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Abstract

Our understanding of human hepatocellular carcinoma (HCC)
development and progression has been hampered by the lack of in
vivo models. We performed a genetic screen of 10 oncogenes and
genetic mutations in Fah-ablated immunodeficient mice in which
primary human hepatocytes (PHHs) are used to reconstitute a
functional human liver. We identified that MYC, TP53R249S, and
KRASG12D are highly expressed in induced HCC (iHCC) samples. The
overexpression of MYC and TP53R249S transform PHHs into iHCC in
situ, though the addition of KRASG12D significantly increases the
tumorigenic efficiency. iHCC, which recapitulate the histological
architecture and gene expression characteristics of clinical HCC
samples, reconstituted HCC after serial transplantations. Tran-
scriptomic analysis of iHCC and PHHs showed that MUC1 and FAP
are expressed in iHCC but not in normal livers. Chimeric antigen
receptor (CAR) T cells against these two surface markers efficiently
lyse iHCC cells. The properties of iHCC model provide a biological
basis for several clinical hallmarks of HCC, and iHCC may serve as
a model to study HCC initiation and to identify diagnostic bio-
markers and targets for cellular immunotherapy.
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Introduction

Primary liver cancer (PLC) has the second-highest cancer mortality rate

worldwide (Broutier et al, 2017). The development of PLC is invariably

associated with liver damage caused by hepatitis B virus (HBV) infec-

tion, alcohol abuse, or toxin exposure, sequentially resulting in liver

cirrhosis, dysplastic lesions, and finally invasive liver carcinoma

(Cancer Genome Atlas Research Network. Electronic address wbe &

Cancer Genome Atlas Research N, 2017; Gao et al, 2019). Based on its

histopathological features, PLC may be mainly classified as HCC,

cholangiocarcinoma (CC), hepatoblastoma (HB), and combined

hepatocellular-cholangiocarcinoma (CHC) (Broutier et al, 2017).

The cellular origin and molecular genetics of human PLC remain

poorly understood due to the lack of suitable models.

Genomic analysis has identified frequently mutated genes,

including TP53, KRAS, CTNNB1, IDH1, IDH2, and IL6ST in PLC sam-

ples (Totoki et al, 2014; Schulze et al, 2015; Cancer Genome Atlas
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Research N, 2017), indicating essential roles of these genes in PLC

development. There are six hotspot mutations of TP53 at R175,

G245, R248, R249, R273, and R282, identified in various primary

and metastatic human cancers. Notably, these TP53 mutants exert

their dominant-negative effects of wild-type TP53 and possess gains

of new functions (Kern et al, 1992; Brosh & Rotter, 2009; Zhao et al,

2019, 2020). TP53R249S is highly associated with HCC and the only

hotspot mutant that has been identified among 30% of HCCs that

harbor TP53 mutations (Hsu et al, 1991; Hussain et al, 2007; Sladky

et al, 2020). Hotspot mutations of KRAS such as KRASG12D and

KRASG13D are commonly detected in PLC samples (Hunter et al,

2015). Activation of KrasG12D and deletion of p53 induce the devel-

opment of HCC and CC in a genetically engineered mouse model

(O’Dell et al, 2012). Genomic amplifications in MYC have been iden-

tified in 6–25% of primary human cancers (Poon et al, 2006;

Schlaeger et al, 2008). Moreover, constitutive overexpression of

c-Myc in the liver of p53-deficient mice promotes hepatocarcinogen-

esis (Klocke et al, 2001). These studies reveal that PLC development

results from crosstalk of multiple genetic alterations. However,

whether these genetic lesions can induce tumorigenesis of PHHs in

situ on mouse models has not been investigated.

Humanized mouse models offer considerable advantages in the

study of immunology, infectious diseases, regenerative medicine,

and cancer (Shultz et al, 2007). Humanized livers have been recon-

stituted with PHHs in immunodeficient mice with transgenic uroki-

nase plasminogen activator transgenic expression (Tateno et al,

2004) or fumarylacetoacetate hydrolase (Fah) deficiency (Azuma

et al, 2007) for toxicity evaluation (Xu et al, 2014). Patient-derived

xenografts (PDX) have been widely used to evaluate the efficacy of

antitumor therapies (Kamel-Reid et al, 1989; Jiang et al, 2016; Lai

et al, 2017; Bleijs et al, 2019). However, these approaches have not

allowed the cell types from which tumor-initiating cells originate to

be identified or the mechanism by which these tumor-initiating cells

phenotypically/genetically evolve during human disease progres-

sion to be assessed. Only a few in vivo models of cancers initiated

from primary human cells have been developed. Upon transplanta-

tion into immunodeficient mice, primary human hematopoietic cells

expressing mixed-lineage leukemia (MLL) fusion gene generated

acute leukemia (Barabe et al, 2007). In addition, both ectopic

expression of oncogenes and ablation of tumor suppressor genes

successfully induce reprogramming of human-induced hepatocytes

(hiHeps) and primary human intestinal stem cells into malignant

cells in culture, although in vitro expansion and selection of orga-

noids before transplantation were required (Hahn et al, 1999; Drost

et al, 2015; Sun et al, 2019). However, the direct conversion of

human PHHs into HCC in situ has not been established. Here, we

screened ten oncogenes and found that overexpression of MYC,

TP53R249S, and KRASG12D led to an efficient transformation of PHHs

directly into HCC in a humanized liver mouse model. Further ana-

lyses confirmed that iHCC recapitulated the immunophenotypic his-

tological architecture, tumor serum marker profile, phenotypes, and

gene expression characteristics of HCC.

Results

Engraftment of PHHs in the liver of NSIF mice

To establish a humanized liver mouse model, we transplanted PHHs

into NOD/SCID/IL2rg-/-/Fah-/- (NSIF) mice, which were generated

by targeting the exon 3 of Fah with embryo microinjection of

TALEN mRNA (Fig 1A and B) into immunodeficient NOD/SCID/

IL2rg-/- (NSI) mice (Ye et al, 2015). Western blotting confirmed that

fah was not expressed in NSIF mice (Fig 1C). NSIF mice exhibited

liver injury upon withdrawal of nitisinone (NTBC) (Fig 1D), which

promotes engraftment of PHHs (Azuma et al, 2007). NSIF mice that

did not receive PHH transplantation experienced gradual body

weight loss and died approximately 4 weeks after withdrawal of

NTBC, whereas the PHH-transplanted mice survived significantly

longer (Fig 1E). The serum ALT and AST levels were significantly

reduced in PHH-transplanted NSIF mice (Fig 1E). The survival dura-

tion of PHH-transplanted NSIF mice were positively correlated with

the repopulation efficiencies of PHHs in the liver and the serum

level of human ALB (Fig 1F and G, and Appendix Table S1). Next,

immunohistochemistry (IHC) and immunofluorescence (IF) staining

confirmed that the engrafted PHHs were morphologically similar to

▸Figure 1. Establishment of Fah knockout NSI mice for the humanized liver mouse model.

A Schematic outline of the pronuclear microinjection procedure. In brief, female NSI mice were superovulated with PMSG and hCG and then mated with male NSI
mice. Fertilized eggs were collected from NSI mice with a vaginal plug. TALEN mRNA pairs were injected into the cytoplasm of pronuclear-stage mouse embryos. The
injected embryos were then transferred into pseudopregnant surrogate mothers. The mouse pups were genotyped. The mouse was drawn by the authors (Z. J. and
P. Li) using Adobe Photoshop.

B DNA-binding sequences and the spacer region (in blue) of TALENs targeting the exon 3 of Fah.
C NSI mice homozygous for the Fah knockout displayed a lethal neonatal phenotype (left). Fah expression was detected in the livers of homozygous NSI mice with Fah

knockout and Fah intact NSI mice by Western blotting (right). Cropped blots are shown.
D Histological staining of livers from Fah-deficient (NSIF) with and without NTBC treatment and Fah intact (NSI) mice without NTBC treatment. Scale bars, 50 lm.
E (Left) Kaplan–Meier survival curves of PHH-infused NSIF mice (in blue, n = 15) and NSIF mice without PHHs (in red, n = 9) after NTBC withdrawal and NTBC-treated

NSIF mice (in green, n = 10); (Right) Serum ALT and AST levels in NSIF mice (+NTBC, n = 5), moribund NSIF mice (�NTBC, n = 5) and PHH-engrafted (8-week-old)
mice (�NTBC, n = 5) at indicated time points post-NTBC withdrawal; data are presented as the mean � SD, and statistical significance was determined by two-way
ANOVA with Sidak’s multiple comparisons test and defined as ***P ≤ 0.001.

F Human ALB levels in the sera of PHH-engrafted NSIF mice (n = 5) were measured by ELISA at indicated time points post-NTBC withdrawal, data are presented as the
mean � SD. N-numbers refer to biological replicates.

G (Left) Quantification of the repopulation efficiencies of PHHs in livers estimated by hALB-positive staining at indicated time points post-transplantation. Data are
presented as the mean � SD. N-numbers refer to biological replicates (n = 5); (Right) Representative immunohistochemical staining of hALB in the livers of NSIF
mice at indicated time points post-PHH transplantation. Scale bars, 1,000 lm.

H Engraftment of PHHs into NSIF mouse livers was detected immunostaining for human ALB, CK8/18, and FAH. Scale bars, 50 lm.

Source data are available online for this figure.
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human hepatocytes and expressed human FAH, CK8/18, and ALB

(Fig 1G and H). To trace PHHs in vivo, we overexpressed enhanced

green fluorescent protein (EGFP) and luciferase (Luc) in PHHs and

transplanted the cells into NSIF mice via an intrasplenic injection

(Fig 2A and B). Bioluminescence imaging (BLI) using an IVIS Spec-

trum system showed that PHHs were specifically engrafted into the

liver but not other organs in NSIF mice (Fig 2C and D). These data

indicate NSIF mice could be used to generate humanized liver models.

Screening oncogenes contribute to the transformation of PHHs
into HCC

To identify oncogenes that were able to induce reconstituted

PHHs to transform into tumor cells in situ, we selected 10 onco-

genes or oncogenic mutants as oncogenic candidates (OC), includ-

ing MYC, TP53R249S, KRASG12D, NRASG12D, CTNNB1S45F, BRAFV600E,

AXIN1G652S, IL6, PIK3CAE542K, and CSF1RY969C, based on their
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Figure 1.
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contributions to HCC development identified in previous studies

(Schulze et al, 2015; Bailey et al, 2018; Llovet et al, 2018). The

expression levels of KRAS, NRAS, and AXIN1 were positively

correlated with poor prognosis in HCC patients according to

The Cancer Genome Atlas (TCGA) database analysis (Appendix

Fig S1A). We cloned these oncogenes and oncogenic mutants

A

B

C

D

Figure 2. Bioluminescence imaging of humanized liver mice.

A Schematic illustration of PHHs labeled via EGFP and luciferase (Lentivirus-GL) and intrasplenically injected into NSIF mice.
B PHHs were transduced with/without lentiviruses containing EGFP and luciferase. Scale bar, 100 lm.
C Bioluminescence signals were monitored in NSI and NSIF mice (n = 3) infused with EGFP-Luc transduced PHHs at the indicated time points post-PHH infusion.

Representative images of a NSI and a NSIF mouse transduced with PHHs are shown.
D Bioluminescence signals were detected in the livers but not in other tissues of NSIF mice that were transplanted with EGFP-Luc-labeled PHHs (n = 3).
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individually into a lentiviral vector containing the EGFP sequence

(Appendix Fig S1B). PHHs from healthy donors highly expressed

Albumin (ALB) but barely expressed CK19, a bile duct/progenitor

marker (Zhang et al, 2018) (Fig EV1A). PHHs were transduced with

a cocktail of lentiviruses containing 10 OC and lentiviruses encoding

EGFP and luciferase as a reporter with similar transduction efficien-

cies higher than 97% (Fig EV1B and Appendix Table S2) and were

then transplanted into NSIF mice via splenic injection on day 2

(Fig 3A). The qPCR results showed that the copy numbers of

these 10 oncogenic lentiviruses in PHHs were similar (Fig EV1C).

The functions of PHHs were not severely affected by the transduc-

tion of oncogenes, as both OC-transduced PHHs and unmodified

PHHs produced Albumin and APOA, stored glycogen, and

expressed hepatocyte-associated genes, including ALB, AAT,

CYP2B6, CYP1A2, ARG1, and TAT at similar levels (Fig EV1D–G).

Notably, ectopic expression of mutant TP53 was significantly higher

than endogenous TP53 (WT) (Fig EV1H). After 4 months of trans-

plantation, genetically modified PHHs significantly engrafted in the

liver of NSIF mice (Fig 3B). The serum levels of AFP, an HCC

marker (Sun et al, 2019), increased, while ALB concentrations did

not change 3 months post-OC transduced-PHHs infusion (Fig 3C).

In contrast, AFP was not detectable in NSIF mice that were trans-

planted with EGFP only-transduced PHHs (mock group) (Fig 3C).

Three to 6 months post-transplantation, 8 out of the 30 NSIF mice

transplanted with OC-transduced PHHs showed sporadic sickness

and were necropsied. Tumors were detected in the recipients of OC-

transduced PHHs but not in the mock group (Figs 3D and EV1I, and

Appendix Table S2). These induced HCC (iHCC) were derived from

human cells, as they expressed EGFP and HLA (Fig 3E). Single-cell

suspensions from these tumors reconstituted tumors in immunodefi-

cient NSI mice after both serial subcutaneous transplantation

(Fig EV1J) and orthotopic injection (Fig EV1K and L). To identify

the oncogenic candidates that contributed to the tumorigenicity of

PHHs in vivo, we performed PCR to amplify lentiviral sequences that

integrated into the genomic DNA of the primary iHCC from the OC

group mice. We found that all eight tumor samples contained copies

of MYC and TP53R249, and seven out of eight (87.5%) tumor sam-

ples contained copies of KRASG12D but not any other candidates

(Fig 3F and Appendix Table S2). The DNA sequencing results

confirmed that mutant forms of TP53R249S and KRASG12D were

integrated into the iHCC genomes (Fig 3G) and were expressed

(Fig 3H). Consistently, MYC, p53, and KRASG12D were highly

expressed in iHCC samples but not in humanized livers reconsti-

tuted with mock-PHHs from NSIF mice (Fig 3I and J). In addition,

none of the 9 NSIF mice that were transplanted with mock-PHHs

from three different donors developed tumors (Fig 3J and Appendix

Table S2). Those data indicate that humanized liver models are suit-

able for inducing tumorigenesis.

MYC, TP53, and KRAS corporately transform PHHs into
HCC in vivo

To validate whether the combination of MYC, TP53R249S, and

KRASG12D can transform PHHs into iHCC, we transduced PHHs with

a mixture of lentiviruses overexpressing MYC, TP53R249S, and

KRASG12D (MTK) and intrasplenically infused them into NSIF mice.

Six months later, 63.6% (14 out of 22 mice) of the recipient mice

developed iHCC. Tumorigenic rate of MTK-transduced PHHs is sig-

nificantly higher than that of 16.6% (2 out of 12 mice) MT-

transduced PHHs (Fig 4A and Table 1). While tumors were not

detected in the 9 NSIF mice that were transplanted with PHHs trans-

duced only with EGFP (Table 1 and Appendix Table S2). In addi-

tion, colonies derived from single cells of different tumors, such as

iHCC1-1 and iHCC2-1 contained all MYC, TP53R249S, and KRASG12D

(Fig 4B), suggesting that individual iHCC cells expressed all the

three OCs. The H&E-stained sections of orthotropic iHCC samples

presented heterogeneous morphologies ranging from solid/compact

to pseudoglandular rosette structures of HCC, in contrast to the

homogeneous structure of normal human hepatocytes (Fig EV2).

Tumors derived from MTK-transduced PHHs expressed HLA, ALB,

and HCC markers, including AFP and GPC3 (Figs 4C and EV3A).

Notably, iHCC samples (iHCC1-1 and iHCC3-1) expressed

cytokeratin-19 (CK19) and EpCAM, which are expressed in hepatic

progenitors (Rao et al, 2008) and are considered as poor prognostic

markers (Chan et al, 2014; Govaere et al, 2014; Llovet et al, 2015) in

HCC patients (Figs 4C and EV3A). To investigate whether wild-type

TP53 affects tumorigenesis in PHHs that overexpress MYC,

TP53R249S, and KRASG12D, we inactivated TP53 by CRISPR/Cas9 in

MTK-transduced PHHs and orthotopically transplanted these geneti-

cally modified PHHs into NSIF mice for tumor watch (Fig EV3B and C).

▸Figure 3. Screening of oncogenes involved in the transformation of PHHs into HCC cells.

A Schematic representation showing the process for induction of in situ HCC after lentiviral transduction of PHHs with a cocktail of 10 OC lentiviruses.
B Bioluminescence imaging of three recipient NSIF mice (n = 3) that had been transplanted with OC-transduced PHHs 4 months ago. The colors from blue to red

indicate intrahepatic bioluminescence signal strength 4 months post-transplantation of OC transduced PHHs.
C ALB and AFP levels in sera from NSIF mice that were infused with OC-transduced PHHs (OC-PHHs) or EGFP-transduced PHHs (mock-PHHs) were measured by

ELISA at indicated time points. (n = 5, the data are presented as the mean � SD values. Two out of five mice died before 120 days post-transplantation in the
OC-PHHs group. The levels of ALB and AFP in the rest three mice were measured.).

D Bright and EGFP imaging of an explanted liver of a mouse from the OC group revealed an advanced intrahepatic tumor, Scale bars, 0.5 cm.
E Anti-GFP immunofluorescence (left), H&E staining (center), anti-HLA-I IHC staining (right) images of tumor dissection from the OC group. Scale bars, 50 lm.
F Representative PCR amplification ofMYC, TP53R249S, KRASG12D, NRASG12D, CTNNB1S45F, BRAFV600E, AXIN1G652S, IL6, PIK3CAE542K and CSF1RY969C in the genomic DNA of dissected

primary tumors harvested from NSIF mice transplanted with OC-PHHs (Tumor) and their corresponding overexpression vector plasmids as positive controls (OCs).
G, H Genomic DNA (gDNA) and cDNA of tumor samples were obtained for PCR amplification using forward primers that recognize TP53R249S or KRASG12D and reverse

primers specific for EGFP. DNA sequencing confirmed mutations of TP53 and KRAS in the genomic DNA (G) and mRNA (H) of dissected primary tumors harvested
from tumor-bearing mice. Red squares indicate mutant codes in TP53R249S and KRASG12D.

I Expression of MYC, p53, and KRASG12D was detected in the iHCC samples (n = 3, biological replicates) by Western blotting. Cropped blots are shown.
J Immunofluorescence analysis of MYC, p53, and KRAS expression in iHCC samples derived from OC-PHHs and normal humanized livers that were reconstituted with

mock-PHHs. Scale bars, 20 lm.

Source data are available online for this figure.
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Tumors were detected in three out of four recipient mice

(Fig EV3D). These results demonstrate that overexpression of

TP53R249S, MYC, and KRASG12D induced PHHs with WT p53 inacti-

vation to transform into iHCC in vivo.

We next sought to determine the minimal oncogene profile

required for the HCC transformation by transducing PHHs with two

combinations of lentiviruses expressing MYC, TP53R249S, KRASG12D,

and transplanting these PHHs into NSIF mice. Tumors were detected

in only 16.6% (2 out of 12 mice) of recipient mice transplanted with

PHHs overexpressing MYC and TP53R249S (MT group). Still, they

were absent in both the TP53R249S and KRASG12D (TK) combina-

tional group and the MYC and KRASG12D (MK) combinational group

(Fig 4A, and Table 1, and Appendix Table S3). Moreover, MTK-

transduced tumor samples contained more Ki67+ cells than MT-

transduced iHCC samples (Fig EV3E), suggesting that RAS signaling

promotes the proliferation of tumor cells in iHCC. In culture, 1 mil-

lion PHHs were transduced with different combinations of onco-

genic lentiviruses leading on day 2, to 0.8 � 0.1 million transduced

PHHs (Fig 4D). MTK- and MT-transduced PHHs started to thrive on

day 6, while MYC-, TP53R249S-, KRASG12D-, MK-, and TK-transduced

PHHs did not expand in culture (Fig 4D). Consistent with the in vivo

results, PHHs transduced with the MTK oncogene combination

proliferated faster than MT-transduced cells (Fig 4D). Cell cycle

analysis results showed that the MTK- and MT-transduced PHH

populations had significantly more proliferative cells (S-phase) than

the mock-transduced PHH population (Fig 4E). Furthermore, MT-

and MTK-transduced PHHs showed a squamous morphology com-

pared to the flattened, senescent morphology seen in cultures of

other transduced PHHs (Fig 4F). Taken together, these results sug-

gest that MYC and TP53R249S are indispensable for inducing PHHs to

transform into HCC cells and that RAS signaling further promotes

this transformation. Thus, we established a humanized mouse

model of iHCC via cotransfection of MYC, TP53R249S, and KRASG12D

for the following experiments.

iHCC recapitulates the transcriptional profiles and hallmarks
of HCC

We next compared the global gene expression profiles of iHCC to

those of corresponding parental PHHs using RNA-sequencing analy-

sis. Principal component analysis (PCA) showed that iHCC from

various donors were clustered together and were separated from

PHHs of their corresponding donors (Fig 5A). The analysis of rela-

tive transcript abundance of 17,667 genes revealed that hepatic tran-

scription factors, including FOXA2, FOXA3, HNF4A, and ATF5, were

highly expressed in PHHs, while tumor-associated genes (MYC,

TP53, and KRAS) were upregulated in iHCC cells (Fig 5B and

Dataset EV1). Moreover, gene ontology (GO) analysis confirmed

that the differentially expressed genes (DEGs) enriched in iHCC

were associated mainly with the cell cycle, chromosome segrega-

tion, telomere maintenance, and cellular responses to DNA damage.

In contrast, DEGs enriched in PHHs were associated with liver meta-

bolic functions (Fig 5C). The heatmap shows that iHCC cells

expressed both HCC/hepatocytes markers (Trerotoli et al, 2009)

(AFP, GPC3, MYC, and ALB) and hepatic progenitor markers

◀ Figure 4. Generation of genetically defined in situ humanized liver cancers.

A Representative images of in situ liver carcinomas derived from PHHs transduced with a combination of MYC, TP53R249S, and KRASG12D (MTK, n = 22) or a combination
of MYC and TP53R249S (MT, n = 12) in NSIF mice. No tumors were detected in any of the mice injected with PHHs that were transduced with TP53R249 and KRASG12D

(TK, n = 9) or PHHs that were transduced with MYC and KRASG12D (MK, n = 9). Scale bar, 1 cm.
B Genomic DNA of colonies that were derived from single cells of iHCC1-1 and iHCC2-1 tumor samples were extracted for PCR amplification of MYC, TP53R249S, and

KRASG12D.
C Immunofluorescence analysis of the human cell marker HLA, the ductal/CC markers KRT19 and EpCAM, and the HCC markers AFP and GPC3 in a iHCC sample from

NSIF mice transplanted with MTK-transduced PHHs from the donor PHH1 (iHCC1-1) and a clinical patient HCC sample (pHCC1). Nuclei were counterstained with
DAPI. Scale bars, 20 lm.

D Growth curves of PHHs after transduction with various combinations of MYC (M), TP53R249S (T) and KRASG12D (K) in culturing medium supplemented with hHGF
(10 ng/ml), hEGF (5 ng/ml), and WNT3a (5 ng/ml), P = 0.0038 for MTK- versus MT-transduced PHH by two-way ANOVA with Tukey’s multiple comparison test;
**P = 0.0038 for MTK- versus MT-transduced PHH by two-way ANOVA with Tukey’s multiple comparison test; data are presented as the mean � SD. N-numbers refer
to biological replicates (n = 3).

E Cell cycle distribution analysis of mock-PHHs, MTK-transduced PHHs, and MT-transduced PHHs on day 10. **P = 0.0034 for MT-transduced PHHs versus mock-PHHs
and ***P = 0.0009 for MTK-transduced PHHs versus mock-PHHs by two-way ANOVA with Tukey’s multiple comparison test; data are presented as the mean � SD.
N-numbers refer to biological replicates (n = 3).

F Morphology of PHHs transduced with various combinations of MYC (M), TP53R249S (T), and KRASG12D (K) at day 10. EGFP positivity indicates transduction of oncogenic
candidates: scale bars, 100 lm.

TABLE 1. Validation of the combination of MYC, TP53R249S, and
KRASG12D for transforming PHHs into HCC.

Hepatocytesa

OCb
PHH1
(AKB)

PHH2
(XSM)

PHH3
(ANG)

In
totald

MTK 6/10c 4/6 4/6 14/22

MT 1/6 1/3 0/3 2/12

TK 0/3 0/3 0/3 0/9

MK 0/3 0/3 0/3 0/9

Mock 0/3 0/3 0/3 0/9

aHepatocytes: PHHs from three donors, including PHH1 (AKB, female,
39 years old), PHH2 (XSM, female, 59 years old), and PHH3 (ANG, male,
3 months old), were purchased from Bioreclamation IVT (Baltimore, MD, USA)
and were used in the experiment.
bOC: A cocktail of lentivirus containing different combinations of oncogenic
candidates (M for MYC, T for TP53R249S, and K for KRASG12D) were
transduced into PHHs from different donors. Mock: lentivirus containing
EGFP only.
c6/10: The frequency of mice that developed iHCC in the group where PHHs
from different donors (PHH1~PHH3) were transduced with indicated
combination of oncogenic candidates. For example, 6 out of 10 mice, in
which PHHs from the donor PHH1 were transduced with MTK and were
transplanted, were observed bearing tumors.
dIn total: ***P < 0.001 for MTK- versus MT/Mock-transduced PHH by one-
way ANOVA with Tukey’s multiple comparison test; data are presented as the
mean � SD.
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(EPCAM, KRT18, KRT19) (Fig 5D). Interestingly, genes related to

epithelial-to-mesenchymal transition (EMT), including TWIST1,

VIM, and SNAI1, were upregulated in iHCC cells compared to the

corresponding PHHs (Fig 5D), consistent with the mesenchymal

morphology of iHCC cells and epithelial morphology of PHHs

(Fig 4F). Karyotype analysis revealed that compared to PHHs, iHCC

cells had numerical aberrations, including loss and trisomy of chro-

mosomes (Appendix Fig S2). Notably, copy number gains of chro-

mosome 1, commonly identified in HCC samples from patients

(Kusano et al, 1999), were also detected in iHCC2-1 and iHCC3-1

A C D

B

E

G

F

Figure 5.
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samples (Appendix Fig S2). These results indicate that iHCC exhibit

upregulation of oncogenes, downregulation of hepatic transcription

factors, and genomic instability.

We then investigated whether iHCC recapitulate molecular pro-

files of HCC clinical samples. We compared the global transcription

profiles of iHCC and PHHs based on our RNA-seq analysis to those

of HCC samples containing normal and mutated TP53 and amplified

MYC and normal hepatocytes, which were available in TCGA

database (TCGA-LIHC, 374 HCC and 50 normal samples). Uniform

Manifold Approximation and Projection (UMAP) analysis showed

that iHCCs and HCC samples shared similar gene expression profiles

and were different from those of PHHs from our samples and from

the database (Fig 5E). In addition, HCC samples from the database

were further classified into three major subtypes (iClust1-3). iClust1

is considered more aggressive with robust proliferation and less dif-

ferentiation than iClust2 and iClust3 (Cancer Genome Atlas

Research Network. Electronic address wbe & Cancer Genome Atlas

Research N, 2017). UMAP and dendrogram analysis show that iHCC

samples resembled the iClust1 subtype in respect of transcriptional

profiles (Fig 5F) and TP53/MYC/KRAS mutations (Fig 5G). In addi-

tion, GO analysis confirmed that the differentially expressed genes

(DEGs) enriched in iHCCs and iClust 1 samples were associated

mainly with cellular responses to DNA damage, telomere activity,

and cell cycle, compared to that of iClust 2 and iClust 3 HCC

(Fig EV4A). Though KRAS mutations have not been reported in

HCC tumors that harbor p53 mutations or MYC amplification in the

TCGA database, we have identified that 126 tumors with TP53

mutations, 140 tumors with mutations in the RTK/RAS/PI3K signal-

ing pathways (KRAS, MET, PIK3CA, PTEN, NF1, and NRAS), and

197 tumors with the MYC/WNT pathways (CTNNB1, AXIN1, APC,

and MYC) from 348 HCC tumors obtained from the TCGA database

(Fig EV4B and Dataset EV2). Therefore, while KRAS mutations are

not frequent, we believe that other modes of RTK activation can

substitute for these mutations. In addition, 17 HCC samples contain

MYC amplification and TP53 mutations, and 6 HCC samples harbor

TP53 mutations and RAS expression upregulation. Furthermore, 35

HCC samples carry mutations in TP53, the RTK/RAS/PI3K and

WNT/MYC pathways (Dataset EV2). Taken together, these analyses

suggest this iHCC model represents an iClust1 subtype of HCC

samples with similar transcription profiles and mutation profiles in

TP53, RTK/RAS/PI3K and WNT/MYC pathways.

The iHCC model enables the identification of therapeutic targets
for HCC

As iHCC derived from NSIF mice have not been edited by adaptive

immunity, we used them to identify biomarkers of early HCC as

potential immunotherapeutic targets. Based on RNA-seq analysis of

iHCC cells and PHHs (Fig 5B), we determined that 55 genes

encoding cell surface markers were upregulated in iHCC cells

compared to PHHs (Dataset EV3). We then selected the top 20 genes

that were highly expressed in iHCC cells (Fig 6A). With GEPIA anal-

ysis, four out of the top 20 genes (SLC34A2, FBN2, FOLR1, and

SLC39A10) were associated with poor prognosis as evidenced by

their prognostic value in cohorts of primary HCC patients according

to the TCGA datasets (Menyhart et al, 2018) (TCGA-LIHC)

(Fig EV5A and Dataset EV3). We then focused on FAP and MUC1,

as they are associated with HCC progression (Zou et al, 2018;

Kasprzak & Adamek, 2019) and have been used as targets for CAR-

T cell therapy for cardiac fibrosis (Aghajanian et al, 2019), breast

cancer, and lung cancer (Wei et al, 2017; Zhou et al, 2019). FAP

was highly expressed in 4 of the 5 donor-derived iHCC, and MUC1

expression was detected in 3 of the 5 donor-derived iHCC but not in

normal livers (Fig EV5B and C). We then generated anti-FAP and

anti-MUC1 CAR-T (CARFAP-T and CARMUC1-T) cells by transduc-

ing human T cells with third-generation CAR molecules incorporat-

ing CD28- and TLR2-derived costimulatory domains (Lai et al, 2018)

(Fig EV5D and E). CARFAP-T and CARMUC1-T cells efficiently lysed

iHCC2-1 cells with high FAP and MUC1 expression in vitro, respec-

tively (Fig 6B). To evaluate the antitumor effects of CARFAP-T and

CARMUC1-T cells in vivo, we subcutaneously transplanted iHCC

tumor tissues into NSI mice and intravenously transferred 5 × 106

CAR-T cells or mock T cells on day 10 post-tumor transplantation.

Tumors were efficiently suppressed in xenografts that were injected

with CARFAP-T and CARMUC1-T cells but not in the mock T or PBS

groups (Fig 6C).

Recent studies have demonstrated that the combination of the

MEK inhibitor trametinib (Tra) and the CDK4/6 inhibitor palbociclib

◀ Figure 5. Genetically defined iHCCs recapitulate the transcriptional profiles of human HCC.

A PHHs from five donors (PHH1 (AKB, female, 39 years old), PHH2 (XSM, female, 59 years old), PHH3 (ANG, male, 3 months old), PHH4 (HVN, male, 33 years old), and
PHH5 (QBU, male, 50 years old)) and their corresponding iHCC cells were used for RNA-seq analysis. Four iHCC samples (iHCC1-1~iHCC1-4) from the donor PHH1,
three iHCC samples (iHCC2-1~iHCC2-3) from the donor PHH2, three iHCC samples (iHCC3-1~iHCC3-3) from the donor PHH3, one iHCC sample (iHCC4-1) from the
donor PHH4, and an iHCC sample (iHCC5-1) from the donor PHH5 were used. The PCA plot shows samples plotted in two dimensions using their projections onto the
first two principal components (PC1 and PC2). Each data point represents one sample (blue, PHHs; red, iHCC). PC1 was correlated with the type of sample (iHCCs
versus PHHs).

B Volcano plot of RNA-seq data showing genes with differential expression (1,591 upregulated and 2,243 downregulated genes, fold change ≥ 2 and P value ≤ 0.05) in
iHCC cells compared to PHHs. TP53, KRAS, MYC, MUC1, and AFP were highly expressed in iHCC cells, whereas hepatocyte signature markers, including FOXA2, FOXA3,
ATF5, HNF4A, and ALB were highly expressed in PHHs.

C Gene ontology (GO) analysis of the pathways enriched with DEGs (fold change ≥ 2 and P value ≤ 0.05) in iHCC cells and PHHs. Genes associated with telomere
maintenance and the cell cycle were highly enriched in iHCC cells (top), while genes associated with biomacromolecule metabolisms were highly enriched in PHHs
(bottom).

D Heat map analysis of the log2(RPKM) values of selected genes found to be highly expressed or downregulated in PHHs and iHCC cells. These genes were classified into
three categories based on their functions.

E UMAP visualization of iHCC and clinical HCC samples from the TCGA-LIHC database based on their gene expression profiles.
F UMAP visualization of iHCC and three subtypes of clinical HCC samples from the TCGA-LIHC database (iClust 1–3, TCGA-LIHC) based on their gene expression profiles.
G Unsupervised clustering analysis of iHCC and clinical HCC samples in relative to normal PHHs. The distribution of molecular attributes (TP53 and KRAS mutation, MYC

amplification) of iHCC, clinical HCC samples, and PHHs were displayed.
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Figure 6. Genetically defined iHCC as a platform for validation of potential therapeutic targets.

A Heat map shows the top 20 genes encoding cell surface markers found to be highly expressed in iHCC samples compared to the corresponding PHHs. Within these
20 genes, seven genes highlighted in red were selected because their expression was correlated with poor prognosis of HCC patients based on TCGA-HCC (TCGA-LIHC)
analysis.

B Representative cytotoxicity CARFAP-T and CARMUC1-T cells assessed by coincubation with iHCC2-1 cells. P = 0.0038 (CARFAP-T versus mock T), and P < 0.0478
(CARMUC1-T versus mock-T). P values were determined by paired t-test, **P ≤ 0.05. Cells were seeded at E: T ratios ranging from 4:1 to 1:4; data are presented as the
mean � SD. N-numbers refer to biological replicates (n = 3).

C Growth of iHCC in xenografts (Left) and tumor weights of iHCC dissected from xenografts (Right) (n = 5), the xenografts were treated with mock, CARFAP-, or
CARMUC1-T cells when tumors reach 50 mm3 volume. ***P ≤ 0.001 (tumor volume of CARFAP-/CARMUC1-T versus mock T) with two-way ANOVA with Tukey’s
multiple comparison test. **P ≤ 0.01 (tumor weight of CARFAP-/CARMUC1-T versus mock T) with one-way ANOVA with multiple comparison test. Data are presented
as the mean � SD. N-numbers refer to biological replicates.

D Clonogenic assay of iHCC1-1 cells treated with a MEK inhibitor (trametinib) and/or a CDK4/6 inhibitor (palbociclib); Representative images were shown based on
three biological replicates.

E Luciferase and EGFP marked iHCC1-1 cells (1 × 106) were intrasplenically injected into NSI mice on day 0. iHCC-bearing mice were treated with DMSO (mock group,
n = 4), or trametinib (3 mg/kg body weight) plus palbociclib (150 mg/kg body weight, n = 5) for 2 weeks (Daily oral gavage of drugs from Day 3 to Day 17). Top, on
days 0, 7, 14, and 21, bioluminescence imaging was conducted. Bottom, quantification of the total flux analyzed by in vivo bioluminescence imaging of luciferase
activity. P = 0.0057 on day 21 by two-way ANOVA with Sidak’s multiple comparison test, **P ≤ 0.01. Data are presented as the mean � SD. N-numbers refer to
biological replicates.

F Clonogenic assays (Top) of iHCC1-1 cells treated with XL413. The data are the representative of three biological replications. (Bottom) Growth curves of iHCC in
xenografts (n = 5) treated with PBS or XL413 at 50 mm3 tumor volume. P = 0.0486 (XL413 versus PBS group) by two-way ANOVA with Sidak’s multiple comparison
test at Day 24, *P ≤ 0.05. Data are presented as the mean � SD. N-numbers refer to biological replicates.
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(Pal) leads to efficient tumor control through the induction of retino-

blastoma (RB) protein-mediated cellular senescence in KRAS- and

TP53- mutant cancers (Ruscetti et al, 2018), revealing that the

induction of senescence may constitute a strategy for the treatment

of TP53 mutant liver cancers (Wang et al, 2019) or pancreatic can-

cers(Ruscetti et al, 2020). We thus evaluated the efficacy of the com-

bination treatment of trametinib and palbociclib against iHCC with

KRAS and TP53 mutations. Palbociclib alone did not affect the

growth of iHCC cells in vitro, whereas trametinib repressed iHCC

cell expansion (Fig 6D). Of note, the combination of trametinib and

palbociclib was more effective than trametinib alone for inducing

senescence, as shown by the staining of SA-b-gal (Ruscetti et al,

2020), in iHCC cells (Appendix Fig S3A). In addition, the combina-

tion treatment with trametinib and palbociclib suppressed the

growth of iHCC in the xenograft model (Fig 6E). We further evalu-

ated the efficacy of XL413, a CDC7 kinase inhibitor that specifically

induces senescence in HCC samples (Wang et al, 2019) in the iHCC

model. Of interest, XL413 inhibited the growth of iHCC in culture

and in xenografts (Fig 6F) and induced senescence in iHCC (Appen-

dix Fig S3B). Taken together, these results indicate that iHCC is a

model for the identification of therapeutic targets and evaluation of

anticancer drug efficacy for HCC.

Discussion

Genetically engineered mouse models are powerful tools to study

PLC. Ectopic expression of Myc or KrasG12D with p53 depletion

induces mouse hepatocytes to transform into HCC or ICC (Klocke

et al, 2001; O’Dell et al, 2012). However, mouse and human hepato-

cytes are different in numerous aspects (Odom et al, 2007). There-

fore, humanized PLC models are in need for the identification of

therapeutic targets and evaluation of antitumor drug efficacy.

Though human liver cancer organoids have been established

recently (Sun et al, 2019), the organoids are derived from human-

induced hepatocytes (hiHeps) that are reprogrammed from human

fibroblasts rather than PHHs (Huang et al, 2014). Furthermore,

organoid models lack a tumor microenvironment. Here, we first

demonstrated that human PHHs can be transformed into iHCC cells

in situ upon overexpression of MYC, TP53R249S, and KRASG12D, pro-

viding us a model for investigating the initiation and progression of

human HCC. iHCC mimics the histological architecture, tumor

serum marker profile, and gene expression characteristics of human

HCC. However, Ki-67, a marker of proliferation (Sales-Gil et al,

2021), was highly expressed in iHCC, which is not common in pri-

mary human HCC, possibly indicating the aggressiveness of iHCC.

To our knowledge, it is the first in vivo model of orthotopic transfor-

mation of human PHHs into HCC cells. Therefore, humanized HCC

models are better than murine HCC models for the identification of

therapeutic targets and evaluation of anti-tumor drug efficacy. Of

course, iHCC models have some disadvantages compared to murine

spontaneous HCC models, such as the lack of an immune system.

Based on previous reports (Schulze et al, 2015; Bailey et al,

2018; Llovet et al, 2018), we selected ten candidates for overexpres-

sion in PHHs and identified enrichment of MYC, TP53R249S, and

KRASG12D in tumors harvested from the livers of xenografted mice.

Since individual oncogenes such as MYC and RAS fails to induce the

transformation of PHHs (Sun et al, 2019), we did not transduce

individual oncogenes into PHHs in this study. However, it is worthy

of performing a genetic screen for various combinations of these

oncogenes that can transform PHHs into iHCC in the future.

TP53R249S, frequently detected in human HCC related to hepatitis B

infection and aflatoxin B1, gains its function via MYC activation

upon CDK4 phosphorylation at Serine 249 and consequent PIN1

binding (Hussain et al, 2007; Liao et al, 2017). Though the loss of

heterozygosity of TP53 in HCC patient samples was not uncommon

(Hsu et al, 1994; Zhu et al, 2004), mutant TP53 was able to inhibit

the activity of WT TP53 (Kern et al, 1992). The mechanistic basis

for the cooperation among these oncoproteins has been elucidated.

Mutant TP53 enhances KRASG12D activity through modulating RNA

splicing in pancreatic ductal adenocarcinoma (Escobar-Hoyos et al,

2020). Mutant KRAS and endogenous wild-type p53 were shown to

induce cellular senescence that limits liver cancer development in

pre-malignant hepatocytes, depending on an intact CD4+ T cell-

mediated adaptive immune response (Kang et al, 2011; Mehta et al,

2021), which is absent in our iHCC model. Although the combina-

tion of MYC, TP53R249S, and KRASG12D was uncommon in human

HCC, iHCC cells derived from MTK-transduced PHHs can be used to

investigate further crosstalk among MYC, TP53R249S, and KRASG12D

in human HCC. In addition, new mechanisms underlying how

TP53R249S, MYC, and KRASG12D cooperatively transform primary

human hepatocytes (PHHs) into HCC need to be addressed in future

studies.

Whole-genome sequencing has identified numerous genetic

mutations and greatly enforced our understanding of human HCC

(Cancer Genome Atlas Research Network. Electronic address wbe &

Cancer Genome Atlas Research N, 2017). However, most of these

mutations have not been characterized as to whether they can drive

the initiation of HCC. We identified MYC, TP53R249S, and KRASG12D

out of the ten oncogenes with the capacity of inducing human PHHs

into HCC in vivo. Due to robust lentiviral transduction efficiency in

human PHHs, our iHCC humanized mouse model constitutes a plat-

form for performing high-throughput genetic screening to distin-

guish the driver mutations detected in patient samples by whole-

genome sequencing that contribute to the transformation of PHHs to

HCC cells in the numerous genetic lesions. Nevertheless, reconstitu-

tion protocol needs to be further optimized for improving in vivo

repopulation of PHHs (Azuma et al, 2007). In addition to gain-of-

function, we can also perform loss-of-function genetic screening

using the CRISPR/Cas9 system to identify new tumor suppressor

genes in HCC using our model in future research (Michels et al,

2020).

Most patients with HCC present with advanced disease, and

treatment options are limited (Llovet et al, 2003). CAR-T/NK cell

therapy is a promising immunotherapeutic strategy for treating mul-

tiple refractory blood malignancies. Nevertheless, further advances

are required for treating solid tumors with CAR-T/NK cells

(Schnalzger et al, 2019). One challenge is to identify safe and effec-

tive tumor antigens in solid tumors. There are four antigens as CAR-

T targets for treating HCC with limited success: glypican-3 (GPC3)

(Jiang et al, 2016; Shi et al, 2020) (NCT03198546, NCT02395250,

NCT03146234), a-fetoprotein (AFP) (Liu et al, 2017) (NCT

03349255), CD147 (Tseng et al, 2020), and CD133 (Dai et al, 2020)

(NCT02541370). It is thus urgent to detect biomarkers of early-stage

HCC. We found that iHCC in our humanized mice expressed MUC1

and FAP, positively correlated with poor survival prognosis (Zou
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et al, 2018; Kasprzak & Adamek, 2019). MUC1 and FAP have been

identified as CAR-T targets for treating non-small cell lung cancer

(Wei et al, 2017) (NCT03198052) and cardiac fibrosis respectively,

but not for HCC treatment. Therefore, our model may serve as a tool

for identification of biomarkers and targets of early-stage HCC.

Materials and Methods

Generation of NSIF mice

All experimental protocols were performed in accordance with the

institutional guidelines of the China Council on Animal Care and

approved by the Ethics Committee of Animal Experiments at Guang-

zhou Institutes of Biomedicine and Health, Chinese Academy of Sci-

ences (GIBH). All mice were bred and maintained in specific

pathogen-free (SPF)-grade cages and provided autoclaved food and

water. NSI and ICR mouse strains were used as embryos and foster

mothers, respectively. Female NSI mice (8–10 weeks of age) were

superovulated by an intraperitoneal injection of 5 IU of PMSG

(Sigma) and 5 IU of hCG (C1063, Sigma) at 48-h intervals. The

superovulated female mice were mated with male NSI mice, and the

fertilized embryos were collected from the oviducts. TALEN mRNAs

were injected into the cytoplasm of fertilized eggs displaying recog-

nizable pronuclei in M2 medium using a piezo-driven micromanipu-

lator. A 25 ng/ll sample of Fah-TALEN mRNAs was injected. After

a 24-h incubation at 37°C, the surviving embryos were selected and

transferred into the oviducts of pseudopregnant foster mothers.

Editing of the Fah gene was analyzed in the resulting offspring.

Recombinant vectors and viral packaging

The cDNA of each oncogene (MYC, TP53R249S, KRASG12D, NRASG12D,

CTNNB1S45F, BRAFV600E, AXIN1G652S, IL6, PIK3CAE542K, and

CSF1RY969C) or third-generation anti-FAP and anti-MUC1 CAR vec-

tors incorporating the CD28 and TLR2 costimulatory endodomains

were cloned into the second-generation lentiviral vector pWPXLD.

sgRNA targeting TP53 was cloned into LentiCRISPR v2 (addgene

52961) vector (Appendix Table S4). Lentiviral particles were pro-

duced in HEK-293T cells following polyethyleneimine (PEI) (49553-

93-7, Polysciences, Inc., USA)-mediated transfection with the

pWPXLD-based transfer plasmid and the packaging plasmids

psPAX2 and pMD2.G. Lentivirus-containing supernatant was

harvested at 48 and 72 h post-transfection and filtered through a

0.45 µm filter.

Cells and culture conditions

PHH were cultured in DMEM/F-12 medium with 10% heat-

inactivated FBS (Gibco, Grand Island, NY, USA), 10 mM HEPES,

2 mM glutamine (Gibco, Grand Island, NY, USA), and 1% penicil-

lin/streptomycin (Gibco, Grand Island, NY, USA) supplemented

with hHGF (10 ng/ml, Cat#100-39, Peprotech, NJ, USA), hEGF

(5 ng/ml, Cat#AF-100-15, Peprotech), and WNT3a (5 ng/ml,

Cat#315-20). iHCC were cultured in DMEM/F-12 (Gibco, Grand

Island, NY, USA), supplemented with 10% heat-inactivated FBS

(Gibco, Grand Island, NY, USA), 10 mM HEPES, 2 mM glutamine

(Gibco, Grand Island, NY, USA) and 1% penicillin/streptomycin

(Gibco, Grand Island, NY, USA). All cells were cultured at 37°C in

an atmosphere of 5% carbon dioxide.

Transduction of hepatocytes and tracking of
hepatocyte engraftment

Primary human hepatocytes from five different donors (PHH1 (AKB,

female, 39 years old), PHH2 (XSM, female, 59 years old), PHH3

(ANG, male, 3 months old), PHH4 (HVN, male, 33 years old) and

PHH5 (QBU, male, 50 years old)) were purchased from Bioreclama-

tion IVT (Baltimore, MD, USA). These cells were transduced with a

lentivirus which expresses an oncogene and EGFP or luciferase as

indicated in the experiment. Twenty-4 h after transduction, hepato-

cytes were cultured in DMEM/F-12 medium supplemented with

hHGF (10 ng/ml, Cat#100-39, Peprotech), hEGF (5 ng/ml, Cat#AF-

100-15, Peprotech), and WNT3a (5 ng/ml, Cat#315-20, Peprotech).

The transduction efficiency was determined by fluorescence-

activated cell sorting (FACS). EGFP- and luciferase-positive hepato-

cytes (0.5 × 106 cells/mouse) were transplanted into the spleens of

NSIF mice. Hepatocyte engraftment was evaluated using a cooled

charge-coupled device (CCD) camera system (IVIS 100 Series Imag-

ing System, Xenogen, Alameda, CA, USA). Mice were intraperitone-

ally injected with 75 mg/kg D-luciferin firefly potassium salt and

imaged 5 min later with auto-exposure time. The total and average

emissions were quantified using Living Image software (Xenogen,

Alameda, CA, USA). For oncogene screening and validation, viral

titers in the mixture were adjusted to the same multiplicity of infec-

tion (MOI = 5.0) to obtain a transduction rate of > 90% on day 2

after infection and 0.5 million GFP-positive transduced hepatocytes

were transplanted into NSIF mice via intrasplenic injection. For the

MEK inhibitor (Trametinib, T2125, Targetmol) and a CDK4/6 inhibi-

tor (Palbociclib, T1785, Targetmol) treatment assay, MYC,

TP53R249S, and KRASG12D cells that were further transduced with the

EGFP and luciferase lentiviral expression vectors (2 × 106 cells per

mouse) were injected intrasplenically into 6- to 8-week-old immuno-

deficient NSI mice. Mice were randomly assigned to treatment with

vehicle or trametinib (3 mg/kg body weight, daily gavage)/palboci-

clib (150 mg/kg body weight, daily gavage) 5 days per week for

2 weeks. On days 0, 7, 14, and 21, bioluminescence imaging was

conducted. For XL413 (S7547, Selleck) treatment, iHCC cells were

subcutaneously injected into NSI mice. Xenografted mice were

treated with PBS or XL413 (50mg/kg for 2 weeks) at 50 mm3 tumor

volume. The tumor volume was calculated as (length × width2)/2.

Transplantation of human hepatocytes

All animal experiments were performed in accordance with institu-

tional regulations. Primary human liver cells (0.5–1 million) were

transplanted into the spleens of NSIF mice after the withdrawal of

NTBC-containing drinking water (Azuma et al, 2007). The NTBC

concentration was gradually decreased (3.5 mg/l, days 0 to 2;

1.75 mg/l, days 3 and 4; and 0.8 mg/l, days 5 and 6), and NTBC

was then completely withdrawn 1 week after transplantation. NTBC

was readministered for 5 days, 3–4 weeks later when a transplanted

mouse had lost > 20% of its pretransplant weight. The animals’

body weights were monitored twice weekly after transplantation.

The surviving recipient mice were euthanized for collection of blood

and liver samples.
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Measurement of human ALB, AFP, APOA1, and glycogen

Small amounts of blood were collected weekly from the left saphe-

nous vein with a heparinized blood capillary tube. The human ALB

concentration was measured with a Human Albumin ELISA Quanti-

tation Kit (E80-129, Bethyl Laboratories). The AFP concentration

was measured with an AFP kit (EHAFP, Invitrogen, Thermo Fisher)

according to the corresponding manufacturer’s protocol. To deter-

mine the levels of stored glycogen, 1 × 106 cells were collected.

Human albumin was measured using the Human albumin ELISA

quantitation set. Glycogen storage was measured with a Glycogen

assay kit (MAK016, Sigma-Aldrich) and human APOA1 was mea-

sured using a APOA1 detection kit (SEKH00903, Solarbio) according

to the manufacturers’ instructions.

Quantitative real-time PCR

mRNA was extracted from cells with TRIzol reagent (15596026,

Thermo Fisher) and reverse transcribed into cDNA using the Prime-

ScriptTM RT reagent Kit (Takara, Kasatsu, Japan). All reactions

were performed with TransStart Tip Green qPCR SuperMix (Trans-

Gene, Beijing, China) on a Bio-Rad CFX96 real-time PCR machine

(Bio-Rad, Hercules, CA), using the primers shown in Appendix

Table S4. Delta CT calculations were relative to b-actin and

corrected for PCR efficiencies.

Histological and immunofluorescence assays

Tissue samples were fixed with 4% formalin, embedded in paraffin,

sectioned at a thickness of 4 lm, and stained with H&E. Images

were acquired with a microscope (Leica DMI6000B, Leica Microsys-

tems, Wetzlar, Germany). Paraffin sections were used for immuno-

fluorescence (IF) and immunohistochemical (IHC) staining. A

primary antibody (1:100–1:2,000) was added to the tissue sections

on slides and incubated overnight at 4°C. Alexa Fluor 647-

conjugated goat anti-mouse (1:2,000) and Alexa Fluor 568/488-

conjugated goat anti-rabbit (1:2,000) antibodies were added and

incubated for 1 h at room temperature. DAPI was used to stain

nuclei, and the prepared slides were analyzed using a Zeiss LSM800

microscope. Anti-HLA Class I ABC antibody (ab70328), Anti-

Cytokeratin 19 antibody (ab76539), Anti-c-Myc antibody (ab32072),

Anti-p53 antibody (ab32389), Anti-KRAS antibody (ab275876), Anti-

EpCAM antibody (ab223582), Anti-AFP antibody (ab169552), Anti-

GPC3 antibody (ab95363), Anti-MUC1 antibody (ab109185), and

anti-FAP antibody (ab207178) were purchased from Abcam.

RNA sequencing

mRNA from primary PHH or iHCC was prepared according to the

TruSeqTM RNA Sample Preparation Guide, and sequencing was

performed on BGISEQ-500 (BGI, Wuhan, China). Sequencing reads

were mapped to the human RefSeq-RNA reference sequence using

the FANSe2 algorithm. Reads mapped with tophat2 were associated

with genes using the custom Perl scripts that allowed no more than

2 unmapped bases. Cufflinks (version 2.1.1) was used to identify

reads consistent with the annotated genes. These genes were quanti-

fied using the reads per kilobase million (RPKB) method. For small

genes (< 200 bps), a minimum of 10 mappable reads were required.

Mappable reads were imported into the DEGseq software package to

calculate up- or downregulation of genes.

Integrative clustering of iHCC and clinical HCC using iCluster

We used publicly available data provided by the TCGA Research

Network (http://xena.ucsc.edu) to perform hierarchical clustering

and GSEA analyses. The RNA sequencing data of TCGA-HCC (374

HCC samples and 50 normal samples) were downloaded from

TCGA. To understand the subgroups formed by integrating various

molecular platforms of iHCC, we utilized iCluster, which formulates

the problem of subgroup discovery as a joint multivariate regression

of multiple data types with reference to a set of common latent vari-

ables that represent the underlying tumor subtypes (Mo et al, 2013;

Cancer Genome Atlas Research Network. Electronic address wbe &

Cancer Genome Atlas Research N, 2017).

DNA extraction and sequence analysis

DNA was extracted from samples using a HiPure Tissue DNA Mini

Kit (D3121, Magen, China). In brief, samples of approximately

10 mg were digested in 250 µl of ATL buffer supplemented with

proteinase K overnight at 55°C and were then treated with RNase

for 30 min at 37°C. Genomic DNA was subjected to PCR amplifica-

tion, and mutations were identified by direct sequencing. To avoid

amplification of endogenous genes, we ensured that the PCR primer

pairs flanked the introns in the 10 oncogenes (Appendix Table S4).

Western blot assays

Western blotting was performed following a routine protocol. The

hiHep organoids were lysed in RIPA lysis buffer (supplemented with

NaF (1:100), Na3VO4 (1:200), P8340 (1:100)) and an equal amount

of total protein lysates were separated by 6–15% SDS–PAGE and

transferred to a PVDF membrane (Millipore). The membrane was

blocked with 5% (w/v) reagent-grade non-fat milk and incubated

overnight with primary antibodies (MYC (5605, CST), KRASG12D

(14429, CST,), p53(48818, CST)) at 4°C followed by secondary anti-

body incubation for 1 h. The protein bands were visualized using

Luminata Western ECL substrate (Sigma).

Long-term cell proliferation assays (colony formation assays)

Cells were seeded into 6-well plates (1 × 104 cells per well) and cul-

tured with/without drugs as indicated for 10–14 days. The medium

was changed twice weekly. Cells were fixed with 4% paraformalde-

hyde and stained with 0.1% crystal violet (in water) (Lin et al,

2020).

SA-b-gal staining

SA-b-gal activity was assessed using a Senescence b-Galactosidase
Staining Kit (C0602, Beyotime, China) according to the manufac-

turer’s instructions. iHCC cells were plated in a 6-well plate (1 × 105

cells per well) and treated with a MEK inhibitor (trametinib, T2125,

Targetmol), a CDK4/6 inhibitor (palbociclib, T1785, Targetmol), and

XL413 as indicated. SA-b-gal-positive cells (senescent cells) were

identified as blue-stained cells under standard light microscopy.
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Cell cycle analysis

PHHs transduced with the MYC/TP53R249S/KRASG12D combination

were harvested by trypsinization on day 10. Cells were washed two

times with PBS, fixed at �20°C in 70% ethanol for 12 h and stained

in 300 ll of propidium iodide (final concentration of 50 mg/ml) and

0.1% Triton X-100 at 37°C for 15 min. The distribution of cells in

different phases of the cell cycle was analyzed by flow cytometry

(Agilent NovoCyte, USA).

Isolation, transduction, and expansion of primary human
T lymphocytes

Peripheral blood mononuclear cells (PBMCs) were isolated from

healthy adult donors using Lymphoprep (Stem Cell Technologies,

Vancouver, Canada). T cells were negatively selected from PBMCs

with a MACS Pan T Cell Isolation Kit (Miltenyi Biotec, Bergisch

Gladbach, Germany) and activated using microbeads coated with

anti-human CD3, anti-human CD2, and anti-human CD28 antibodies

(Miltenyi Biotec, Bergisch Gladbach, Germany) at a bead: cell ratio

of 1:2 and a density of 2.5 × 106 cells/ml for 2 days in RPMI-1640

medium supplemented with 10% heat-inactivated fetal bovine

serum (FBS), 100 IU/ml recombinant human IL-2, 10 mM HEPES,

2 mM glutamine and 1% penicillin/streptomycin. On day 2 post-

activation, T cells were transfected with CAR vector lentiviral super-

natants in the presence of 8 lg/ml polybrene at an MOI of 2.0

(Sigma-Aldrich, St. Louis, USA). Twelve hours after transfection,

T cells were cultured in fresh medium containing IL-2 (300 U/ml);

subsequently, fresh medium was added every 3 days to maintain

cell density within the range of 0.5–1 × 106 cells/ml. Healthy PBMC

donors provided informed consent to use their samples for research

purposes, and all procedures were approved by the Research Ethics

Board of GIBH.

Xenograft models and in vivo assessment

Animal experiments were performed in the Laboratory Animal Cen-

ter of GIBH, and all animal procedures approved by the Animal Wel-

fare Committee of GIBH. All protocols were approved by the

relevant Institutional Animal Care and Use Committee (IACUC). NSI

mice were maintained in specific pathogen-free (SPF)-grade cages

and provided autoclaved food and water. Mice were randomized

into experimental groups of ≥ 5. Direct injection of indicated tumor

cells in 200 ll PBS was performed to establish subcutaneous (flank)

tumors. At the indicated time for each experiment, 5 × 106 trans-

duced human T (GFP+ or CAR+) cells in 200 ll PBS were adoptively

transferred to tumor-bearing mice systemically by tail vein injection.

Peripheral blood was obtained by retro-orbital bleeding. Tumors

were measured every 3 days with a caliper. Tumor volume was cal-

culated using the following equation: (length × width2)/2.

Statistical analysis

Kaplan–Meier’s analysis of the correlation between candidate genes

expression and overall survival was acquired from the GEPIA analy-

sis tool (http://gepia.cancer-pku.cn/index.html), which was based

on datasets from The Cancer Genome Atlas (TCGA). Data are

presented as the mean � SD/SEM values, and significance was

evaluated by Student’s t-test or ANOVA as indicated. Differences

with P < 0.05 were considered statistically significant.

Data availability

RNA-Seq data: Gene Expression Omnibus GSE168852 (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168852).

Expanded View for this article is available online.
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