Skip to main content
. 2022 Apr 7;135(1):159–169. doi: 10.1213/ANE.0000000000006015

Table 2.

Average Performance Metrics (Precision, Recall, MCC, Cohen’s Kappa, Sensitivity, Specificity, and AUC) for Each Machine Learning Modeling Predicting Surgery Ending by 5 pm and Patient Discharged From PACU by 7 pm Based on 1 pm, 2 pm, 3 pm, or 4 pm Start

1 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm
Without SMOTE With SMOTE
Classifier Precision Recall MCC Sensitivity Specificity AUC Precision Recall MCC Sensitivity Specificity AUC
 Logistic regression 0.956 0.996 0.152 0.996 0.064 0.809 0.986 0.784 0.269 0.784 0.766 0.829
 Balanced random forest classifier 0.991 0.855 0.378 0.855 0.832 0.913 0.979 0.974 0.516 0.984 0.564 0.919
 Balanced bagging classifier 0.991 0.882 0.414 0.883 0.824 0.919 0.981 0.979 0.555 0.978 0.583 0.928
 Random forest classifier 0.968 0.996 0.480 0.996 0.309 0.929 0.979 0.974 0.517 0.974 0.569 0.919
 Multilayer perceptron neural network 0.959 0.994 0.231 0.996 0.123 0.844 0.984 0.838 0.295 0.838 0.711 0.847
 Support vector classifier 0.956 0.998 0.149 0.998 0.049 0.724 0.844 0.849 0.327 0.848 0.751 0.858
2 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm
Without SMOTE With SMOTE
Classifier Precision Recall MCC Sensitivity Specificity AUC Precision Recall MCC Sensitivity Specificity AUC
 Logistic regression 0.909 0.982 0.327 0.982 0.222 0.798 0.950 0.766 0.317 0.766 0.685 0.796
 Balanced random forest classifier 0.972 0.832 0.476 0.832 0.811 0.899 0.952 0.952 0.576 0.952 0.625 0.903
 Balanced bagging classifier 0.969 0.870 0.512 0.870 0.782 0.905 0.953 0.961 0.604 0.961 0.624 0.912
 Random forest classifier 0.933 0.982 0.543 0.982 0.445 0.909 0.952 0.951 0.572 0.951 0.622 0.901
 Multilayer perceptron neural network 0.912 0.980 0.352 0.980 0.253 0.824 0.953 0.800 0.358 0.800 0.691 0.828
 Support vector classifier 0.914 0.981 0.381 0.981 0.275 0.769 0.961 0.814 0.405 0.814 0.739 0.840
3 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm
Without SMOTE With SMOTE
Classifier Precision Recall MCC Sensitivity Specificity AUC Precision Recall MCC Sensitivity Specificity AUC
 Logistic regression 0.888 0.970 0.433 0.970 0.353 0.822 0.935 0.780 0.394 0.780 0.713 0.816
 Balanced random forest classifier 0.963 0.815 0.524 0.815 0.835 0.910 0.937 0.941 0.609 0.941 0.661 0.910
 Balanced bagging classifier 0.961 0.853 0.563 0.853 0.816 0.916 0.936 0.952 0.632 0.952 0.656 0.919
 Random forest classifier 0.918 0.975 0.608 0.975 0.539 0.918 0.937 0.941 0.611 0.941 0.664 0.910
 Multilayer perceptron neural network 0.891 0.971 0.448 0.971 0.365 0.847 0.938 0.805 0.427 0.805 0.716 0.846
 Support vector classifier 0.886 0.980 0.447 0.980 0.329 0.809 0.952 0.783 0.453 0.783 0.789 0.855
4 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm
Without SMOTE With SMOTE
Classifier Precision Recall MCC Sensitivity Specificity AUC Precision Recall MCC Sensitivity Specificity AUC
 Logistic regression 0.674 0.588 0.449 0.588 0.846 0.821 0.736 0.764 0.465 0.764 0.720 0.809
 Balanced random forest classifier 0.701 0.833 0.620 0.833 0.808 0.900 0.829 0.775 0.632 0.775 0.861 0.901
 Balanced bagging classifier 0.726 0.817 0.634 0.817 0.832 0.903 0.837 0.773 0.642 0.773 0.871 0.905
 Random forest classifier 0.779 0.732 0.629 0.732 0.887 0.902 0.829 0.774 0.629 0.774 0.860 0.901
 Multilayer perceptron neural network 0.699 0.640 0.501 0.640 0.849 0.843 0.771 0.794 0.523 0.794 0.749 0.849
 Support vector classifier 0.708 0.670 0.527 0.670 0.850 0.844 0.767 0.817 0.534 0.817 0.740 0.846

Abbreviations: AUC, area under the receiver operating characteristic curve; MCC, Matthews correlation coefficient; PACU, postanesthesia care unit; SMOTE, synthetic minority oversampling technique.