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Abstract

Background: Evidence has suggested that cytokine storms may be associated with T cell exhaustion (TEX) in COVID-19. However, the
interaction mechanism between cytokine storms and TEX remains unclear.

Methods: With the aim of dissecting the molecular relationship of cytokine storms and TEX through single-cell RNA sequencing data
analysis, we identified 14 cell types from bronchoalveolar lavage fluid of COVID-19 patients and healthy people. We observed a novel
subset of severely exhausted CD8 T cells (Exh T_CD8) that co-expressed multiple inhibitory receptors, and two macrophage subclasses
that were the main source of cytokine storms in bronchoalveolar.

Results: Correlation analysis between cytokine storm level and TEX level suggested that cytokine storms likely promoted TEX in
severe COVID-19. Cell–cell communication analysis indicated that cytokines (e.g. CXCL10, CXCL11, CXCL2, CCL2, and CCL3) released
by macrophages acted as ligands and significantly interacted with inhibitory receptors (e.g. CXCR3, DPP4, CCR1, CCR2, and CCR5)
expressed by Exh T_CD8. These interactions formed the cytokine–receptor axes, which were also verified to be significantly correlated
with cytokine storms and TEX in lung squamous cell carcinoma.

Conclusions: Cytokine storms may promote TEX through cytokine-receptor axes and be associated with poor prognosis in COVID-
19. Blocking cytokine-receptor axes may reverse TEX. Our finding provides novel insights into TEX in COVID-19 and new clues for
cytokine-targeted immunotherapy development.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic has caused
>500 million infections and 6.2 million deaths by 27th April
2022 (WHO data at https://www.who.int/emergencies/diseases/n
ovel-coronavirus-2019). The over-production of pro-inflammatory
cytokines known as a cytokine storm resulted in immune sys-
tem disorders including constitutional symptoms, systemic in-
flammation, and multiorgan dysfunction that increase the risk
of death.1,2 It is recognized that cytokine storms may be as-
sociated with CD8 T cell exhaustion (TEX) in severe COVID-
19.3–5 Maraviroc, a C-C chemokine receptor 5 (CCR5) antagonist,
which may reverse lymphoid exhaustion and alter the cell traf-
ficking of inflammatory cells, has been tested in clinical trials
for severe COVID-19 (ClinicalTrials.gov Identifier: NCT04435522,
NCT04441385, and NCT04475991). CCR5 inhibition could also re-
duce cytokine storms, increase CD8 T cells, and decrease SARS-
CoV-2 RNA abundance in severe COVID-19.6 However, the inter-
play mechanism between cytokine storms and TEX remains un-
clear. For example, how do cytokine storms affect TEX and fur-
ther impact clinical outcomes? Answers to these questions are
urgently needed for the development of new drugs and thera-

pies that act by decreasing cytokine storms and reactivating ex-
hausted T cells.

TEX also occurs in many chronic viral infections, including hu-
man immunodeficiency virus (HIV),7,8 hepatitis C virus (HCV),9

and hepatitis B virus (HBV).10 Similarly, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) can potentially destroy the
function of CD4 T cells and promote the excessive activation and
possible subsequent exhaustion of CD8 T cells.11 Patients with
severe COVID-19 might have cytokine storm syndrome or hy-
perinflammatory syndrome characterized by fulminant and fa-
tal hypercytokinaemia with multiorgan failure.1 Recent reports
also indicated that the increasing pro-inflammatory cytokine or
chemokine responses damaged the homeostasis of the immune
system, resulting in cytokine storm syndromes in patients with
severe SARS-CoV-2 infection.1 Systemically elevated cytokines are
cardiotoxic and possibly lead to myocardial injury. A minority of
patients have the cardiovascular manifestations of COVID-19 dis-
ease, such as viral myocarditis, associated with a high risk of mor-
tality.12

In this study, we aimed to dissect the molecular relation-
ship between cytokine storms and TEX, and to determine the
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Table 1. Clinical information of the patient samples used in this study.

Donor Gender Age (years) Severity Disease Tissue GEO Sample ID (GSM)

M1 Male 36 Moderate COVID-19 BALF GSM4339769
M2 Female 37 Moderate COVID-19 BALF GSM4339770
M3 Male 35 Moderate COVID-19 BALF GSM4339772
S1 Male 62 Severe COVID-19 BALF GSM4339773
S2 Male 66 Severe COVID-19 BALF GSM4339771
S3 Male 38 Severe COVID-19 BALF GSM4339774
S4 Female 65 Severe COVID-19 BALF GSM4475051
S5 Female 36 Severe COVID-19 BALF GSM4475052
S6 Male 46 Severe COVID-19 BALF GSM4475053
HC1 Female 38 Healthy COVID-19 BALF GSM4475048
HC2 Male 24 Healthy COVID-19 BALF GSM4475049
HC3 Male 22 Healthy COVID-19 BALF GSM4475050
C1A Male 60–69 Moderate COVID-19 PBMC GSM4557327
C1B Male 60–69 Severe COVID-19 PBMC GSM4557328
C2 Male 40–49 Moderate COVID-19 PBMC GSM4557329
C3 Male 60–69 Severe COVID-19 PBMC GSM4557330
C4 Male 30–39 Severe COVID-19 PBMC GSM4557331
C5 Male 50–59 Moderate COVID-19 PBMC GSM4557332
C7 Male 20–29 Moderate COVID-19 PBMC GSM4557333
H1 Female 40–49 Healthy COVID-19 PBMC GSM4557334
H2 Male 40–49 Healthy COVID-19 PBMC GSM4557335
H3 Female 30–39 Healthy COVID-19 PBMC GSM4557336
H4 Male 40–49 Healthy COVID-19 PBMC GSM4557337
H5 Male 40–49 Healthy COVID-19 PBMC GSM4557338
H6 Male 30–39 Healthy COVID-19 PBMC GSM4557339

prognostic significance of cytokine storms. We first profiled and
characterized immune cell types from bronchoalveolar lavage
fluid (BALF) of COVID-19 patients and healthy people through
single-cell RNA sequencing data analysis. We then focused the
analysis on a subset of severely exhausted CD8 T cells that
co-expressed several inhibitory receptors and significantly in-
teracted with macrophages through the cytokines released by
macrophages. Further, we found that cytokine–receptor interac-
tion axes (e.g. CCL2-CCR2, CCL3-CCR1, CCL3-CCR5, CCL4-CCR5,
CCL4L2-VSIR, and CCL3L1-CCR1) observed in severe COVID-19
were significantly correlated with TEX. Our study tried to pro-
vide new insights into the interplay mechanism between cytokine
storms and TEX, and to suggest potential cytokine-targeted drug
development for COVID-19.

Materials and methods
Source data retrieval
The raw count matrices of single-cell sequencing data for BALF
(GSE145926)13 and peripheral blood mononuclear cells (PBMC)
(GSE150728)14 were downloaded from NCBI Gene Expression Om-
nibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). A total of 12
BALF samples were collected from 6 severe COVID-19 patients, 3
moderate COVID-19 patient samples, and 3 healthy controls. The
13 PBMC samples included 3 severe COVID-19 patient samples, 4
moderate COVID-19 patient samples, and 6 healthy controls. The
clinical information of the patient samples and the definition of
disease severity are summarized in Table 1.13,14 For the PBMC and
BALF samples, most patients belonging to the severe group were
males or >60 years old. Detailed information of the source data is
listed in Supplementary Table 1, see online supplementary mate-
rial. The tools used in this study are summarized in Supplemen-
tary Table 2, see online supplemetary material.

Quality control on single-cell RNA-seq data
We performed quality control for the raw count data of each
single-cell RNA-seq sample using Seurat (v4). To ensure the con-
sistency of the analysis, we applied the same criteria to all the
samples of healthy, moderate, and severe groups. During acute
infection, T cell metabolic activity is increased, possibly result-
ing in mitochondrial gene expression.15 Therefore, the mitochon-
drial gene percentage, a key parameter for filtering cells, was set
at 20%. In addition, the cells that expressed <200 genes or >6000
genes were also discarded. For gene filtering, genes that were ex-
pressed in <10 cells were removed from the final count matrix.
After the quality control, 84 114 cells from BALF and 48 507 PBMC
were retained for further analysis.

Clustering, annotation, and identification of cell
types
Due to the heterogeneity of BALF and PBMCs, we adopted two dif-
ferent strategies of clustering and analysis. For BALF, each dataset
was normalized and identified with the top 2000 variable features
by the “vst” method in Seurat (v4). Then, to correct batch effects
among the samples, all datasets were integrated into a filtered
gene-barcode matrix using the “FindIntegrationAnchors” and “In-
tegrateData” functions in Seurat. Dimensionality reduction was
performed by principal component analysis (PCA). Then we used
the JackStraw procedure16 wrapped in Seurat and the Elbow plot
to evaluate how many principal components (PCs) should be cho-
sen to perform further clustering analysis. According to the eval-
uation result of the PCs, we tried a series of PC numbers (40–
60) (Supplementary Fig. 2A, see online supplementary material)
to cluster cells and subsequently identified the best PC number
based on the expression of the well-known cell type (T cell) mark-
ers by using the “VlnPlot” function. To our prior knowledge, T cells
have similar expression patterns and should be clustered together
during cell clustering. When the PCs number was set as 50, the
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Figure 1. Identification of cell types in BALF and cell–cell interaction of exhausted CD8 T cells. (A) Overview of the cell clusters in BALFs (n = 12)
derived from across healthy people (n = 3), moderate (n = 3), and severe (n = 6) COVID-19 patients. (B) Dot plots show the expression level of canonical
markers representing cell types and genes related to SARS-CoV-2 entry into cells. Cell types and their corresponding genes are listed at the bottom.
Each dot is colored according to the scale expression and sized by the percentage of cells in a cluster (row) which expresses a given gene (column). (C)
UMAP plots of BALF colored by cell types across three disease states including healthy (left panel), moderate (middle panel), and severe (right panel).
(D) Violin plots show the expression of canonical maker genes (rows) which represent the distinct cell types (columns) and multiple inhibitory
receptors indicating TEX. (E) Top 20 pathway/process enrichment analysis of all highly expressed genes in exhausted CD8 T cells; adjusted P
value < 0.0001 (hypergeometric test, adjusted P-values obtained by the Benjamini–Hochberg procedure). (F) The cell percentages of Exh T_CD8,
Macro/T, Epi squamous, B, Plasma, and Macro cells among healthy controls (n = 3), moderate patients (n = 3), and severe patients (n = 6). The
Kruskal–Wallis H test was used for comparing the three disease states. (G) Venn diagrams display the numbers of cells concurrently expressing CD3D,
CD163, and LAG3 in Macro/T (left panel) and Macro (right), respectively. B, B cells. DC, dendritic cells. Epi, squamous epithelial cells. Exh T_CD8,
exhausted CD8 T cells. Macro, macrophages. Macro/T, a mixture of macrophages and T cells. Mono, monocytes. Neu, neutrophils. NK, nature kill cells.
pDC, plasmacytoid dendritic cells. Plasma, plasma cells. T, T cells. T_CD4, CD4 T cells. T_CD8, CD8 T cells.
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T cell cluster was clearly observed in our cell clusters (Fig. 1C).
Therefore, the top 50 PCs were used to conduct uniform mani-
fold approximation and projection (UMAP) for the visualization
of single-cell groups in 2D space. Meanwhile, the top 50 PCs were
also used to construct a shared nearest-neighbour graph (SNN;
FindNeighbors), followed by graphical clustering (FindClusters)
with the graph-based modularity-optimization algorithm Louvain
for community detection. The resolution was a flexible param-
eter varying with the total number of cells during cell cluster-
ing. Larger resolution makes more clusters. To cluster 84 114
cells of BALF, we tested different resolution values from 0.8 to
1.5 and then set 1.2 as the best resolution. Furthermore, spe-
cific markers in each cluster were identified by the “FindAll-
Markers” function and each cluster was assigned to a known
cell type using the combination of SingleR automatic annota-
tion and manual annotation according to canonical genes from
CellMarker.17 Then we again applied the “FindAllMarkers” func-
tion to obtain highly expressed genes of each cell type. Finally, to
understand the molecular biological characteristics of exhausted
CD8 T cells, we applied Metascape (https://metascape.org/) to
perform a pathway enrichment analysis on all highly expressed
genes with the average log2 (fold-change) of >0.25 and adjusted
P value < 0.05.18

For the PBMC data analysis, all filtered datasets were first
merged into a gene-barcode matrix with the “merge” function
in Seurat. The gene-barcode matrix was first normalized by us-
ing the ‘LogNormalize’ method in Seurat (v4) with default pa-
rameters. The top 2000 variable genes were then identified us-
ing the ‘vst’ method in the Seurat “FindVariableFeatures” func-
tion. Using the same method in the BALF data analysis, we tested
a series of PC numbers (15–20) (Supplementary Fig. 3A, see on-
line supplementary material) and finally determined 18 as the
best PC number for cell clustering. So, dimension reduction was
performed based on the top 2000 variable genes with PCA and
then UMAP was performed on the top 18 PCs. We also tested the
various values of resolution ranging from 0.5 to 1.0, and found
0.7 made the finest clustering for the PBMC data. Finally, we as-
signed each cluster to a known cell type in the same manner for
BALF.

Additionally, we also reviewed and tried other deep-learning-
based methods19–24 to cluster the single cell RNAseq data to val-
idate our results of cell clustering. To identify the cell types en-
riched in BALF and PBMC of the severe COVID-19 patient group,
we applied the Kruskal–Wallis test to compare the percentages of
each cell type among severe, moderate, and healthy groups.

Cell–cell interaction analysis
To establish a cell–cell interaction network via ligand–receptor in-
teractions, we applied CellPhoneDB25 to the single cell raw count
matrices of BALF and PBMC respectively in severe COVID-19 pa-
tients. The ligand–receptor pairs that were expressed in <10% of
cells were discarded. To identify the significant cell–cell interac-
tions, we performed permutation tests between two cell types me-
diated by a specific ligand–receptor pair. The permutation tests
were based on the mean gene expression of the ligand from
one cell type and the corresponding receptor from another cell
type. According to the protocol of CellPhoneDB, the smaller the P-
value, the more reliable the resulting ligand-receptor complexes.
Therefore, to reduce the false positives, P-value < 0.01 was con-
sidered statistically significant. Finally, we constructed a cell–cell
crosstalk network based on the number of cell–cell interactions.

Association analysis of cell types related to
strong cytokine storm and immune exhaustion
scores for BALF
To explore cytokine storm-related cell types, we collected the cy-
tokine storm genes (CXCL10, CCL3, CCL2, IL2, IL7, CSF3, TNF, and
IL6) from a previous study1 and defined cytokine storm scores us-
ing the “AddModuleScore” function in Seurat (v4). We then used
the sigmoid function to normalize cytokine storm scores to a
range from 0 to 1 and plotted the normalized scores in a UMAP
plot. We defined the immune exhaustion score based on six in-
hibitory receptors (PDCD1, CTLA4, LAG3, BTLA, TIGIT, and HAVCR2)
through the same definition method as for cytokine storm score.
We performed the Mann–Whitney rank test for each cell type’s
score versus all other types’ score, and the Kruskal–Wallis test for
every cell type score comparison among severe, moderate, and
healthy groups. Pearson correlation was applied to correlate the
median cytokine storm scores of macrophages with the median
immune exhaustion scores of (exhausted) CD8 T cells across three
groups for BALF.

Re-clustering the macrophages of BALF to
identify subclasses related to cytokine storm
To investigate which macrophage subclasses were the main
source of cytokines, we separated macrophages from all the cell
types of BALF by the “SplitObject” function. Then we tested a se-
ries of resolution values (0.1–0.9) to re-cluster macrophages and
combined the expression of cytokine storm genes in the identi-
fied clusters to determine the best resolution value. Then we re-
clustered these cells into 7 subclasses by using the “FindClusters”
function with a resolution of 0.2. We tried UMAP andt-distributed
stochastic neighbor embedding (tSNE) to visualize the 7 sub-
classes of macrophages and found tSNE made more clear clus-
tering 2D space. Following the same approach for determining the
previously mentioned PC parameter, we set 45 as the best PC num-
ber to cluster. We performed tSNE on the top 45 PCs to visualize
the distribution of macrophage subclasses among severe, moder-
ate, and healthy groups. Then we calculated the expression level
of cytokine storm-related genes across 7 macrophage subclasses
and identified differently expressed genes in each subclass using
the “FindAllMarkers” function. We compared the percentages of 7
subclasses among three disease states using the Kruskal–Wallis
test. We conducted the pathway and process enrichment anal-
yses based on the top 100 highly expressed genes in subclasses
enriched in the severe group.

Statistical analysis
Statistical discrete analyses were performed in R (version 3.5.1,
http://www.r-project.org). The Kaplan–Meier estimate and log-
rank testing were used to perform survival analysis. We used
the Wilcoxon rank-sum test to analyse the correlation between
continuous variables and categorical variables. We used the
‘corr.test’ function wrapped in psych (https://CRAN.R-project.org
/package = psych) for Pearson analysis and P-value adjustment.

Results
Identifying severe CD8 TEX and relevant cell
types in BALF of COVID-19 patients via
single-cell transcriptomic analysis
To explore TEX in the bronchoalveolar immune microenviron-
ment, we conducted an analysis on the scRNA-seq data de-
rived from BALF cells of patients with moderate and severe
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COVID-19, and of healthy controls. The original sequencing data
and the clinical features are available from the publicly reported
study by Liao et al.13 Graph-based clustering identified 30 clusters
(Fig. 1A and B). Based on the expression with at least two canon-
ical genes from multiple COVID-19 single-cell studies,13,17,26 we
assigned each cluster to 14 cell types (Fig. 1B and C). In partic-
ular, we defined the exhausted CD8 T cell (Exh T_CD8) cluster
based on the elevated expression of multiple inhibitory receptors
(TIGIT, LAG3, PDCD1, CTLA4, and HAVCR2) (Fig. 1D and Supple-
mentary Table 3, see online supplementary material), and this
cluster has not been reported by previous studies.13 Gene anno-
tation and enrichment analysis of all differently expressed genes
in the exhausted CD8 T cell cluster versus other cell clusters
(Supplementary Table 3) suggested that these T cells might have
enhanced the metabolism of RNA and cell division (Fig. 1E). No-
table differences of cell type distribution could be observed based
on the UMAP among the different infection states (healthy, mod-
erate, and severe) (Fig. 1C). Exh T_CD8, squamous epithelial cells
(Epi), and the mixture of macrophage and T cells (Macro/T) were
visually enriched in the severe COVID-19 group (Fig. 1C). In addi-
tion, we used several deep-learning-based methods19–24 to clus-
ter the cells and found scvi-tools produced a comparable result.
Specifically, 45 clear clusters were identified (Supplementary Fig.
1A). When applying the cell annotation from the Seurat result to
these clusters, most of the cells for each cell type were clustered
together in UMAP (Supplementary Fig. 1B).

We compared the percentage of each cell type among three
disease states, and found that Exh_T CD8, Macro/T, and Epi cells
were enriched in the severe group and the other cell types were
not enriched in any group (Fig. 1F and Supplementary Fig. 2B).
Specifically, Exh T_CD8 did not show significant statistical sig-
nificance, but the median percentage of Exh T_CD8 tended to be
higher in the severe COVID-19 group (Fig. 1F). Notably, the Macro/T
cell type was a unique cluster, which was observed in the severe
group only (Fig. 1C and F) and expressed the canonical genes of
both macrophages (CD163, MARCO, and FCGR1A) and T cells (CD2,
CD3E, and CD3D) (Fig. 1D). Epi were significantly enriched in both
the moderate and severe groups with SARS-CoV-2 infection, and
the median percentage in the severe group was higher than that
in the moderate group (Fig. 1F).

Cytokine storm promoting TEX in severe
COVID-19 via cytokine-receptor interaction axes
Recent studies suggested that cytokine storm was strongly asso-
ciated with COVID-19 severity, and macrophages may contribute
to cytokine storms in BALF.13,26–29 Therefore, we analysed the
single-cell sequencing data of BALF samples infected by SARS-
CoV-2, and interrogated the potential relationship between cy-
tokine storm and TEX. We computed the cytokine storm scores
based on the expression of eight reported pro-inflammatory cy-
tokines (IL2, IL7, CSF3, CXCL10, CCL2, CCL3, TNF, and IL6) detected
in patients with cytokine storms,1 as well as the immune exhaus-
tion scores based on the expression of six inhibitory receptors
(PDCD1, CTLA4, LAG3, BTLA, TIGIT, and HAVCR2). As expected, the
macrophages in the severe group had the highest cytokine storm
scores among healthy, moderate, and severe groups (Fig. 2A and
B), and the cytokine storm scores of macrophages gradually in-
creased across the three groups (Fig. 2B). Surprisingly, the mix-
ture of macrophages and T cells (Macro/T) had both high cy-
tokine storm scores (Fig. 2B top panel) and high immune ex-
haustion scores (Fig. 2B bottom panel), suggesting that cytokine
storm likely promoted the interaction between macrophages and

T cells. On the other hand, all Exh T_CD8, T_CD4, and T cells
exhibited gradually increasing exhaustion level across healthy,
moderate, and severe groups (Fig. 2B bottom panel), indicating
that TEX occurred in the moderate group and was more seri-
ous in the severe group. Pearson correlation analysis illustrated
that with increasing cytokine storm scores of macrophages, TEX
level increased as well (Fig. 2C and D). Overall, these results indi-
cated that cytokine storms produced by macrophages promoted
TEX in the bronchoalveolar immune microenvironment of severe
COVID-19.

Then we explored the potential molecular mechanism via
which cytokine storms promoted TEX. Of 719 cells belonging to
Macro/T, 152 (21.14%) showed expression of LAG3, which is a typ-
ical inhibitory receptor representing TEX (Fig. 1G left). We sus-
pected that this cell type may be a technical artefact known as
“doublets” during single-cell RNA sequencing, as it was observed
in the severe group only. The percentage of macrophages in the
severe group was lower than that in the healthy group, indicat-
ing that the doublets may have no association with the high cell
mass of macrophages. All of this evidence suggested an under-
lying interaction of T cells and macrophages, which possibly re-
sulted in the occurrence of the Macro/T “doublets”. Therefore,
we performed a cell–cell communication analysis through Cell-
PhoneDB25 based on the combined expression of multi-subunit
ligand–receptor complexes for the severe group cells. We found
that Exh CD8_T cells had higher numbers of interactions with
macrophages (Macro) and Macro/T cells (Fig. 2E). Specifically, cy-
tokines (CXCL10, CXCL11, CXCL2, CCL2, CCL3, and so on) ex-
pressed in macrophages acted as ligands and significantly in-
teracted with receptors (CXCR3, DPP4, CCR1, CCR2, CCR5, and
so on) expressed in exhausted CD8 T cells (Exh T_CD8), form-
ing the cytokine–receptor interaction axes (Fig. 2G). Multiple in-
hibitory receptors (CTLA4, PDCD1, TIGIT and HAVCR2) expressed
in exhausted CD8 T cells significantly interacted with membrane
protein genes (CD86, CD80, CD274/PD-L1, and NECTIN2). Cell–cell
interaction analysis indicated that macrophages interacted with
Exh T_CD8 cells via the cytokine–receptor axes in the severe group
(Fig. 2F). Meanwhile, Epi cells had a high number of interactions
with Macro, Macro/T, and Exh T_CD8 cells (Fig. 2F), and many
membrane proteins expressed in Epi cells interacted with mem-
brane proteins, cytokines and secretory proteins expressed in Exh
T_CD8 cells (Fig. 2H).

Two macrophage subtypes were the main source
of cytokine storms
To further decompose the macrophage heterogeneity and identify
macrophage subsets that contributed to cytokine storms, we re-
clustered these macrophage cells into six subclasses (Macro_C0
to Macro_C5) (Fig. 3A). Macro_C0 and Macro_C4 were enriched
in the severe group (Fig. 3C) and had higher expression lev-
els of cytokine-storm genes (CXCL10, CXCL11, CCL2, CCL3, CCL4,
TNF, and TGFB1) than other subclasses (Fig. 3B). Macro_C2 and
Macro_C5 were enriched in the healthy control (Fig. 3C) but lacked
expression of cytokine-storm genes (Fig. 3B). This evidence sug-
gested that Macro_C0 and Macro_C4 macrophage subclasses were
the main sources of cytokine storms in the bronchoalveolar im-
mune environment. Pathway and process enrichment analysis of
the top 100 differently expressed genes (Supplementary Table 4,
see online supplementary material) in Macro_C0 and Macro_C4
respectively illustrated that these genes played vital roles in cy-
tokine signalling in the immune system, interferon signalling, and
interleukin-10 signalling (Fig. 3D and E).
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Figure 2. Impacts of cytokine storms derived from macrophages on CD8 T cell exhaustion. (A) UMAP plots of BALF cells colored by cytokine storm (top
panel) and immune exhaustion (bottom panel) scores across healthy controls (n = 3), moderate patients (n = 3), and severe patients (n = 6). The scores
were scaled as 0–1. (B) Cytokine storms (top panel) and immune exhaustion (bottom panel) scores. (C and D) Pearson correlation between immune
exhaustion score of CD8 T (T_CD8 and Exh T_CD8 respectively) and cytokine storm score of macrophages. (E) Heatmap shows the log2 (transformed
number) of interactions between different cell types. (F) The cell–cell interaction network shows interaction frequencies between different cell types.
Colorful nodes represent cell types, edges stand for cell–cell interaction, and their sizes indicate interaction numbers. (G and H) Dot plots show the
selected ligand–receptor interactions mediating cell–cell communications: (G) is for macrophages and other cell types and (H) for squamous epithelial
cell and other cell types. The circle size indicates P value. The means of the average expression levels of interacting molecule 1 in cluster 1 and
interacting molecule 2 in cluster 2 are indicated by colour.
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Figure 3. Identification of macrophage subclasses related to cytokine storms. (A) tSNE map plot of the macrophages colored by heterogeneous
subclasses and split into the three disease states (healthy, moderate, and severe). (B) Dot plots show the expression levels of cytokine storms-related
genes across 7 macrophage subclasses. (C) Boxplots show the cell percentages of 4 macrophage subclasses across three disease states. (D and E) The
top 20 enriched pathways/processes of the top 100 differently expressed genes in Macro_C0 (D) and Macro_C4 (E) (hypergeometric test, adjusted
P-values obtained by the Benjamini–Hochberg procedure). (F) Heatmap shows the regulon specificity score (RSS) for transcriptional factors (columns)
corresponding to cell types (rows).
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Identification of transcription factors related to
TEX and cytokine storms
The biogenesis of TEX and cytokine storm relies on the intra-
cellular transcriptional state driven by transcription factors.30,31

The transcriptional state of a cell emerges from an underlying
gene regulatory network (GRN) in which a limited number of tran-
scription factors (TFs) and cofactors regulate each other and their
downstream target genes.32 Using pySCENIC, we reconstructed
regulons based on the raw count matrix of the severe group and
assessed the enrichment score for each regulon’s target genes
(AUCell). We identified master regulons that were specific to cell
types via the regulon specificity score (RSS) (Supplementary Ta-
ble 5, see online supplementary material). Finally, we predicted
that transcription factor genes TBX21, NFATC2, and EOMES, which
were involved in the transcriptional regulatory network for the
development of TEX,33 were the master regulons with higher
RSS for exhausted T cells (Fig. 3F). GFI1, ZNF90, E2F8, E2F2, and
EZH2 were also specific to exhausted T cells and may play a vi-
tal role in TEX in severe COVID-19. In terms of macrophages,
interferon regulatory factor 5 (IRF5) and NR1H3 involved in the
inflammation-related transcriptional programs of macrophages34

were predicted as master regulons that might regulate cytokine-
related gene expression (Fig. 3F).

Cytokine storms showed no association with
TEX in PBMC
To investigate how cytokine storms impact TEX in peripheral
blood of patients with COVID-19, we performed scRNA-Seq data
analysis of PBMC samples of moderate COVID-19, severe COVID-
19, and healthy control. A total of 24 cell clusters were identified,
including harboured monocyte, monocytesderived macrophage,
T, CD4 T, CD8 T, B, plasma, and NK cells (Fig. 4A and B). We com-
pared the percentage of each cell type and observed that the
plasma cells and a subclass of macrophages (Macro_C1) were sig-
nificantly enriched in PBMC of severe COVID-19 (Fig. 4D and E, and
Supplementary Fig. 3B). Pathway and process enrichment analy-
sis of the top 100 highly expressed genes in Macro_C1 showed that
these genes were also associated with cytokine-related pathways
and processes (Fig. 4F). With respect to TEX, compared with the ex-
hausted T cell cluster which expressed multiple inhibitory recep-
tors in BALF, only a subset of T cells had the expression of TIGIT,
LAG3, or HAVCR2 in PBMC (Fig. 4B). We then calculated immune
exhaustion scores and cytokine storm scores of PBMC. We found
a minority of cells with high immune exhaustion scores or cy-
tokine storm scores, but these cells were not significantly enriched
in each of the groups or cell types (Fig. 4G and H). Cell–cell in-
teraction analysis illustrated that macrophages did not have high
frequency of interactions with T cells in PBMC of severe COVID-19
(Fig. 4I and J). These results indicated that although a macrophage
subclass related to cytokine production occurred in PBMC of se-
vere COVID-19, the macrophages did not cause cytokine storms
in PBMC.

Gene expression of cytokine–receptor interaction
axes correlated with poor prognosis in lung
squamous cell carcinoma
Cytokine storm is a common clinical feature in both severe
COVID-19 and lung squamous cell carcinoma (LUSC).35 Exhausted
T cells are widely present in the tumour microenvironment, lead-
ing to immune evasion.36 To validate cytokine storm-related axes
that impact TEX, we performed expression analysis in a TCGA

LUSC cohort to explore the co-expression of cytokines and re-
ceptors that formed the interaction axes in severe COVID-19. The
paired genes of CCL2-CCR2 (R = 0.66, adjusted P < 0.001), CCL3-
CCR1 (R = 0.82, adjusted P < 0.001), CCL3-CCR5 (R = 0.73, adjusted
P < 0.001), CCL4-CCR5 (R = 0.87, adjusted P < 0.001), CCL4L2-VSIR
(R = 0.43, adjusted P < 0.001), and CCL3L1-CCR1 (R = 0.43, adjusted
P < 0.001) axes were co-expressed in LUSC (Fig. 5A), suggesting
that cytokines may also interact with the receptors of T cells and
promote TEX in LUSC. Of these cytokine–receptor axes, the CCL2-
CCR2 axis has been reported to be involved in immune evasion
through PD-1 signalling in esophageal carcinogenesis.37,38 In our
study, the cytokine genes (CCL2, CCL3, CCL4, CCL3L1, and CCL4L2)
showed correlations with PD-1 (PDCD1) expression (Fig. 5B). Sur-
vival analysis based on the grouping of cytokine gene expres-
sion levels indicated that the high expression of CCL2, CCL3, CCL4,
CCL3L1, and CCL4L2 was significantly associated with poor prog-
nosis in LUSC (Fig. 5C). In brief, these evidences demonstrated that
similar cytokine storms promoted TEX in COVID-19 and LUSC,
and were associated with poor clinical outcomes. The cytokine-
receptor axes may be a potential targets of immunotherapy. The
targeted drugs of the cytokine–receptor axes are summarized in
Table 2.

Discussion
Cytokine storms involve elevated levels of pro-inflammatory cy-
tokine and immune cell hyperactivation, leading to coagulopa-
thy, multiple organ failure and even death.1,35 It has been re-
ported that cytokine storms are associated with TEX.4,5 However,
knowledge about how cytokine storms impact TEX remains lack-
ing. In this study, we revealed that cytokine storms released by
macrophages promoted TEX via CCL2-CCR2, CCL3-CCR1, CCL3-
CCR5, CCL4-CCR5, CCL4L2-VSIR, and CCL3L1-CCR1 axes, that are
associatied with poor prognosis of COVID-19.

To investigate the interaction mechanism between cytokine
storms and TEX, we first analysed single-cell sequencing data of
BALF samples of COVID-19 to identify and define 14 cell-type clus-
ters. Of them, the severely exhausted CD8 T cell cluster expressed
multiple distinct inhibitory receptors and was enriched in BALF
of severe COVID-19. The co-expression of multiple inhibitory re-
ceptors was associated with higher exhaustion levels of CD8 T
cells and more severe infection during viral infection.39 This se-
vere exhausted CD8 T cell type has not been reported by previous
studies.13,26 Because severe exhausted T cells displayed accumu-
lation of mitochondria,40 the low mitochondrial gene percentage
parameter setting in the single-cell quality control led to the re-
moval of these cells in previous studies. Consistent with previous
studies,13,26 Epi cells accounted for a significantly higher cell pro-
portion of BALF in severe COVID-19 compared with that in moder-
ate COVID-19 or healthy controls. Interestingly, the Macro/T cell
type which may be “doublets” of macrophages and T cells and ex-
pressed exhaustion markers such as LAG3 and HAVCR2, only ex-
isted in BALF of severe COVID-19.

We suspected that the interaction of macrophages and T cells
caused the presence of Macro/T and was associated with TEX.
Therefore, we then conducted cell–cell communication analyses
which confirmed the presence of interaction between exhausted T
cells and macrophages in severe COVID-19 via cytokine–receptor
axes (CXCL2-DPP4, CXCL11-DPP4, CCL3L1-DPP4, CCL3L1-CCR1,
CCL3-CCR1, CCL2-CCR2, CCL3-CCR5, CCL4-CCR5, and CCL4L2-
VSIR). CXCL10, CXCL11, CCL2, CCL4 and CCL3 were involved in cy-
tokine storms as soluble mediators.31 Of these cytokine–receptor
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Figure 4. Single-cell RNA-seq analysis to investigate the impact of cytokine storms on TEX in PBMC. (A) Overview of the cell clusters in PBMCs (n = 13)
derived from across healthy people (n = 6), moderate (n = 4), and severe (n = 3) COVID-19 patients. (B) Dotplots show the expression level of canonical
markers representing cell types in PBMC. Cell types and their corresponding genes are listed at the bottom. (C) UMAP plots of PBMC colored by cell
type among three disease states (healthy control, moderate, and severe). Cell percentage comparisons of Macro_C1 (D) and plasma (E) in PBMC across
healthy controls, moderate, and severe patients. Kruskal–Wallis H test. (F) Pathway and process enrichment analysis of the top 100 highly expressed
genes in a subclass of macrophages (Macro_C1). UMAP plots of PBMCs colored by cytokine storm (G) and immune exhaustion (H) scores across three
disease states. The scores are scaled to 0–1. (I) Log2-transformed frequency of interactions between cell types of PBMC. (J) Cell–cell interaction network
shows the interaction frequencies between cell types of PBMC.
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Figure 5. Expression correlation analysis of cytokines and receptors in a LUSC cohort and survival analysis based on cytokine expression level. (A)
Correlation of expression between the paired genes CCL4-CCR2, CCL3-CCR1, CCL3-CCR5, CCL4-CCR5, CCL4L2-VSIR, and CCL3L1-CCR1. (B) Pearson
correlation analyses indicate the strong association of cytokines with PDCD1 expression. (C) High expression of CCL2, CCL3, CCL4, CCL3L1, and CCL4L2
is associated with poor overall survival of LUSC patients.
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Table 2. Cytokine–receptor axes identified in this study.

Axis Cytokine/receptor Description
Correlation among LUSC

cohort Drug

CCL3L1_CCR1 CCL3L1 C-C motif chemokine ligand 3 like 1 R = 0.43, P = 1.1e−12 No record
CCR1 C-C motif chemokine receptor 1 DAPTA, BX 471, CCL3 ,CCL4, J 113863

CCL3_CCR1 CCL3 C-C motif chemokine ligand 3 R = 0.82, P < 2.2e−16 ROX-888
CCR1 C-C motif chemokine receptor 1 DAPTA, BX 471, CCL3, CCL4, J 113863

CCL2_CCR2 CCL2 C-C motif chemokine ligand 2 R = 0.66, P < 2.2e−16 Danazol, Atorvastatin, Simvastatin,
Chondroitin sulfate, Risperidone

CCR2 C-C motif chemokine receptor 2 INCB3284, CCX915, Plozalizumab,
MK-0812, DAPTA

CCL3_CCR5 CCL3 C-C motif chemokine ligand 3 R = 0.73, P < 2.2e−16 ROX-888
CCR5 C-C motif chemokine receptor 5 Maraviroc, Dexamethasone, Efavirenz,

Etravirine, Ritonavir
CCL4_CCR5 CCL4 C-C motif chemokine ligand 4 R = 0.87, P < 2.2e−16 No record

CCR5 C-C motif chemokine receptor 5 Maraviroc, Dexamethasone, Efavirenz,
Etravirine, Ritonavir

CCL4L2_VSIR CCL4L2 C-C motif chemokine ligand 4 like 2 R = 0.43, P = 2.1e−12 No record
VSIR V-set immunoregulatory receptor No record

axes, CCL2-CCR2 and CCL3-CCR5 have been reported to regulate T
cell differentiation.41 Our result indicated that cytokine–receptor
axes mediate the communication between macrophages and ex-
hausted T cells, impacting TEX.

Further, as reported in previous studies,42 cytokine storm was
not observed in the moderate group of COVID-19, but was more
pronounced in the severe group. While TEX had been observed
in moderate patients, subsequently more serious TEX was seen
in the severe group. Correlation analysis indicated that cytokine
storm level was significantly positively correlated with TEX. This
evidence indicated that the presence of cytokine storm promoted
TEX in severe COVID-19. Additional cell subtype clustering in
macrophages suggested that macrophages might be a key source
of cytokine storms in BALF of severe COVID-19.

Blockade of the cytokine–receptor axes mediating the com-
munication between macrophages and exhausted T cells, such
as CCL2-CCR2, CCL3-CCR5, and CCL4-CCR5, may attenuate TEX.
Clinical trials (NCT04435522, NCT04441385, and NCT04475991) to
test the efficacy of maraviroc, a CCR5 antagonist for severe COVID-
19, are currently ongoing. Maraviroc may reverse TEX and reduce
cytokine storms.6 Moreover, dexamethasone, a drug for CCR5 gene
(GeneCards GCID: GC03P046383), was reported to be able to re-
duce 28-day mortality for severe COVID-19.43 These findings il-
lustrated that the cytokine–receptor axes may be important ther-
apeutic targets.

Cytokine storms showed no association with TEX in PBMC
of COVID-19; however, in lung cancer, especially LUSC, an
interleukin-6-related cytokine storm was observed.35 In our study,
the cytokine storm-related genes and corresponding receptor
genes found in severe COVID-19, were significantly correlated
with each other in LUSC, and these cytokines had strongly positive
correlation with PD-1 expression. This evidence confirmed that a
similar cytokine storm was present in LUSC and positively corre-
lated with severe TEX. The co-expression of cytokine and recep-
tor genes (CCL2-CCR2, CCL3-CCR1, CCL3-CCR5, CCL4-CCR5, CCL4L2-
VSIR, and CCL3L1-CCR1) confirmed that cytokine–receptor axes
found in COVID-19 may also play a critical role in TEX of LUSC.
Of these axes, a previous study demonstrated that the CCL2-
CCR2 axis can induce immune evasion via PD-1 signalling and
the blockade of this axis can enhance the antitumor efficacy of

CD8 T cells in esophageal carcinogenesis.37 Anlotinib can induce
CCL2 decreases and improve the survival of refractory advanced
nonsmall cell lung cancer patients,44 suggesting that patients
with high CCL2 expression level may benefit from this drug. High
expression of cytokine storm-related genes (CCL2, CCL3, CCL4,
CCL3L1, and CCL4L2) was significantly associated with poor prog-
nosis, confirming the prognostic value of cytokine storms in LUSC.

In conclusion, we revealed that cytokine storms may promote
TEX through cytokine–receptor axes associated with poor prog-
nosis in COVID-19. Similar findings were verified in LUSC. Block-
ing the cytokine–receptor axes, such as CCL2-CCR2, CCL3-CCR1,
CCL3-CCR5, CCL4-CCR5, CCL3L1-VSIR, and CCL3L1-CCR1, may
be a novel strategy to reverse TEX and furhter to treat severe
COVID-19 with cytokine storm-related immune exhaustion. Some
cytokine–receptor axes (e.g. CCL2-CCR2 and CCL3-CCR2) have
been confirmed to be involved in TEX-related immune evasion in
other diseases though experiments. However, the molecular re-
lationship between cytokine storms and TEX were not fully in-
vestigated experimentally. Through bioinformatics analysis dur-
ing this study, we provided a new insight into the molecular re-
lationship between cytokine storms and TEX, suggesting a clue
to potential cytokine-targeted strategies for immunotherapy and
indicating the prognostic significance of cytokine storms.
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