow change of its characteristic
length scale during the nonlinear Weibel stage are illustrated in
Fig. 5. Next, we observe that some bulk kinetic energy develops
near the scale of the magnetic field (kinetic scales), corresponding
to bulk motions of the filaments. However, the energy of these
motions is subdominant to the magnetic energy at those scales.
No strong turbulent cascade develops, and the bulk flow remains
concentrated at the macroscopic system scale.

The Larmor radii of a significant fraction of particles at τsat
become smaller than the scale of magnetic fields ξM , meaning that
those particles are magnetized by the Weibel magnetic fields. The
magnetization of the plasma is also reflected in the trajectories of
particles. Fig. 6 shows a representative trajectory of an arbitrarily

Fig. 6. Typical trajectory of a particle. The red star indicates the particle’s
position at τsat. The dotted lines indicate how the particle transits the periodic
box.

chosen particle. The particle initially streams freely along the x
and z directions, while being pushed by the external force in the
±y direction. After tvth/L= τsat, the particle is trapped in the
magnetic filaments in the y and z directions, while its transport
in the x direction is suppressed. This particle trapping leads to
the suppression of the y-momentum transport in the x direction,
and hence to a dramatic reduction of phase mixing. As a result,
the Mach number M starts to increase again rapidly around this
time, driven by the external force, while the pressure anisotropy
Δ remains fluctuating at the same level because the free energy
stops being replenished by phase mixing. The above evidence from
spectra and particle trajectories suggests that the saturation of the
Weibel instability that we observe is caused by the trapping of
particles—i.e., it occurs when the condition kwρe ∼ 1 is met—a
standard criterion widely considered by previous studies (e.g., refs.
33 and 49).
Long-term evolution of Weibel magnetic fields. After the satu-
ration of the Weibel instability, on time scales of order L/vth,
β−1 fluctuates around β−1

sat , M keeps increasing, and Δ starts to
increase again due to the external forcing (Fig. 2). The saturated
magnetic filaments are tilted and stretched by the shear flow until
they become aligned in the direction of the shear flow (along the
y axis), as shown in Fig. 3, Right. Alongside their interaction with
the shear flow, the magnetic filaments also undergo a prolonged
stage of coalescence with each other (51–53), during which the
coherence length of magnetic fields increases. This can be seen
from the shift of the power spectrum of magnetic fields to smaller
wavenumbers (shown in Fig. 5). From tvth/L= τsat to the end of
simulation (with a time interval of about 1.6L/vth), the energy-
containing scale of the magnetic field grows to approach the
system scale, at which magnetic energy accumulates. Fig. 4, Right
shows the spectra at tvth/L= 2.23. At this late time, the bulk
kinetic energy increases at the scale of filaments, but remains sub-
dominant, except at the system scale. Because of the combination
of the slight increase of magnetic energy due to the transient
inductive amplification by the shear flow and the growth of
the magnetic-field length scale ξM through filament coalescence,
more particles become magnetized (shown by the PDF of Larmor
radii compared to the scale of ξM ) .

The increasing magnetization can also be quantified by the
alignment between the eigenvectors of the pressure tensor P and
the local magnetic-field unit vector b̂ . We denote P̂min, P̂zz ,
and P̂max as the three eigenvectors corresponding to the three
eigenvalues Pmin < Pzz < Pmax of P. Fig. 7 shows the PDFs of
the alignments |P̂ eigen · b̂|, where P̂ eigen ∈ {P̂min, P̂zz , P̂max},
at the end of the simulation (tvth/L= 2.23) . The magnetic field is
primarily aligned with P̂min, while the PDFs of its alignment with
the other two directions are very broad and similar to each other.
These statistics result from the magnetization of the particles,
manifested via the approximate conservation of the first adiabatic
invariant μ≡ P⊥B/nB , where P⊥B is the thermal pressure per-
pendicular to the magnetic field. As B increases, the conservation
of μ leads to a biased increase of P⊥B , and so the direction
of the smallest pressure should correspond to the magnetic-field
direction. This is displayed by the measured large |P̂min · b̂|.
Magnetized plasmas are approximately gyrotropic perpendicular
to the magnetic field, consistent with the similar statistics of
|P̂zz · b̂| and |P̂max · b̂|. The magnetization of a significant
fraction of the plasma particles is crucial for the coalescence
of seed-field filaments, where magnetic reconnection is essential
(51–53), and for the further amplification of the seed fields by the
turbulent dynamo.
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Fig. 7. PDF of the alignment of magnetic-field direction b̂ with the thermal-
pressure eigenvectors P̂eigen ∈ {P̂min, P̂ zz, P̂max}, measured at tvth/L = 2.23.

Scaling Dependence of Saturated Seed Fields. The numerical
results from the fiducial run show qualitative agreement with
our model at each distinct stage. In order to test our model
quantitatively, parameter scans on the two key parameters, S0
and L/de , are required. As we discussed at the end of Theory,
a large-scale separation (L/de � 104) is necessary to access the
deep asymptotic regime and test the predictive scalings (Eq. 5 and
Eqs. 9–12) of our model. This is difficult to achieve because of
the associated large computational cost, even for two-dimensional
(2D) domains. Therefore, we perform parameter scans in the
nonasymptotic regime (both in 2D and 3D) and compare those
numerical results with a modified (nonasymptotic) version of
our theory (SI Appendix, section 2). The detailed study of the
parameter scans is reported in SI Appendix. The simulation details
are described in SI Appendix, section 3. The analysis of the scaling
laws of key quantities (Δ, β−1, and γB ) at critical moments in
time (τlin and τsat) is shown in SI Appendix, section 4, and a time-
scale analysis justifying the validity of our numerical results to
support our theory is performed in SI Appendix, section 5.

The highlight of these runs is the scaling dependence of the
saturated inverse beta, β−1

sat , on L/de and S0. Depending on
whether the Weibel instability occurs before or after the bulk
flow reaches the plateau (i.e., whether τlin is smaller or larger than
τ0), the nonasymptotic range can be divided into the preplateau
regime (for L/de � 200) and the postplateau regime (for L/de �
200) . In our modified theory, we expect β−1

sat ∼ (L/de)
−4/3 in

the preplateau regime and β−1
sat ∼ (L/de)

−1/2 in the postplateau
regime. This is directly confirmed by the numerical results shown
in Fig. 8. The dependence on S0 is more difficult to test in
our numerical results. For runs with varying S0, the background
evolution of M and Δ for the unmagnetized plasma differs, and
the transition between the preplateau and postplateau regimes
occurs at different values of L/de , rendering the application of

Fig. 8. Saturated inverse beta β−1
sat versus L/de for 2D and 3D runs with

varying L/de and fixed S0 = 0.2.

our scaling theory nontrivial. We are thus only able to predict the
dependence of β−1

sat on S0 for systems with asymptotically large
L/de : β−1

sat ∼ S
1/4
0 (Eq. 12). Although we are not able to perform

simulations deep in this asymptotic regime, a clear trend is shown
in Fig. 9 that the measured scalings approach the S 1/4

0 prediction
with increasing L/de .

In summary, the good quantitative agreement between the
numerical results (shown in SI Appendix, section 4) and the
predicted scalings in the nonasymptotic regime (derived in
SI Appendix, section 2) supports our analytical model and its
main deliverable (Eq. 11 and Eq. 12) in the asymptotic regime.

Discussion

This paper provides a demonstration and quantitative description
of the spontaneous magnetization of collisionless plasma under
the action of a shear flow. The primary kinetic instability that
produces the seed magnetic fields is identified as the Weibel
instability. We predict that in the regime with an asymptotically
large time- and length-scale separation, quantified by L/de (ratio
of system scale to electron skin depth), the saturated seed magnetic
fields are expected to have a characteristic length scale λw ∼
L1/4d

3/4
e â

−1/8
0 (Eq. 11) and lead to a saturated inverse beta

β−1
e,sat ∼ (L/de)

−1/2â
1/4
0 (Eq. 12), where â0 is the normalized ac-

celeration driving the macroscopic shear flow. The relatively weak
(L/de)

−1/2 dependence of β−1
e,sat implies that in very large astro-

physical systems, the Weibel instability generates much stronger
seed fields than those thought to be produced by the Biermann
battery, for which β−1

sat ∝ L−2 (54, 55). After saturation, the
Weibel filaments undergo long-term evolution that sees their scale
increase gradually toward the system size through coalescence.

The Weibel instability has been historically analyzed within
the context of gamma-ray bursts (GRBs) in counter-streaming
flows (37, 41, 42) or collisionless shocks (36, 38–40), in which
the external drive is strong and/or the Mach number is high.
In this work, however, we consider a weakly driven, large-scale
shear flow. This constitutes an important step in establishing
a connection with a broader set of astrophysical applications
beyond shock physics, such as low-Mach-number turbulence in
galaxy clusters and in the IGM. The production of magnetic
fields has also been studied in the configuration of counter-
streaming flows through the kinetic Kelvin–Helmholtz instability
(22–25) and of differential rotation through electron instabilities
(56, 57). By contrast, rather than initialize a configuration that
is supercritical to the instabilities of interest, we instead start
with a stable equilibrium and drive the system gradually toward
becoming marginally unstable to the relevant kinetic instability (in
this case, the Weibel). Despite the drastic difference of physical
regimes, the Weibel instability in a large-scale shear flow shares
qualitative similarities to that in the context of GRBs, such as the
saturation due to plasma magnetization (particle trapping) and the
subsequent inverse cascade through filament coalescence (58).

It is important to note that ion kinetic physics is not taken
into account in this study. With the development of ion thermal
pressure anisotropy, the ion Weibel instability can, in principle,
also be triggered and produce seed magnetic fields on a time scale
∼ω−1

pi and a length scale ∼di , where di = c/ωpi is the ion skin
depth. However, when the ion Weibel instability becomes active,
the electron Weibel instability should already be saturated and
the electrons already magnetized. In this high-β system, various
electron-pressure-anisotropy instabilities are expected to play a
role [e.g., electron firehose and whistler (59)], and it is not clear
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Fig. 9. Saturated inverse beta β−1
sat versus S0 for 2D and 3D runs with

varying S0.

how these electron-scale instabilities might interplay with the ion
Weibel instability [or, for that matter, subsequent ion-pressure-
anisotropy instabilities, like firehose and mirror (60–62)]. We
defer the inclusion of ion kinetic physics to future work.

In the meantime, it is worth applying our results to an actual
astrophysical system, if only suggestively. For example, in the hot
and dilute ICM, the scale of observed macroscopic turbulent
motions is L� 10 kpc, while the electron skin depth may be
estimated from the observed electron density as de ∼ 10−12 pc.
This gives a typical scale separation of L/de � 1016. For this
ratio, Eq. 12 leads us to expect the saturated seed magnetic
fields produced by the electron Weibel instability to give βsat ∼
(L/de)

1/2 ∼ 108. Under typical cluster conditions, this value
of βsat corresponds to an ∼0.1 nG magnetic field. Despite the
relatively small scale of this field, its amplitude is notable because
the Weibel’s main competitor, the Biermann battery, produces
fields that are much weaker, at ∼10−20 G under typical cluster
conditions (15, 63). Interestingly, configurations that give rise to
Biermann fields—misalignment of plasma density and pressure
gradients—have been shown to be unstable to the Weibel insta-
bility as well; the ensuing strong small-scale seed fields are radically
different from their more conventional Biermann origin (64, 65).

Despite their initially small (electron) scales, we argue that
the saturated Weibel seed fields—whose morphology is that of
flux ropes—can inverse-cascade to larger scales through magnetic
reconnection (51–53, 66–68). Although a substantial fraction of
the magnetic energy is released in this process and converts into
plasma’s kinetic energy, the plasma heating effect is not significant
due to the high plasma β of the system. This inverse cascade
should reach the scale at which the reconnection time scale of the
seed fields becomes comparable to the nonlinear eddy turnover
time scale of the turbulent flow. Above this critical scale, the
coalescence of Weibel seed fields may be expected to be replaced
by amplification of those fields through the turbulent dynamo.
The feasibility of this scenario will be addressed in a separate
publication.

We note that another important alternative origin of seed
magnetic fields is the galactic origin, whereby the seed magnetic
fields were first produced in stars or accretion disks in galaxies
and then injected into the early ICM or IGM by galactic winds
(29–31). This conjecture is supported indirectly by the observa-
tion of early enrichment of galaxy clusters by metals (69), but
faces a challenge in dispersing these fields throughout the cluster
volume. We note that the galactic origin of seed fields and the
Weibel origin explored in this work are not mutually exclusive.
The main deliverable of this work is that there is, in fact, no need
to resort to any specific astrophysical process to generate seed fields
and spread them into the ICM and IGM: Simple (and ubiquitous)
shear flows are sufficient to magnetize cosmic plasmas.

This work provides the first step in the building of a paradigm
for understanding magnetogenesis in the Universe.§ It quantita-
tively describes the emergence and evolution of seed magnetic
fields that arise self-consistently from generic motions (shear
flows) that can also support a turbulent dynamo. Future inves-
tigations are required to determine how such seed fields can be
amplified by astrophysical turbulence to dynamically important
levels on cosmologically short time scales (71). This paradigm
will provide a fully self-consistent explanation for the origin and
prevalence of cosmic magnetism—one of the most important
science drivers of upcoming radio telescopes, such as the Square
Kilometer Array.

Data Availability. HDF5 and txt replication data have been deposited in the
Harvard Dataverse (https://doi.org/10.7910/DVN/OMQUDX) (72).
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