Skip to main content
. 2022 Jun 7;32(5):1173–1205. doi: 10.1007/s42823-022-00358-2

Table 3.

Mechanical properties and fabrication methods of different CF-based fiber hybrid composites

Matrix Brittle reinforcement/CF (x) Ductile reinforcement (Y) Fiber hybrid composite:CFRP:Y-reinforced composite FVF in fiber hybrid composite (VFVF: VX/VY) Fabrication method References
Epoxy resin Unidirectional plain weave CF Chopped GF

TS = 1:1.29:0.77

CS = 1:1.31:0.49

ILSS = 1:0.85:0.95

Hand lay-up [103]
Epoxy Carbon fabric Bi- directional Jute fabric

TS = 1:1.74:0.06

FS = 1:1.19:0.27

IS = 1:0.68:1.05

45 (49%/51%) Hand lay-up [104]
Epoxy resin T300 CF 3 K E-GF

TS = 1:1.61:0.76

CS = 1:1.52:0.68

FS = 1:1.12:0.54

45 (50%/50%) Hand lay-up [8]
Epoxy resin Satin weave T-300 carbon fabric Plain weave E-glass fabric

TS = 1:1.17:0.74

CS = 1:1.05:0.89

52 (47%/ 53%) [105]
Epoxy CF C120-3 K Woven basalt fiber

FS = 1:1.20:0.6

FM = 1:1.16:0.55

62 (60%/40%) VARTM [99]
PP-natural rubber PAN-based CF Kenaf fiber FS = 1:1.89:1.5 20 (50%/50%) Compression molding [101]
ABS SCF Kevlar fiber

FS = 1:0.95:0.81

FM = 1:1.08:0.75

3DP [102]
Epoxy resin Unidirectional CF Unidirectional GF

TS = 1:1.14:0.68

FS = 1:1.21:0.68

Elongation (%) at max. stress = 1:0.91:1.84

48.8 (66.67%/33.33%) Hand lay-up and vacuum infusion [106]
PP SCF SGF

TS = TSCFRP > TShybrid > TSGFRC

Failure strain = failure strain CFRP < Failure strain hybrid < failure strain GFRC

25 (50%/50%) Injection molding [39]