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BACKGROUND: Optimal outcomes after large-vessel occlusion (LVO) stroke are highly 

dependent on prompt diagnosis, effective communication, and treatment, making LVO an 

attractive avenue for the application of artificial intelligence (AI), specifically machine learning 

(ML). Our objective is to conduct a systematic review to describe existing AI applications for LVO 

strokes, delineate its effectiveness, and identify areas for future AI applications in stroke treatment 

and prognostication.

METHODS: A systematic review was conducted by searching the PubMed, Embase, and Scopus 

databases. After deduplication, studies were screened by title and abstract. Full-text studies were 

screened for final inclusion based on prespecified inclusion and exclusion criteria. Relevant data 

were extracted from each study.

RESULTS: Of 11,512 resultant articles, 40 were included. Of 30 studies with reported ML 

algorithms, the most commonly used ML algorithms were convolutional neural networks in 10 

(33.3%), support vector machines in 10 (33.0%), and random forests in 9 (30.0%). Studies 

examining triage favored direct transport to a stroke center and predicted improved outcomes. ML 

techniques proved vastly accurate in identifying LVO on computed tomography. Applications of 

AI to patient selection for thrombectomy are lacking, although some studies determine individual 

patient eligibility for endovascular treatment with high accuracy. ML algorithms have reasonable 

accuracy in predicting clinical and angiographic outcomes and associated factors.

CONCLUSIONS: AI has shown promise in the diagnosis and triage of patients with acute stroke. 

However, the role of AI in the management and prognostication remains limited and warrants 

further research to help in decision support.
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INTRODUCTION

Acute ischemic stroke (AIS) is a common cause of morbidity and mortality globally, and 

continues to have a high incidence.1–5 Large-vessel occlusion (LVO) comprises 29.3% of 

AIS cases and has an incidence of 24 per 100,000 people per year, of which most occurs 

in the anterior circulation.6,7 LVO confers a 4.5-fold increase in mortality compared with 

other AIS.8–10 Randomized controlled trials have provided evidence that timely mechanical 

thrombectomy (MT) in patients with LVO is safe and effective in improving functional 

outcomes, such that MT with stent retriever or direct aspiration has become the standard 

of care for LVO.11–21 Recanalization is the strongest independent predictor of functional 

independence.22

Despite these advances, LVO has numerous management challenges. Existing prediction 

instruments aimed at identifying patients with stroke with LVO for rapid transport to centers 

offering MT have low sensitivity and specificity.23 At the hospital, management of stroke 

depends heavily on information from imaging studies.24 Determination of treatment strategy 

is critical, because MT must be timely, given the adage “time is brain.”25 Recently, artificial 

intelligence (AI), a broad term referring to the use of computers to perform complex tasks, 

has been applied to LVO care and research to address these challenges.24,26,27 Machine 
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learning (ML), a subset of AI involving computer problem solving using data-driven 

algorithms derived from large data sets without explicit human programming, has become 

particularly prominent because of the potential for rapid automatic evaluation of patients 

with stroke and selection for MT.24,26–28 However, no systematic review has characterized 

the role of AI in LVO across the duration of care.

We conducted a systematic review to characterize the scope of the literature regarding 

the use of AI for LVO. We aimed to 1) describe existing AI applications for LVO triage, 

diagnosis, patient selection, and outcome prediction, 2) delineate the effectiveness and 

usefulness of existing LVO applications, and 3) identify areas for future AI applications for 

LVO stroke. Our findings will inform neurosurgeons regarding recent developments in this 

burgeoning field, promote awareness regarding the ability of AI to improve numerous facets 

of stroke care, and catalyze further research in the field and application to patient care.

METHODS

We conducted a systematic review according to the PRISMA (Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses) guidelines to investigate the use of AI for 

LVO strokes.29 PubMed MEDLINE (National Library of Medicine), Embase (Elsevier), and 

Scopus (Elsevier) were searched in November 2020 from inception to the present using 

a combination of keywords including “artificial intelligence,” “machine learning,” “large 

vessel occlusion,” and “stroke.” No restrictions on date, language, or article type were 

applied. Detailed search terms for all databases are shown in Supplementary Table 1.

After completing the search, duplicates were removed. All remaining articles were screened 

by title and abstract for relevance. Articles progressing to full-text review were screened for 

final inclusion based on prespecified inclusion and exclusion criteria. Inclusion criteria were 

articles published in or translated into English, with full text available, population of patients 

with LVO, and discussing the application of AI techniques. Exclusion criteria were articles 

not translated into English, conference abstracts, commentaries or letters, case reports, 

narrative reviews, scoping reviews, systematic reviews, meta-analyses, and not discussing 

application of AI to patients with LVO. Articles that discussed AIS without specifying LVO 

in particular or those that did not discuss LVO separately from other subtypes of AIS were 

excluded. A second reviewer replicated the search strategy. Disagreements were resolved 

after discussion with a third reviewer.

After we finalized the list of included articles, they were reviewed for bibliographic data, 

aim, design, duration, participants, intervention, and outcome data. The World Bank income 

classification was used to determine the income status of the countries of origin for all 

studies.30 Primary outcomes of interest included area under the curve (AUC), sensitivity, 

specificity, and accuracy of the AI technique used for LVO. Secondary outcomes included 

modified Rankin Scale (mRS) score, TICI (thrombolysis in cerebral infarction) score, 

comparison of the outcomes of AI techniques for LVO, and comparison of AI techniques 

to human raters. Descriptive statistics for the different types of ML algorithms used were 

also assessed. These statistics included convolutional neural network (CNN) (a class of 

deep neural networks used primarily for analyzing visual imagery), support vector machines 

Shlobin et al. Page 3

World Neurosurg. Author manuscript; available in PMC 2022 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(SVMs) (algorithms that analyze data for classification and regression analysis), and random 

forest (RF) (an ensemble learning method for classification and regression).

Critical appraisal of the quality of included studies was performed using the GRADE 

(Grading of Recommendations, Assessment, Development and Evaluation) framework.31 

The GRADE framework incorporates study design, biases, and the rigor of methodology to 

determine the quality of a study. The risk of bias for and applicability for each included 

study was assessed using PROBAST (Prediction Model Study Risk of Bias Assessment 

Tool).32 PROBAST considers the participants, predictors, outcomes, and analyses to 

determine the risk of bias for a study. Judgments on overall risk of bias and applicability 

for this systematic review were determined based on considering the risk of bias and 

applicability of all included studies in aggregate.

RESULTS

Included Studies

Our search resulted in 11,512 articles, 40 of which were included based on the criteria 

defined previously.33–72 Figure 1 shows the PRISMA flowchart for article selection. 

Thirty studies (75.0%) were single-country studies, whereas 10 (25.0%) were international 

collaborations. Of the single-country studies, 13 (43.3%) originated from the United States 

followed by 3 (7.5%) each from Germany and Switzerland. All articles were published 

between 2016 and 2020, with 21 (52.5%) in 2020, 14 (35.0%) in 2019, 4 (10.0%) in 2018, 

and 1 (2.5%) in 2016.

Of the 30 studies with reported ML algorithms, the most commonly used ML algorithms 

were CNNs in 10 (33.3%), SVMs in 10 (33.3%), RFs in 9 (30.0%), artificial neural 

networks (ANNs) in 5 (16.7%), and decision trees in 4 (13.3%). Study designs included 

28 retrospective cohorts (70.0%), 7 prospective cohorts (17.5%), 2 mixed retrospective and 

prospective cohorts (5.0%), and 3 others (7.5%). All studies were moderate quality based 

on the GRADE framework. Sample sizes ranged from 25 to 5713. Ten studies (25.0%) 

used validation, 8 (20.0%) 10-fold cross-validation, 5 (12.5%) 5-fold cross-validation, and 1 

(2.5%) each used nested cross-validation, leave-one-out cross-validation, recursive feature 

elimination with cross-validation, and both validation and 5-fold cross-validation. The 

remaining 13 studies (32.5%) did not mention any type of validation. Concerns regarding 

applicability of the models in included studies was low in 37 (92.5%), unclear in 2 (5.0%), 

and high in (2.5%). Risk of bias was low in 29 (72.5%), unclear in 6 (15.0%), and high in 5 

(12.5%), predisposing this review to a low risk of bias overall.

The main topics of included articles are shown in Figure 2. These topics generally fell 

into triage, diagnosis, patient selection, and outcome prediction, and are reviewed in the 

following sections.

Triage

Based on our review, 5 studies discussed ML methods for better triage (Table 1).35,44,67,68,71 

Most (3/5) examined prehospital transport using decision trees.67,68,71 One of these studies67 

determined that direct transport to an intervention center led to improved outcomes when the 
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likelihood of LVO as the cause of AIS was >33%. Direct transportation to an intervention 

center was beneficial when the risk of LVO was ≥24% in an urban setting and ≥49% in a 

rural setting.67 A second study71 found that transporting patients directly to a comprehensive 

stroke center for tissue plasminogen activator and MT (if indicated) rather than to a primary 

stroke center was favored in most real-world scenarios regardless of formal LVO screening. 

A third study determined implementation of a modified American Heart Association 

algorithm for prehospital transport within 4.5 hours after symptom onset led to 1.8%–2.4% 

increase in favorable outcomes.68

Diagnosis

LVO Detection.—As the primary method to detect stroke, LVO diagnosis on computed 

tomography (CT) imaging using AI models has primarily involved the prediction of clot 

signs or infarction volume. Five studies37,54,56,65,72 discussed diagnosis of LVO via CT 

(Table 2). One study54 aiming to identify clot signs on noncontrast CT found an AUC of 

0.87 with a CNN, which increased to 0.91 when National Institutes of Health Stroke Scale 

(NIHSS) and time from onset were added to the model. A study72 found that an extreme 

gradient boost model incorporating noncontrast CT data in addition to demographic and 

clinical data had superior performance in detecting LVO to extreme gradient boost using 

demographic and clinical data and to RF and SVM models. On the other hand, Qui et al.56 

found a model using CNN and RF to detect infarction on noncontrast CT that showed good 

agreement with stroke volume on diffusion-weighted imaging MRI scans. One study65 also 

used CT perfusion imaging and found an AUC of 0.90 for right-sided deficits, 0.96 for 

left-sided deficits, and 0.93 for no deficit.

In addition to CT imaging, several other studies used ML techniques to assist in LVO 

detection on angiographic imaging. Five studies57–59,61,62 discussed identification of LVO 

on angiography (Table 2). Four of those 5 discussed CT angiography (CTA).58,59,61,62 Sheth 

et al.59 found that a CNN detected LVO with an AUC of 0.88 and determined the infarct 

core with an AUC of 0.88 for ischemic core ≤30 mL and 0.90 for ischemic core ≤50 mL. An 

additional study using a CNN62 found an accuracy of 0.80 for automatic collateral scoring 

from three-dimensional CTA images. Rava et al. determined that angiographic parameter 

imaging based on digital subtraction angiography provided accurate localization of the 

ischemic core in patients with LVO using an SVM.57 Besides CT and digital subtraction 

angiography, 6 other studies36,39,46,49,60,63 investigated an array of miscellaneous aspects 

ranging from atherosclerotic features of platelet-rich clot to cranial electroencephalography 

in detecting LVO (Table 2).

Diagnosis

Stroke Cause and Severity.—In addition to detecting LVO presence, other studies have 

used ML to diagnose the type and severity of stroke. Two studies40,70 described strategies 

to determine the subtype of stroke via the TOAST (Trial of Org 10172 in Acute Stroke 

Treatment) classification (Table 2). One study70 used CNN to segment lesion volumes from 

diffusion-weighted MRI, followed by regression to combine the segmented lesion with other 

clinical factors to predict stroke phenotype. This study reported that an ensemble consisting 

of a mixture of large databases and single-center CNNs performed best in determining the 
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subtype of AIS with a precision of 0.83, and results from automatic and manual lesion 

volumes correlated well.70 In addition to these studies, 4 others41,42,50,51 used ML to predict 

the ASPECTS (Alberta Stroke Program Early CT Score) for LVO, as summarized in Table 

3. Overall e-ASPECTS was correlated with both CTA collateral score as estimated by 

radiologists and e-CTA in identifying laterality of ischemia.41

Patient Selection

Two studies33,69 discussed the use of ML tools in the selection of patients for MT (Table 

3). One study69 used a CNN with arterial spin labeling data and found an accuracy 

of 92% for retrospective determination for individual patient eligibility for endovascular 

treatment. Another study33 using a regression tree with a retrospective cohort of patients 

who underwent MT for LVO found that the regression tree performed better than the NIHSS, 

ASPECTS, or baseline deficits for selecting elderly patients for MT. Patients who were 

not selected for MT by the regression tree had higher rates of symptomatic intracerebral 

hemorrhage.33 Another study49 (previously mentioned) found that dynamic susceptibility 

perfusion imaging feasibly assessed eligibility for late-window reperfusion treatment.

Outcome Prediction

For LVO outcome prediction, several studies used ML techniques to predict both clinical 

and angiographic outcomes on imaging. Eleven studies34,38,43,45,47,48,52,53,55,64,66 used ML 

to predict clinical outcomes after MT (Table 4). Seven of these studies34,38,43,47,52,53,64 used 

mRS, a widely accepted functional independence score scale after a stroke, as an outcome 

variable. One study using ANN and RF43 found that a small infarct core was associated 

with mRS score of 0–2, and this outcome prediction only slightly improved when imaging 

data were added. Another study34 using a gradient boosting algorithm found that the most 

important parameters for predicting mRS score at 90 days were NIHSS score after 24 hours, 

premorbid mRS score, and final infarction volume on postinterventional CT after 18–36 

hours. The 3 remaining studies compared ML algorithms with other methods. Two found 

that ML models were superior to conventional statistical, other pretreatment models, and 

ischemic core volumes in predicting 90-day mRS score 0–2, whereas the remaining study 

found no difference between the best performing ML algorithm and best performing logistic 

regression model.52,53,64

In addition to clinical outcomes, prediction of vessel recanalization and angiographic 

outcomes after an MT have also been investigated using ML tools.38,43,45,47,55,66 Three 

studies38,43,47 found rates of TICI2b/3 recanalization ranging from 71% to 95%. An 

additional study66 found that both decision trees and regression models indicated that carotid 

tortuosity was the main moderator of efficacy of MT. One study55 found that a combination 

of radiomic features from noncontrast CT, CTA, and differences between CT and CTA 

predicted early recanalization better than any single feature. One radiomic study45 using 

SVM found 9 features that predicted first-pass recanalization and the overall number of 

passes needed for successful recanalization.
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DISCUSSION

LVO represents a particularly important subset of AIS for AI applications because of the 

high morbidity and mortality compared with other types of AIS.8–10 ML algorithms and 

deep learning can improve the timely triage, diagnosis, patient selection, and prognostication 

in patients with LVO stroke. In this review, we evaluate current evidence and present a 

systematic review regarding AI applications for LVO in triage, diagnosis, patient selection, 

and outcome prediction.

Triage and Diagnosis

Advantages of AI are best seen in its applicability in terms of triage and diagnosis of patients 

with LVO. One of the most important factors in predicting good patient outcome is the 

timely arrival and triage of probable patients with stroke. It is for this reason that most 

triage AI applications, as shown in our review, have focused mainly on prehospital transport, 

given the prognostic importance of timely arrival.67,68,71 Whether a patient is transported to 

a primary stroke center first or directly to a comprehensive stroke center relies on the risk of 

LVO and transport time.67,68,71 A study reported by Hassan et al.44 showed the application 

of an AI-based program called Viz.ai designed to help triage patients with LVO stroke and 

reduce transfer times. Patients were divided into 2 cohorts: with and without AI program 

implementation. After implementation of this AI program, the median CTA to door-in time 

was significantly reduced by an average of 22.5 minutes (132.5 minutes vs. 110 minutes; P 

= 0.0470). AI-based programs such as Viz.ai serve as excellent real-world examples of AI 

application that is not only helpful to surgeons and interventionists in their daily practice but 

also significantly affects the sequence of events and outcomes after an LVO. These programs 

may further improve triage by synchronizing stroke care in the future.44

In terms of diagnosis, AI has primarily been used to accurately identify LVO on CT 

using ML that identifies clot sign or infarction volume, although the input of additional 

information such as demographics and clinical factors improves accuracy.54,56,72 Several 

studies58,59,61 have also shown that ML techniques can also accurately detect LVO on CTA. 

All these ML models serve as vital tools in the diagnosis of LVO stroke, although existing 

methods of diagnosis are highly accurate.73

Patient Selection

Use of AI in patient selection and prognostication by predicting clinical and angiographic 

outcomes of MT for LVO is one of the most important applications of ML. A recent study 

reported by Ding et al.26 provides an excellent example of AI applicability in terms of 

outcome prediction whereby 6 variables from Acute Stroke Registry data were used to 

train a deep neural network model to accurately predict 3-month mRS score better than the 

traditional Acute Stroke Registry and Analysis of Lausanne score (AUC, 0.888 vs. 0.839; 

P < 0.001). Several other studies in our review34,38,43,47,52,53,64 show that ML algorithms 

predict favorable functional outcomes (mRS score 0–2) after MT and identify associated 

factors including a small infarct core, NIHSS score after 24 hours, premorbid mRS score, 

and infarction volume on postinterventional CT. All the formerly mentioned metrics can 

serve a critical role in not only patient selection but also predicting how well the patients are 
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going to do after an intervention. A combination of radiomic features from various imaging 

modalities also provides useful prediction of recanalization.45,55,66 The Eric Acute Stroke 

Recanalization study used a predictive analytics end point, the volume of saved tissue, 

potentially setting the stage for future studies on LVO using predictive analytics end points 

as the applicability of ML continues to be investigated.38

Future Direction

The role of AI in LVO stroke is expanding; however, several strides regarding critical 

decision making and patient selection need to be made. For example, superior applications 

and ML algorithms are required to identify which patients are better candidates for stent 

retriever thrombectomy versus aspiration versus both stent retriever and aspiration approach 

(SOLUMBRA). Another area of interest would be to identify which patients are at higher 

risk of symptomatic intracerebral hemorrhage after a thrombectomy. Hence, the goal is 

to focus on aspects related to optimization of treatment such as patient selection and 

outcome prediction and to be able to select an ideal set of patients who would not only 

fit the inclusion criteria for an intervention but also have the least number and severity of 

complications.

As we march toward an era in which clinical decision making continues to be more reliant 

on proven ML algorithms, it is important to be aware of the potential drawbacks and 

unintended consequences of these models. Cabitza et al.74 recently highlighted some of 

the unintended consequences that may occur as ML expands its footprint into all areas of 

medicine. One of the potential shortcomings highlighted lies in the intrinsic uncertain nature 

of medicine. Medical interpretations and observations that are an essential part of the input 

to optimize ML models are not usually considered for interoperator variability.74 The quality 

and variety of input data can substantially affect the performance of an ML model based on 

the population intrinsic metrics; this factor could mean that 1 ML model that may be perfect 

for 1 population may not be so ideal in a different cohort. Hence, it is important that the 

quality of any ML model, and its subsequent adoption in medical practice, be grounded in 

not only its performance metrics but also proof of clinical improvement and good outcomes.

Limitations

Our study has limitations. Studies included in this review used a variety of methods and ML 

algorithms, preventing determination of the optimal ML algorithm, specifically for patients 

with LVO. No meta-analysis was conducted because of the heterogeneity of study designs, 

ML models, and outcomes.

CONCLUSIONS

Although AI is useful for the triage, diagnosis, patient selection, and outcome prediction 

for LVO, applications remain largely at the investigational stage. Most literature has focused 

on the diagnosis, showing reasonably high accuracy. Priorities for future applications of AI 

should shift beyond diagnosis to optimization of treatment via more nuanced selection of 

patients for MT and associated prediction of clinical and angiographic outcomes. Above all, 

applications of AI to LVO must be clinically translatable.
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Supplementary material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations and Acronyms

AI Artificial intelligence

AIS Acute ischemic stroke

ANN Artificial neural network

ASPECTS Alberta Stroke Program Early CT Score

AUC Area under the curve

CNN Convolutional neural network

CT Computed tomography

CTA Computed tomography angiography

GB Gradient boosting

LVO Large-vessel occlusion

mCTA multiphase computed tomography angiography

mRS modified Rankin Scale

MT Mechanical thrombectomy

NIHSS National Institutes of Health Stroke Scale

RF Random forest

SVM Support vector machine
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Figure 1. 
PRISMA flowchart outlining the search and review process used to identify and select 

articles for inclusion.
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Figure 2. 
The main topic of included articles. ASPECTS, Alberta Stroke Program Early CT Score; 

CT, computed tomography.
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