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The Delingha stable isotope tree-ring record (1) provides
exquisite precision and accuracy measurement for the

Holocene paleoclimate proxies of the northeast Tibetan
plateau, where 90% of annual precipitation now derives
from the East Asian summer monsoon (EASM) (2). But
does the Delingha δ18Odendro record correspond to other
EASM (3) and globally distributed records for the 4.2 ka BP
(∼2200 BCE) megadrought event (4), or does Delingha
δ18Odendro record a different climate event?

A trend-point analysis of the Delingha δ18Odendro record
defines a drying trend that “intensified between ∼2000 and
∼1500 BCE” and “thus arguably marks the transition from
the mid- to the late Holocene Asian moisture regime” (1).
The authors of the analysis conclude that their findings do
“not support a significant transition in the hydroclimate …

around ∼2200 BCE during the so-called ‘4.2-ka event’ … nor
the notion that this rapid climate deterioration and associ-
ated global-scale megadroughts should be regarded as a
generalized climatic transition from the mid- to late Hol-
ocene” (1).

The Delingha megadrought is, however, precisely coinci-
dent with the Mawmluh Cave, India, KM-A speleothem's
δ18O four stages that define the 4.2 ka BP event’s global
type stratum (4), and only differs in its first-stage magni-
tude (Fig. 1A). That is, the Delingha trend-point analysis’s
cutoffs mark the abrupt high-magnitude δ18O increase at
2095 BCE, but not the event’s first stage more than 100 y
earlier. The Delingha record is also congruent with the
Hulun Lake, eastern Mongolia plateau 4.2 ka BP abrupt
desertification record and the north China EASM 4.2 ka BP
event δ18O record in the Dongshiya Cave speleothem (ref.
5 and Fig. 1B).

The KM-A speleothem record, an Indian summer mon-
soon record, is precisely congruent with the Katlekhor Cave
and Gol-e Zard Cave speleothems, western Iran, that docu-
ment the midlatitude westerlies' 4.2 ka BP event (ref. 6 and
Fig. 1C). The KM-A record is also precisely congruent with the
Mount Logan glacial record for displacement of the Pacific
Kuroshio Current at 4.2 ka BP (ref. 7 and Fig. 1D).

In the eastern hemisphere, this 4.2 ka BP event record
extends from Spain to China, from north to south Africa, to
Australia, and to more than 50 subpolar North Atlantic
proxies (8). In the western hemisphere, the record extends
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Fig. 1. Four-stage 4.2 ka BP paleoclimate proxies compared to KM-A
speleothem δ18O, Mawmluh Cave, northeast India (4): (A) Delingha tree
rings (1), (B) Dongshiya Cave speleothem (5), (C) Gol-e Zard Cave speleo-
them (7), (D) Mt. Logan ice core (8).
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across North America from Wyoming to Massachusetts,
down the west coast of South America to Patagonia and
Antarctica, and along the Atlantic coast to Brazil (9).

The societal collapse records of adaptive regional
abandonments and habitat tracking synchronous with
the 4.2 ka BP megadroughts extend from Spain to Meso-
potamia, the Nile River and the Indus Valley, and Tibetan
Plateau and China. The latter include the flooding and

megadrought Liangzhu abandonments in the lower
Yangtse delta and the megadrought late Longshan Hai-
dai abandonments in modern Shandong province (10).
However, megadrought proxy transfer functions and
high-resolution spatiotemporal quantification of regional
settlement and abandonment remain desiderata for
explaining the societal adaptations to the global 4.2 ka
BP event.
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