Table 2.
1 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Without SMOTE | With SMOTE | |||||||||||
Classifier | Precision | Recall | MCC | Sensitivity | Specificity | AUC | Precision | Recall | MCC | Sensitivity | Specificity | AUC |
Logistic regression | 0.956 | 0.996 | 0.152 | 0.996 | 0.064 | 0.809 | 0.986 | 0.784 | 0.269 | 0.784 | 0.766 | 0.829 |
Balanced random forest classifier | 0.991 | 0.855 | 0.378 | 0.855 | 0.832 | 0.913 | 0.979 | 0.974 | 0.516 | 0.984 | 0.564 | 0.919 |
Balanced bagging classifier | 0.991 | 0.882 | 0.414 | 0.883 | 0.824 | 0.919 | 0.981 | 0.979 | 0.555 | 0.978 | 0.583 | 0.928 |
Random forest classifier | 0.968 | 0.996 | 0.480 | 0.996 | 0.309 | 0.929 | 0.979 | 0.974 | 0.517 | 0.974 | 0.569 | 0.919 |
Multilayer perceptron neural network | 0.959 | 0.994 | 0.231 | 0.996 | 0.123 | 0.844 | 0.984 | 0.838 | 0.295 | 0.838 | 0.711 | 0.847 |
Support vector classifier | 0.956 | 0.998 | 0.149 | 0.998 | 0.049 | 0.724 | 0.844 | 0.849 | 0.327 | 0.848 | 0.751 | 0.858 |
2 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm | ||||||||||||
Without SMOTE | With SMOTE | |||||||||||
Classifier | Precision | Recall | MCC | Sensitivity | Specificity | AUC | Precision | Recall | MCC | Sensitivity | Specificity | AUC |
Logistic regression | 0.909 | 0.982 | 0.327 | 0.982 | 0.222 | 0.798 | 0.950 | 0.766 | 0.317 | 0.766 | 0.685 | 0.796 |
Balanced random forest classifier | 0.972 | 0.832 | 0.476 | 0.832 | 0.811 | 0.899 | 0.952 | 0.952 | 0.576 | 0.952 | 0.625 | 0.903 |
Balanced bagging classifier | 0.969 | 0.870 | 0.512 | 0.870 | 0.782 | 0.905 | 0.953 | 0.961 | 0.604 | 0.961 | 0.624 | 0.912 |
Random forest classifier | 0.933 | 0.982 | 0.543 | 0.982 | 0.445 | 0.909 | 0.952 | 0.951 | 0.572 | 0.951 | 0.622 | 0.901 |
Multilayer perceptron neural network | 0.912 | 0.980 | 0.352 | 0.980 | 0.253 | 0.824 | 0.953 | 0.800 | 0.358 | 0.800 | 0.691 | 0.828 |
Support vector classifier | 0.914 | 0.981 | 0.381 | 0.981 | 0.275 | 0.769 | 0.961 | 0.814 | 0.405 | 0.814 | 0.739 | 0.840 |
3 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm | ||||||||||||
Without SMOTE | With SMOTE | |||||||||||
Classifier | Precision | Recall | MCC | Sensitivity | Specificity | AUC | Precision | Recall | MCC | Sensitivity | Specificity | AUC |
Logistic regression | 0.888 | 0.970 | 0.433 | 0.970 | 0.353 | 0.822 | 0.935 | 0.780 | 0.394 | 0.780 | 0.713 | 0.816 |
Balanced random forest classifier | 0.963 | 0.815 | 0.524 | 0.815 | 0.835 | 0.910 | 0.937 | 0.941 | 0.609 | 0.941 | 0.661 | 0.910 |
Balanced bagging classifier | 0.961 | 0.853 | 0.563 | 0.853 | 0.816 | 0.916 | 0.936 | 0.952 | 0.632 | 0.952 | 0.656 | 0.919 |
Random forest classifier | 0.918 | 0.975 | 0.608 | 0.975 | 0.539 | 0.918 | 0.937 | 0.941 | 0.611 | 0.941 | 0.664 | 0.910 |
Multilayer perceptron neural network | 0.891 | 0.971 | 0.448 | 0.971 | 0.365 | 0.847 | 0.938 | 0.805 | 0.427 | 0.805 | 0.716 | 0.846 |
Support vector classifier | 0.886 | 0.980 | 0.447 | 0.980 | 0.329 | 0.809 | 0.952 | 0.783 | 0.453 | 0.783 | 0.789 | 0.855 |
4 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm | ||||||||||||
Without SMOTE | With SMOTE | |||||||||||
Classifier | Precision | Recall | MCC | Sensitivity | Specificity | AUC | Precision | Recall | MCC | Sensitivity | Specificity | AUC |
Logistic regression | 0.674 | 0.588 | 0.449 | 0.588 | 0.846 | 0.821 | 0.736 | 0.764 | 0.465 | 0.764 | 0.720 | 0.809 |
Balanced random forest classifier | 0.701 | 0.833 | 0.620 | 0.833 | 0.808 | 0.900 | 0.829 | 0.775 | 0.632 | 0.775 | 0.861 | 0.901 |
Balanced bagging classifier | 0.726 | 0.817 | 0.634 | 0.817 | 0.832 | 0.903 | 0.837 | 0.773 | 0.642 | 0.773 | 0.871 | 0.905 |
Random forest classifier | 0.779 | 0.732 | 0.629 | 0.732 | 0.887 | 0.902 | 0.829 | 0.774 | 0.629 | 0.774 | 0.860 | 0.901 |
Multilayer perceptron neural network | 0.699 | 0.640 | 0.501 | 0.640 | 0.849 | 0.843 | 0.771 | 0.794 | 0.523 | 0.794 | 0.749 | 0.849 |
Support vector classifier | 0.708 | 0.670 | 0.527 | 0.670 | 0.850 | 0.844 | 0.767 | 0.817 | 0.534 | 0.817 | 0.740 | 0.846 |
Abbreviations: AUC, area under the receiver operating characteristic curve; MCC, Matthews correlation coefficient; PACU, postanesthesia care unit; SMOTE, synthetic minority oversampling technique.