
Gene evolutionary trajectories in Mycobacterium tuberculosis
reveal temporal signs of selection
�Alvaro Chiner-Omsa,1 , Mariana G. L�opeza, Miguel Moreno-Molinaa , Victoria Furi�oa, and I~naki Comasa,b,1

Edited by Michael DeJesus, The Rockefeller University, New York, NY; received July 23, 2021; accepted February 17, 2022 by Editorial Board Member
Carl F. Nathan

Genetic differences between different Mycobacterium tuberculosis complex (MTBC)
strains determine their ability to transmit within different host populations, their latency
times, and their drug resistance profiles. Said differences usually emerge through de
novo mutations and are maintained or discarded by the balance of evolutionary forces.
Using a dataset of ∼5,000 strains representing global MTBC diversity, we determined
the past and present selective forces that have shaped the current variability observed in
the pathogen population. We identified regions that have evolved under changing types
of selection since the time of the MTBC common ancestor. Our approach highlighted
striking differences in the genome regions relevant for host–pathogen interaction and, in
particular, suggested an adaptive role for the sensor protein of two-component systems.
In addition, we applied our approach to successfully identify potential determinants of
resistance to drugs administered as second-line tuberculosis treatments.

Mycobacterium tuberculosis complex j genomics j pathogen evolution

The Mycobacterium tuberculosis complex (MTBC) is a genetically monomorphic group
of bacteria (1, 2) whose members cause tuberculosis in humans and animals. The
MTBC comprises both human-associated (L1, L2, L3, L4, L5, L6, L7, L8, and L9)
and animal-associated (A1, A2, A3, and A4) clades (3–7). Due to the absence of hori-
zontal gene transfer, plasmids, and measurable recombination among strains and other
species (8–10), chromosomal mutations represent the source of MTBC genetic diver-
sity. The maximum genetic distance between any two MTBC strains is around 2,500
single-nucleotide polymorphisms (SNPs). Strikingly, studies have highlighted large
phenotypic differences between strains involving traits like gene expression, drug resis-
tance, transmissibility, and immune response, despite this limited variation. In some
cases, the mutations driving phenotypic differences have been identified—for example,
nonsynonymous variants in genes, such as rpoB, katG, or gyrA, cause drug-resistant
phenotypes (11–13). Furthermore, single mutations in regulatory elements can induce
alterations to downstream gene expression, which can foster differential virulence char-
acteristics (14, 15). Finally, specific gene mutations may affect transmission (9), host
tropism within the complex (16), and the host immune response (17). However, many
of the genomic determinants of these phenotypes remain elusive, despite robust
evidence that they are driven by genetic differences between strains (18, 19).
Several types of evolutionary forces play crucial roles in the fixation of mutations in

bacterial populations. Previous research has provided evidence for the ongoing positive
selection of specific genes and regions (9, 20–23), while other studies have reported
ongoing purifying selection of specific genomic regions, especially in epitopes and
essential genes (24). Additionally, there exists some evidence that genetic drift may
have significant functional and evolutionary consequences (25).
Detecting selection in MTBC at the genome-wide level remains a challenging task

due to limited genetic diversity. The significant accumulation of nonsynonymous substi-
tutions has been previously used to characterize patterns of mutation accumulation in
large categories of genes (24, 26); however, these studies employed a limited number of
strains. Of note, the number of MTBC sequences has undergone a recent and rapid
expansion, with studies involving hundreds to thousands of strains. The large number of
available sequences has allowed, for example, the estimation of the ratio of nonsynony-
mous to synonymous substitutions (dN/dS) signatures in more than 10,000 strains (27),
thereby allowing the identification of targets of selection with some probably related to
host–pathogen interactions. Host–pathogen interaction signals are specially challenging
as they are likely obscured by the force exerted by antimicrobial therapies. Weaker signals
are also expected in genes related to second-line drugs related to the relative underuse
of related treatments and the low abundance of associated resistant strains in genome
databases (28).

Significance

Previous attempts to identify the
action of natural selection in the
Mycobacterium tuberculosis
complex (MTBC) were limited by
sample size and averaging across
time and lineages. We investigate
changes in selective pressures
across time for every single gene
of the MTBC. We developed a
methodology to analyze temporal
signals of selection in a large
dataset (∼5,000 complete
genomes) and showed that 1)
almost half of the genes seem to
have been under positive
selection at some point in time; 2)
experimentally confirmed
epitopes tend to accumulate more
mutations in deeper branches
than in external branches; and 3)
temporal signals identify genes
that were conserved in the past
but under positive selection in the
present, suggesting ongoing
adaptation to the host.
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We reasoned that to detect signs of selection, we should
focus on when and/or where they occurred in the phylogenetic
tree instead of averaging signs across the phylogeny. In this
study, we developed a methodology to study temporal signs of
selection in MTBC genes and identified positive selection in a
larger number of genes than previously described. This allowed
the identification of past and currently unknown players in the
MTBC evolution, particularly two-component systems (2CSs),
related to host adaptation and second-line drug resistance. This
methodology can be applied to other tuberculosis settings to
explore signs of selection associated with changing selective
pressures and could be extremely useful to unravel hidden
details in the evolution of other human pathogens.

Results

Dataset Preparation. We downloaded all samples described in
Brites et al. (4), Coll et al. (29), Stucki et al. (30), Guerra-
Assunç~ao et al. (31), Zignol et al. (32), Bos et al. (33), Ates et al.
(34), Comas et al. (10, 35), Borrell et al. (36), and Cancino-
Mu~noz et al. (37) and obtained whole-genome sequencing data
from 9,240 samples comprising the primary human- and
animal-adapted MTBC lineages. We mapped FASTQ files for
each sample against the inferred ancestor of the MTBC and
extracted genomic variants (Materials and Methods), from which
we derived a multiple sequence alignment and a phylogeny.
The size of the phylogeny and the multifasta file obtained made
some parts of the planned subsequent computational analyses
unaffordable. Hence, we used Treemmer to prune the tree
down to 4,958 leaves (Dataset S1) while maintaining 95% of
the original genetic diversity. With this final set of selected
samples, we reconstructed a multiple sequence alignment and a
phylogeny (SI Appendix, Fig. S1A).

We mapped each genomic variant to the inferred phylogeny
using PAUP (Phylogenetic Analysis Using Parsimony). This
step provides information regarding the branch in which every
mutation appeared, which allows the identification of homo-
plastic variants—those that appeared multiple times in different
branches of the phylogeny—and the relative “age” of every
mutation calculated as the node to root genetic distance.

Scars of Past Selection and Drift in Almost Half of the MTBC
Genome. As a first step, we calculated the ratio of the relative
abundance of nonsynonymous and synonymous polymor-
phisms (pN/pS) values for genes that possessed up to 10 identi-
fied variants (n = 3,690). A previous study stated a mean pN/
pS value for the complete MTBC genome considerably under
one (38). In agreement with this result, we found that 90% of
the genes evaluated possess a pN/pS value less than one (Fig.
1A) (pN/pS interquartile range [IQR] = 0.477 to 0.804), sug-
gesting ongoing evolution under purifying selection. A high
pN/pS may reflect the recent origin of the MTBC given the
time-dependent nature of the accumulation of nonsynonymous
variants (39).

Of note, the pN/pS value for a gene results from the pN and
pS values calculated with all gene mutations found across the
phylogeny (what we term the “overall pN/pS” in Fig. 1B). This
value does not reflect changes in selective pressures over time
and lineages as the pathogen has potentially faced different
environmental “challenges.” As we estimated the genetic dis-
tance to the root for each mutation as a relative measure of
time, we calculated temporal trajectories for pN/pS for each
gene during MTBC evolution (Fig. 1B and Materials and
Methods). This allowed us to detect, on the one hand, genes
that have been subjected to directional selection (either positive
or negative) across all their phylogenetic history and on the
other hand, genes that have suffered from changing types of

A

B

C

Fig. 1. Gene-by-gene calculation of pN/pS over phylogenetic time. (A) Bar plot showing the number of genes currently displaying a pN/pS greater than one
and a pN/pS less than one. (B) From the alignment, we inferred the current pN/pS; however, when mapping different mutations onto the phylogeny, we
inferred how the pN and pS rates changed over time. S and N symbols on the phylogeny correspond to potential synonymous and nonsynonymous var-
iants. (C) Five categories grouping studied genes according to their trajectories.
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selection. So, we classified all genes according to their pN and
pS trajectories over time into five different categories (Fig. 1C,
Dataset S2, and SI Appendix, Fig. S2A): 1) pS almost always
higher than pN (n = 2,032); 2) pN almost always higher than
pS (n = 154); 3) pS > pN but inverts to pN > pS at a certain
point (n = 35); 4) pN > pS but inverts to pS > pN at a certain
point (n = 370); and 5) complex pN and pS trajectories with
multiple cross-points, which do not support proper categorization
(n = 1,099).
To check if our classification is suitable, we have performed

two different statistical tests that we have called the “stability of
trajectories test” and the “natural selection test.” Regarding the
stability of trajectories test, if our classification reflects differ-
ences in the selection pattern over time, we expect that those
genes with stable trajectories (“always higher”/“always lower”)
will have accumulated low variation in pN/pS when pooling
time points. Conversely, we expect changing trajectories to dis-
play high variation between time points (Materials and Methods
and SI Appendix, Fig. S2B). As predicted, we failed to observe
significant differences in pN/pS variation in genes belonging to
the “pN almost always higher” and “pS almost always higher”
categories if we compared them against the null hypothesis of
no change of pN/pS over time (z scores of �0.47 and �0.13,
respectively). In both cases, the pN/pS cumulative variation has
a value around zero. However, categories with changing trajec-
tories displayed significant differences (z scores of 1.92 and
�1.70) against the same null hypothesis. Next, with the natural
selection test, we tested if those genes with pN/pS stable over
time and either higher than one or lower than one likely reflect
selection. We compared, for each gene in these categories, the
mean pN/pS values across time in log scale against the null
hypothesis provided by the mean trajectory of pN/pS across
time for the complete genome. The mean trajectory across
genes converges towards a value close to 0.6, reflecting the
action of purifying selection (SI Appendix, Fig. S3). We
expected that the category associated with purifying selection
was not significant when compared with the mean trajectory of
the genome which already has a pN/pS below 1 (0.64). On the
contrary, the category associated with pN > pS was expected to
be significantly different, reflecting the action of likely positive
selection. In agreement, we obtained the following z scores:
0.82 (P value = 0.7) for pS always higher than pN and �2.55
(P value = 0.005) for pN always higher than pS.
In summary and in contrast with the observation that 90%

of genes possess an overall pN/pS less than one, only 55% of
genes (n = 2,032) maintained a pN/pS value below a value of
one since divergence from the MTBC common ancestor. This
set of 2,032 genes is overrepresented for experimentally con-
firmed essential genes in both in vivo and in vitro conditions
( χ2 test, P value = 0.003 and P value < 2.2E-16, respectively).
In contrast, 45% of the genes (n = 1,658), mainly those ini-
tially classified as being under purifying selection, may have
faced other types of selective pressures or genetic drift.
These results suggest that many genes have been subjected to

periods of nonsynonymous substitution accumulation. Distin-
guishing between genetic drift and positive selection at a particu-
lar time point remains challenging. We expect founder effects to
play a crucial role during the early evolution of MTBC, and they
may drive a number of the unstable trajectories observed. How-
ever, given that MTBC is clonal, positive selection and genetic
drift are both expected to have a functional impact. Our analysis
identifies a set of genes that shows a pN/pS greater than one near
the root but that changed to pN/pS less than one near the leaves
(n = 370), suggesting that selection and/or founder effects

favored the fixation of nonsynonymous mutations at early times
but that the amino acid sequence remained conserved at later
times. We found that this gene category was enriched for con-
served hypotheticals (Fisher test, P value = 0.02) and protein and
peptide secretion (Fisher test, P value = 0.05). Intriguingly, we
also discovered that certain genes that fell into this category
encode known MTBC epitopes (which we will explore below).
Of particular note is the presence of 154 genes almost always
exhibiting a pN higher than pS. This gene category is enriched
for nonessential in vitro genes (χ2 test, P value = 0.005) from
three main categories: antibiotic production and resistance (Fisher
test, P value = 0.02, further explored below), conserved hypo-
theticals (Fisher test, P value = 0.02), and unknown functions
(Fisher test, P value = 0.03). The mix of genes with a clearly
identified function and hypothetical genes suggests that, in some
cases, positive selection has been acting through the evolutionary
story of some genes, while others are likely under genetic drift.

Evolutionary Trajectories Identify Sensor Proteins of 2CSs
under Positive Selection. An increasing rate of nonsynonymous
mutations as we move toward the tips of the phylogeny is com-
patible with a change in the action of natural selection but also
with unpurged transitory polymorphisms arising within trans-
mission clusters or during within-host evolution. However, due
to our sampling scheme that maximizes global diversity, this
last scenario will only apply to a few cases where the trajectory
changes at the very tips of the phylogeny. In addition, these
nonsynonymous mutations appear all across the phylogeny, as
expected for an MTBC-wide evolutionary phenomenon rather
than for specific intrahost selection or local epidemiological pat-
terns. To distinguish between the two possibilities (natural
selection vs. transitory polymorphisms), we examined the
group of genes with a pS > pN in the internal branches but a
pN > pS near the leaves (n = 58) (Dataset S2). Antibiotic resis-
tance genes represent a clear instance of recent positive selec-
tion, and we hypothesized that their initial trajectory should
reflect conservation of gene function, as they usually perform
relevant biological functions and only recently started to diver-
sify due to antibiotic selective pressure. Encouragingly, data for
the antimicrobial resistance genes, such as rpoB, katG, embB,
gidB, and rpsL, supported this hypothesis. The distance to the
root value is a measure of relative time. Thus, we wondered if
we would be able to date the phylogeny and the mutations to
unravel the exact moment at which the selective forces started
to act in these genes. We have used Beast 2.6 to infer the age at
which the mutations have occurred for some of these drug resis-
tance (DR) genes. Later, we recalculated the pN/pS trajectories
for these genes based on the inferred age instead of the distance
to root values and saw the moment at which the pN/pS surpasses
one, meaning that positive selection started to act. This point was
placed at 72.92 y ago for gidB (streptomycin), 26.9 y ago for
embB (ethambutol, 1966), and 63.55 y ago for rpoB (rifampicin,
1972). These results suggest that our approach possesses sufficient
sensitivity to detect recent instances of positive selection. How-
ever, this dating approach has several limitations (Discussion).

Among those genes unrelated to antimicrobial resistance, we
found several components of toxin–antitoxin systems, including
vapC29, vapB3, vapC35, vapB40, vapC22, and vapC47, which
are critical for the adaptation of bacteria to different stressful
conditions. For example, VapC22 has a significant role in viru-
lence and innate immune responses in particular (40). Other
significant virulence regulators in MTBC are the 2CSs, which
are critical players in extended transcriptional networks. 2CSs
comprise a sensor protein coupled to a transcription factor;
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the sensor protein activates the transcription factor in response
to a specific stimuli to trigger a regulatory cascade. We have
previously described phoR, which encodes the sensor compo-
nent of the PhoPR 2CS, as an important player in MTBC evo-
lution (9) as illustrated by the high levels of accumulation of
nonsynonymous variants over time. Our data show that kdpD,
a gene that encodes the sensor component of the KdpDE 2CS,
displays a similar pattern, with a pN/pS value that reached
approximately two at some points during MTBC evolution. In
both 2CSs, the genes encoding the regulatory protein (phoP
and kdpE) display high conservation at the amino acid level,
with the pS values consistently higher than the pN values. For
the NarLS 2CS, both the regulatory protein (narL) and the
sensor protein (narS) exhibit changing patterns toward recent
positive selection; however, as for the other described 2CSs, the
sensor domain of narS accumulates more nonsynonymous var-
iants (Fisher test, P value = 0.036). We proposed previously (9)
that subtle modifications of the PhoR sensor domain may be use-
ful for fine tuning the PhoPR activity in response to the different
microenvironments associated with differences between hosts.
This is in accordance with the role of PhoPR as a major regulator
of virulence and other key infection processes (14). As this pat-
tern is observed in other 2CS sensor proteins, this may suggest
that these mutations could allow MTBC strains to adapt to
varying environments during host–pathogen interaction.

Epitope Mutations Are Older and Show Divergent Evolutionary
Trajectories Compared with the Rest of the Antigen. Contrary
to many other pathogens, the M. tuberculosis genome regions
recognized by the host tend to be conserved, albeit with some
exceptions (24, 41). Given our results revealing past “scars” of
selection in MTBC genes, we analyzed the pN/pS trajectory of
a total of 179 antigens harboring 1,556 epitopes (42). Specifi-
cally, we aimed to evaluate a hypothesis that epitope and none-
pitope regions of the antigen experience different selective
pressures and that the former most likely reflects interactions
with the immune system, while the latter reflects the evolution
of gene function.
Our results revealed that ∼60% of the antigens analyzed

exhibited a pN/pS value of less than one across phylogenetic
history, providing evidence for their conservation since their
diversification of the MTBC from a common ancestor (Dataset
S3). Of note, a relevant proportion of antigens (11%) accumu-
lated a high number of nonsynonymous variants in internal
branches, which now appear to be conserved (Dataset S3). For
example, the mpt64 gene encodes for a known antigen
employed in diagnostic tests. When mapping the genetic var-
iants in the MTBC phylogeny, most nonsynonymous muta-
tions map to the L5 ancestral branch in a large clade of the L1.
2.2 sublineage and a group of L4.10 strains (Fig. 2 A and B).
Other antigens, such as eccD2, Rv1866, fadD21, or Rv2575,
exhibited a similar pattern. Apart from human-adapted clades,
specific antigens accumulated nonsynonymous mutations in
deep branches of the animal-adapted lineages, such as Rv2575
or IlvB1. This suggests that these antigens were under positive
selection or genetic drift driven by founder effects when the
MTBC diversified.
For another group of antigens (27%), the pN/pS value failed

to show a definitive trajectory (Dataset S3). Specific antigens
showed a pattern of pN/pS value of approximately one since the
diversification of the MTBC from a common ancestor. This pat-
tern could reflect two different causes: genetic drift or differential
selective pressures in different MTBC clades/lineages, which
could be masked when calculating a common pN/pS for all

lineages. The second option is defined by an accumulation of
nonsynonymous mutations in specific MTBC clades and synon-
ymous mutations in other clades. As a result, the overall pN/pS
value would be approximately one. We observed this scenario,
for example, in the lpqL, mce2A, and esxH genes; in these cases,
we found an elevated accumulation of nonsynonymous muta-
tions in deep branches of the L1, L2, and Mycobacterium africa-
num lineages, although they are highly conserved in modern
lineages. Other genes exhibited a similar pattern (Dataset S3),
while others could have evolved under the effect of genetic drift.

In general, the evolution of antigens does not essentially differ
from other genes in their respective functional categories. When
we compared the trajectories of the antigens against such genes,
we failed to encounter statistical differences between the distribu-
tions (Fisher test, Benjamini-Hochberg adjusted P value > 0.05).

Of note, antigens have a myriad of distinct functions, but
the immune system only recognizes specific regions of the anti-
gens—the epitopes. In some cases, epitope regions cover the
entire antigen (as for mpt64), so selection acts on the antigen
and epitope equally. In other cases, epitopes represent only a
small fraction of the antigen and may be subject to different
selective pressures than the rest of the gene (Fig. 2C ). When
exploring whether selection at the epitope level drives different
antigen trajectories, we encountered the Rv1866 locus as a clear
example. This antigen has a pN/pS value of greater than one
near the root, but its value changes to less than one near the
leaves, suggesting the action of distinct types of selection across
the phylogeny; however, the epitopes contained are highly con-
served with a pN/pS value of less than one during the complete
trajectory.

In most cases (Dataset S3), the evolutionary trajectories of
epitopes seem to be unlinked to the rest of the antigen, with
most epitopes being conserved. We hypothesized that epitopes
might reflect past selection events to adapt to different popula-
tions during the initial expansion of the MTBC. In general, the
mean relative phylogenetic age (measured as the genetic distance
to the root) of the nonsynonymous variants present in the epito-
pes is older than the nonsynonymous variants of the nonepitope
regions of the antigen. This phenomenon can be observed when
pooling all epitope vs. nonepitope variants (Welch t test, P value
= 8e-07) and when splitting by different genes (Fig. 2D)
(although with considerable overlap, as expected). Consequently,
we expect fewer mutations to accumulate at phylogeny tips if
epitope conservation becomes more important at a later stage.
The proportion of mutations in epitopes falling in terminal
branches (62%) is significantly lower than in sets of regions of
the same size randomly selected from the nonepitope genome
[70%, z score = �4.28, P(x < Z ) = 0.00001] (Fig. 2E). This
suggests the more robust nature of negative selection on epitopes
than the rest of the genome in circulating strains.

Thus, our results provide further evidence for the generally
unlinked nature of gene and epitope evolution, which had been
previously established in smaller sets of samples (24, 38). In
addition, we demonstrate that interaction with the immune sys-
tem likely drives epitope conservation (as it is the only function
in common among epitopes), while nonepitope regions reflect
the selection of the gene's biological function. Finally, muta-
tions in epitopes mainly reflect older fixation events, while the
rest of the genome accumulates mutations more rapidly.

Candidate Drug Resistance Regions Revealed by a Dataset
Enriched for Multidrug-Resistant/Extensively Drug-Resistant
Tuberculosis–Associated Strains. Identifying genes involved in
resistance to second- and third-line drugs and new and
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repurposed drugs remains challenging. We reasoned that if our
approach was powerful enough to identify changing selective
pressures due to the introduction of first-line antibiotics, we
should detect changes in genes associated with the treatment of
multidrug-resistant (MDR) and extensively drug-resistant
(XDR) tuberculosis patients. We assembled and compared a
dataset enriched for MDR (n = 312) and XDR (n = 132)
strains and additional sensitive controls to our global dataset
(Dataset S1 and SI Appendix, Fig. S1B). Our analysis revealed
instances of genes with an increased pN value toward the leaves
of the tree for the MDR/XDR dataset compared with the
global dataset. Our approach correctly identified genes associ-
ated with MDR, such as gyrA (quinolones), ethA (ethionamide),
and rpoC, which compensate for the fitness cost of MDR
strains (Fig. 3A). Importantly, we also identified less
well–studied genes with a similar profile, including Rv0552,

Rv1730c, alr (Rv3423c), eccC4 (Rv3447), eccCa1 (Rv3870)
(Fig. 3A), and Rv3883c (mycP1). To formally evaluate their
association to different drugs, we generated computational
models (Materials and Methods and SI Appendix, Fig. S1B) to
link the observed drug-resistant phenotypes with mutations in
genes with a changing pN/pS pattern. Well-known resistance-
conferring genes, such as rpoB, katG, or rpsL, exhibit a strong
statistical association with drug-resistant phenotypes, as
expected (SI Appendix, Table S1 and SI Appendix, Fig. S4).
Corroborating our observations, the identified less well–studied
genes displayed a significant association with resistant pheno-
types for second-line drugs (Fig. 3B): for example, Rv1730c
associated with first-line treatments (Wald test, P value = 0.04
for streptomycin and P value = 1e-4 for ethambutol + pyrazi-
namide), treY associated with aminoglycoside injectable agents
(Wald test, P value = 0.01), Rv1830 associated with isoniazid

A

C

D
E

B

Fig. 2. Specific antigenic genes show signs of early positive selection. (A) Cumulative pN, pS, and pN/pS trajectories over time for the mpt64 gene (Rv1980c).
The x axis represents the genetic distance of each node to the root. The left y axis represents the cumulative pN (red line) and pS (blue line) values. The right
y axis represents the pN/pS. (B) Maximum likelihood MTBC phylogeny with mapped mpt64 variants. The sticks in the outer circle mark the strains with var-
iants identified (red, synonymous; green, nonsynonymous). Deep nonsynonymous mutations can be found in deep nodes of L1 and L5. (C) Some epitopes
comprise the entire antigen (such as in mpt64), while in genes such as Rv1866, the epitope represents a small subset of regions embedded in the antigen.
(D) Rain cloud plot of the mean differences in the distance (to root) value between the nonepitope and the epitope mutations for each antigen. (E) Distribu-
tion of SNPs found in terminal branches for 1,000 randomly selected sets of nonepitope fragments (gray bars). The percentage of SNPs observed in the epit-
opes differs from this distribution (∼62%, z score = �4,28; pink arrow), while the percentage of SNPs found in the rest of the genome remains similar to the
distribution (∼70%; green arrow).
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and rifampicin (Wald test, P value = 0.01), cyp128 associated
with aminoglycosides (Wald test, P value = 0.002), and eccCa1
associated with D-cycloserine and aminoglycoside injectable
agents (Wald test, P value = 0.01 and P value = 0.02, respec-
tively). In order to support our results on Rv1830, we obtained
data from a transposon mutant library derived from H37Rv in
our laboratory (43). The library was grown in two isoniazid
concentrations (0.18 and 0.2 μg/mL), and the frequency of
Rv1830 mutants in these antibiotic-selected experiments was
compared with controls. We observed a mean of 1.2 and a
3.6-SD increase in the frequency of Rv1830 mutants, respec-
tively (Wilcoxon's test, P value = 0.023 and P value = 0.001),
supporting this gene's role in isoniazid resistance (Fig. 3C).
Of note, our analysis did have certain limitations; for

example, given the combined therapy administered in tubercu-
losis treatment, the same gene may correlate with several antibi-
otics. Thus, the genes shown above may reflect selection for
some other drugs. Likewise, given the enrichment of this data-
set with L4 and L2 strains (Fig. 3D), nonsynonymous phyloge-
netic variants in genes, such as fadD30 (Rv0404), nrdZ
(Rv0570), Rv1825, ephB (Rv1938), and glpQ1 (Rv3842c),

appear to be associated with drug-resistant phenotypes but
are likely neutral markers, a previously reported phenomenon
(44). The identification of previously uncharacterized genes
represents the overall value of the analysis, with links to indi-
vidual drugs requiring corroboration by fine-grain in vitro
experiments.

Selection Also Acts in Noncoding Regions. Beyond mutations
affecting coding regions, we (and others) have established the
importance of mutations in intergenic regions in shaping the
pathogen's phenotype, as they can alter gene regulation. Hence,
natural selection can also target these positions. Using a Poisson
distribution, we identified 290 intergenic regions possessing more
mutations than expected by chance (Benjamini-Hochberg
adjusted P value < 0.05); 270 of the intergenic regions harbor
homoplastic mutations, representing a good correlate of positive
selection in the MTBC. Certain mutations had been previously
categorized as resistance-conferring variants, including 1673425C
> T (upstream fabG1), 4243221C > T (between embC-embA),
or 2715342C > G (upstream eis) (Dataset S4). We found other
mutations in intergenic regions suspected of being related to drug

B

A

C D

Fig. 3. Identification of genes related to second-line antibiotic resistance. (A) Three genes showing signs of ongoing positive selection in the MDR-enriched
dataset but ongoing purifying selection in the global dataset. The x axis represents the node to root genetic distance normalized in the zero to one range to
merge data from both trees as a measure of relative time. The y axis represents the cumulative dN and dS values. (B) A computational model has been
constructed for each antituberculosis drug to identify specific gene mutations associated with resistance. In the matrix, rows represent antibiotics, and col-
umns represent genes suspected to be under positive selection in the MDR-enriched dataset. Colored cells (from gray to red) indicate a statistically signifi-
cant association between nonsynonymous mutations found in the genes and resistant phenotypes. In this figure, only the less well–studied genes are
shown. SI Appendix, Fig. S4 has the complete results. (C) Transposon sequencing (TN-seq) experiments have been performed (x axis) in the absence of isonia-
zid (control) and in two different isoniazid concentrations: 0.18 and 0.2 μg/mL. We observe a higher number of transposon insertions in Rv1830 compared
with the mean number of insertions in the rest of the genome (calculated as a z score; y axis) in INH-treated experiments vs. control. This result provides
in vitro evidence of how Rv1830 is a genetic determinant for isoniazid resistance. (D) Maximum likelihood phylogeny constructed with the MDR-enriched
dataset showing an overrepresentation of L2 (blue) and L4 (red) strains. EMB, ethambutol; INH, isoniazid; PYR, pyrazinamide; RIF, rifampicin.
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resistance; however, the exact mutations were not present in the
PhyResSe and ReseqTB catalogs.
We also calculated the ratio of intergenic variants per inter-

genic site (pI) compared with the ratio of synonymous variants
per synonymous site of the flanking genes (pI/pS) for each inter-
genic region as a measure of selective pressure, as previously pro-
posed by Thorpe et al. (45). We found a mean pI/pS value of
1.03 (95% CI: 0.98 to 1.07), near the expected value of 1 when
under no selection; however, 123 intergenic regions appeared as
outliers of this distribution (Dataset S5) as they exhibit pI/pS
values greater than 2.058 [calculated as Q3 + 1.5 × IQR (46)].
A gene set enrichment analysis of gene ontology (GO) functions
of flanking genes of these intergenic regions demonstrated that
the most overrepresented functions (hypergeometric test,
Benjamini-Hochberg adjusted P value < 0.05) are responses to
acid chemicals, oxidation-reduction (REDOX) processes, and
regulation of DNA templated transcription. The identification
of REDOX is in agreement with oxidative metabolism playing a
role in macrophage survival and drug resistance (43, 47, 48). A
previous study reported that changes in regulatory regions
(mostly intergenic) could significantly affect the transcription
rates of downstream genes (49). Therefore, the positive selection
of these regions may not be surprising.

Discussion

Pathogen diversity reflects a balance between evolutionary
forces. In the case of the virtually clonal MTBC (9), highly
diverse and highly conserved genes can be identified, despite
low genetic diversity (1), thereby suggesting the activity of dis-
tinct evolutionary forces. While metrics, such as pN/pS, present
with certain limitations (39), they allow the identification of
the footprints of evolutionary forces. pN/pS has the power to
identify selection at the genome-wide level (26, 27), including
traces of positive selection in specific genes, gene categories,
and/or lineages (23, 50, 51). Analyses revealed an average
pN/pS value across the MTBC genome of around 0.7, well
below the value of 1 expected for any organism but high com-
pared with others. This likely reflects the recent emergence of
the MTBC with the presence of many transitory polymor-
phisms (39) and the impact of genetic drift in the form of
bottlenecks and founder effects (25). However, the balance of
evolutionary forces shaping genetic diversity is dynamic, and
what was under positive selection or drift in the past may be
under negative selection in the present and vice versa. This idea
is illustrated in our work by the striking discovery of scars of
elevated nonsynonymous rates in almost half of the MTBC
genome, contrasting with previous reports (23, 38).
Our analyses identified different temporal evolutionary

dynamics in M. tuberculosis genes. In one important category,
genes are subjected to positive selection or genetic drift early in
MTBC evolution but to purifying selection near the leaves. A
prominent example of this phenomenon is the accumulation of
early nonsynonymous variants in epitopes, such as mpt64.
Deep mutations may reflect past events, such as founder effects
or drift, but our analysis suggests that mutations in epitopes are
older when compared with other regions of the genome and
that epitope evolution is not linked to the evolution of the rest
of the antigen and functional category. These observations are
compatible with scenarios suggesting early coevolution of host
and pathogen populations (5).
We also identified genes subjected to purifying selection in

the past but to current positive selection. The abrupt shift in
the pN/pS values in resistance-conferring genes illustrates the

impact of antibiotic treatments on MTBC evolution. While
our approach detected an increase in the pN/pS in a set of
genes in MDR and XDR strains, we did not observe this
increase in strains not exposed to second-line drugs. This find-
ing allowed for the proposal of a set of candidate genes that
confer resistance to second-line antitubercular drugs. Previous
reports have suggested that genes, such as Rv1830 or eccCa1,
can confer resistance to MDR treatments (15, 52–56); how-
ever, genes identified in this study highlight our incomplete
understanding of the genetic basis of resistance, in particular
for second-line and new drugs. Our approach points to candi-
dates that will require follow-up experiments. Nevertheless, our
results are strongly affected by the fact that tuberculosis thera-
pies consist of the administration of combined drugs, making it
difficult to assign the signal detected on specific genes to single
antibiotics. This problem could be alleviated after large collec-
tions of strains with associated phenotypes become available
(57, 58) and with evolutionary approaches that can inform
genetic association tests, like the one presented here

Our approach also detected genes unrelated to antibiotic
resistance that have been subjected to recent positive selection,
a finding missed when applying averaged pN/pS ratios. We
commonly encountered the sensor component of 2CSs in this
gene set, and our previous data established robust signs of
recent positive selection in phoR, which encodes the sensor
component of the PhoPR 2CS (9, 59). This finding suggested
that nonsynonymous mutations in phoR participate in host
adaptation by regulating PhoP, a major regulator of MTBC
physiology and virulence. We now show a similar occurrence in
two other sensor proteins—KdpD and NarS. Thus, the accumu-
lation of nonsynonymous mutations in sensor proteins may rep-
resent a common strategy used by mycobacteria to adapt to the
changing environment during infection.

In addition to coding regions, we also found traces of selec-
tion in noncoding sequences, which agrees with previous find-
ings (45). While identifying selection pressures on intergenic
regions remains challenging, given the problematic interpreta-
tion of the functional effect of variants that fall in these areas,
homoplastic mutations and the comparison of variants against
surrounding genes provide a good framework. Variant accumu-
lation in these regions can impact the regulation of nearby gene
expression (16, 49). Again, drug resistance appears to represent
the strongest selective force; however, variants found in these
regions also impact transcription factor activity and oxidative
metabolism.

We are aware of the limitations of our current study. The
study of past traces of selection in MTBC members remains
challenging due to the low genetic diversity present; however,
we attempted to maximize genetic diversity to gain resolution
by including a broad representation of the main MTBC line-
ages. Unfortunately, subtle traces of selection affecting small
subclades or groups of strains can be masked using this strategy;
indeed, this is illustrated by our study when lineage-positive
signs of selection fail to appear in our analysis. For example,
Menardo et al. (41) have described a high number of nonsy-
nonymous mutations in the epitopes of esxH. This finding is
not reflected when considering all lineages but only when we
search lineage by lineage (Dataset S3). Further analysis focusing
on specific subclades, using thousands of strains, may illumi-
nate differential evolutionary pressures within the MTBC. Fur-
thermore, we only analyze mutations fixed in the phylogeny, so
we only infer an approximate picture of the evolutionary forces
that have shaped complex evolution in the past. In addition,
the low variability present in the MTBC, strain subsampling,
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and lack of metadata/dates for most deposited genomes make
absolute dating for some studied mutations extremely challeng-
ing. We have tried to date our dataset, and although our dating
seems to make sense at least in drug-resistant genes (antibiotic
selective pressure was not expected to appear after 1940), the
fact is that the type of sampling that we have used in our analy-
sis did not allow for generalization of the dating results
obtained. Our initial interest was to detect global signs of selec-
tion in the whole MTBC. Thus, we reduced the original phy-
logeny by pruning closely related strains. Although this allowed
us to computationally afford complex analysis, this led to an
artificial enlargement of the tree terminal branches. Mutations
mapped on long branches are difficult to date, as they have
occurred at some point between the dates inferred for the defin-
ing nodes of a branch. Thus, while the overall shapes of the
pN/pS trajectories do not change a lot, the exact point (date) at
which changes in selection occurred cannot be properly esti-
mated. Finally, in some cases, very recent selection signals may
be confounded by transitory polymorphism (for example, when
intrahost selection occurs), although the impact is expected to
be minor in our dataset given the sampling strategy. We are
also aware that, in some cases, genetic drift may be mistaken
with other selection forces; however, this does not preclude
those changes from having a functional effect (25).
Finally, we note that our approach can be used as a blueprint

to study the evolution of several bacterial species. For example,
the Salmonella genus includes strains exhibiting high host spe-
cificity and those with the general ability to infect many hosts
(60). The gene by gene evaluation of past and current selective
pressures could shed light on the genomic determinants that
drive differing specificity. The same approach could be valid
with Helicobacter pylori, a pathogenic bacteria that causes gastric
infections and is highly specialized at infecting human hosts
(61, 62). Therefore, our method could be a natural extension
of the current population genomic pipelines in bacterial patho-
gens that are based on defining the pangenome for a set of
strains, identifying recombinogenic regions, and building a
“clonal” phylogeny after removing recombination. The MTBC
displays virtually no recombination or ongoing horizontal gene
transfer (which is not the case for H. pylori or Salmonella),
making the interpretation of the results more straightforward;
however, we anticipate that, taking into account population
structure, our approach can be adapted to answer a range of
evolutionary questions in pathogen evolution.

Materials and Methods

Variant Analysis Pipeline and Phylogenetic Reconstruction. All samples
were analyzed using our variant analysis pipeline, which has been extensively
described in a previous publication (63). Briefly, FASTQ files were trimmed to
remove low-quality reads using fastp (64) (version 0.12.5, arguments –cut_by_
quality3, –cut_window_size = 10, –cut_mean_quality = 20, –length_required
= 50, –correction) and aligned to the most likely inferred ancestor of the MTBC
(24) using the BWA-MEM algorithm (65). Potential optical and PCR duplicates
were removed with Picard tools (66), while reads with a mapping quality value
(MAPQ) value of <60 were also discarded. Variant calling was performed using
SAMtools (67), VarScan (68), and GATK (69). A pileup file was created with SAM-
tools from the BAM files, and VarScan was then used to extract variant positions
from this pileup file (version 2.3.7, arguments –P value 0.01 –min-coverage 20
–min-reads2 20 –min-avg-qual 25 –min-strands2 2 –min-var-freq 0.90), while
GATK was used to extract insertions and deletions (INDELS) (version 3.8-1-0-
gf15c1c3ef, HaplotypeCaller and SelectVariants functions). To remove mapping
errors, detected variants were discarded if found in INDEL areas or areas of high
variant accumulation (more than three variants in a 10 base pairs defined win-
dow). Variants were then annotated using SnpEff (version 4.2) (70). Variants

associated with proline–glutamate/proline–proline–glutamate (PE/PPE) genes,
phages, or repeated sequences were also filtered out (Dataset S6) as they tend
to accumulate false-positive SNPs owing to mapping errors. Finally, with the
selected high-quality variant calls, a nonredundant variant list was created and
used to retrieve the most likely allele at each genomic sequence to generate a
variant alignment.

The first phylogeny was constructed with all samples that passed a minimum
depth coverage threshold (median 25×) and had no mixed infections (n = 9,240).
This initial phylogeny was constructed using MEGA-CC (71) and the neighbor-
joining algorithm. Later, we pruned the phylogeny with Treemmer (72) to obtain a
smaller tree for subsequent computational analyses. A reduction of just 5% of the
initial genetic diversity led to the selection of 4,958 samples. With these selected
samples, a maximum likelihood phylogeny was constructed using IQTREE (73) (ver-
sion 1.6.10) with the general time reversible (GTR) model of evolution, taking into
account the invariant sites, and with an ultrafast bootstrap (74) of 1,000 replicates.

Phylogenetic Variant Mapping and pN/pS Trajectories. After phylogenetic
reconstruction, the mutations called in the 4,958 samples (n = 368,719) were
mapped onto the phylogeny. For his purpose, the ancestral state of each poly-
morphism in each node was reconstructed using PAUP (75) with a weight matrix
that punished reversions with a 20× multiplier. From this information, the phy-
logenetic branch at which each variant appeared was obtained. Later, a relative
age derived from the branch-length information for each variant was assigned
for each variant. This relative age is the genetic distance from the ancestral node
to the bisection point of the target branch on which the variant appears. Finally,
the cumulative pN (nonsynonymous variants/nonsynonymous sites) and pS (syn-
onymous variants/synonymous sites) trajectories were calculated for each gene
using the potential synonymous and nonsynonymous sites inferred using the
SNAP tool (76) and plotting the cumulative pN, pS, and pN/pS values at each
time point. For each time point (or distance to root point), we took into account
all the variants that appeared before this time point. Later, we have represented
the trajectories by connecting the different pN, pS, and pN/pS points of consecu-
tive time points, hence obtaining a trajectory instead of a scatterplot.

We classified the genes in two big categories according to their pN/pS trajec-
tories. On the one hand, we have genes that have been subjected to the same
type of selection across all their phylogenetic history. On the other hand, we
have those that have suffered from changing types of selection. For the first big
group, those genes that had their pN/pS values under one (category 1) or above
one (category 2) for almost all their evolutionary history (95% of the sampled
points) have been classified as pS almost higher or pN almost higher. The
second group, those having pN/pS values greater than one and less than one at
different sampling points, includes a myriad of different scenarios. We were
interested in those that were reflecting sharp changes in the action of selection:
genes that seemed to evolve under purifying selection early in the phylogeny
but later under positive selection and vice versa.

We focused on those trajectories that crossed the pN/pS = 1 limit an odd
number of times, so the pN/pS will be different at the beginning of the trajectory
and at the end (over or under 1). However, pN/pS trajectories that crossed that
boundary five, seven, or more times mean that pN/pS was approximately one
for a while, which could mean that change in selection was not sharp or that
genetic drift was acting on this gene. So, depending on the direction of the tra-
jectory (from pN/pS< 1 to pN/pS > 1 or the other way around) and the number
of times that the trajectory crosses the pN/pS = 1 limit, we divide this second
group into two other subgroups: genes in which pN > pS but inverts to
pN < pS at a certain point (category 4) and genes in which pS > pN but inverts
to pS < pN at a certain point (category 3). All other genes were classified as
“variable” (category 5).

So, briefly, we classified the genes according to their pN/pS trajectories with
the following criteria (Fig. 4).

1) Genes with a cumulative pN/pS less than one at more than 95% of the sam-
pled points were classified as pS almost always higher than pN.

2) Genes with a cumulative pN/pS greater than one at more than 95% of the
sampled times were classified as pN almost always higher than pS.

3) Genes in which the cumulative pN/pS changed from greater than one to less
than one or vice versa less than four times and the cumulative pN/pS started
being less than one but ended greater than one were classified as pS > pN
but inverts to pN> pS at a certain point.
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4) Genes in which the cumulative pN/pS changed from greater than one to less
than one or vice versa less than four times and the cumulative pN/pS started
being greater than one but ended less than one were classified as pN > pS
but inverts to pS > pN at a certain point.

5) Genes in which the cumulative pN/pS changed from greater than one to less
than one or vice versa more than three times were classified as variable.

This classification was reviewed manually at a later stage. Genes with less
than 10 mutations were not considered for subsequent analyses. All the trajecto-
ries calculated are provided in Dataset S7 (https://dx.doi.org/10.6084/m9.
figshare.19335854). In addition, all the SNPs called and the information associ-
ated with them are provided in Dataset S8.

We have also calculated the pN/pS trajectory for the complete genome by
concatenating all the coding regions together and taking into account all the
SNPs falling in these regions (SI Appendix, Fig. S3).

The cumulative pN/pS variation for each gene was calculated as

pN=pS var ¼ ∑
n

t¼4
xt � xt�1,

with x being the cumulative pN/pS value at each of the sampled t points. The first
three values of each gene's cumulative pN/pS value were not considered, as the
initial values can show significant differences due to a low number of mutations.

We have calculated two z scores from two different tests. First, the stability of
the trajectories test is against the zero value (the expected cumulative pN/pS var-
iation if selection was absolutely stable) to test if changing and stable selections
were acting in the different categories. Second, the natural selection test is
against the mean pN/pS value across time for the complete genome (in log

scale) to see if the effect/direction of selection was different for the “stable” cate-
gories and the complete genome.

The z scores were calculated as

z score ¼ x � μ

σ
,

with x being either the zero value or the mean pN/pS value across time for the
complete genome (in log scale), μ being the mean of the distribution for each
category, and σ being the SD of the distribution for each category.

Mean pN/pS across time for each gene and for the complete genome were
calculated as

mean pN=pS ¼ ∑n
t¼4xt

n� 4
,

with x being the cumulative pN/pS value at each of the sampled t points. Again,
the initial three values of each gene's cumulative pN/pS value were not
considered.

Epitope and Antigen Analysis. All linear epitopes (n = 1,556) found in the
Immune Epitope Database (IEDB) (42) that belonged to M. tuberculosis in
August 2019 were downloaded. All linear epitopes with overlapping coordinates
with regard to the H37Rv reference strain were merged into unique nonoverlap-
ping “contigs” (n = 718). The potential synonymous and nonsynonymous sites
were inferred using the SNAP tool (76). All genes containing such epitopes were
considered antigens, except those genes not considered in the variant calling
step, as explained above (PE/PPE, phages).

The percentage of SNPs that occur in these 718 regions that appear in termi-
nal branches of the phylogeny was determined using the information derived
from PAUP. The percentage of SNPs in the rest of the genome (not considering

Fig. 4. Schema of the algorithm followed for initial classification of the pN/pS trajectories.
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these 718 regions) that fall in terminal branches was also determined. To evalu-
ate if the difference between these values was statistically significant, 718 seg-
ments of the nonepitope genome with the same length as the epitope regions
set, 1,000 times, were selected. For each iteration, the percentage of SNPs found
in terminal branches was calculated and plotted in a distribution. Finally, a z
score (the formula is given above) between the distribution and the value
observed for the epitopes was calculated.

Gene Set Enrichment Analysis. Several approaches for functional category
enrichment were performed to compare genes present in our sets of interest
against other genes. For the essentiality enrichment, the in vivo (77) and in vitro
(78) classifications of genes were used, and the enrichment in these categories
was tested with Fisher tests. For GO enrichment, the Bingo tool (79) was used
with a hypergeometric test (sampling without replacement) and the
Benjamini–Hochberg correction for multiple testing comparisons. Finally, the
enrichment of the functional categories was also evaluated (80), employing
Fisher tests corrected with the Benjamini–Hochberg procedure.

Dating Analysis. In order to estimate the time tree of our dataset, we have split
the complete phylogeny into 18 reduced datasets (L1.1.1, L1.1.2, L1.1.3, L1.2.2,
L2, L3, L4.1.1, L4.1.2, L4.2.1, L4.2.2, L4.3.1, L4.3.2, L4.3.3, L4.3.4, L4.4, L4.5,
L4.6, L4.10). We implemented a coalescent Bayesian constant growth model
available in Beast 2.6 (81) with the GTR + Γ model of nucleotide substitution,
with Γ = 4. We used an exponential distribution (M = 1) for the effective popu-
lation size tree prior. Since dates were unavailable for most samples, we fixed
the strict clock using the values proposed by Menardo et al. (82) for each line-
age. Invariant positions were specified in the xml files following ref. 83. Parame-
ters were estimated using Markov chain Monte Carlo (MCMC) Bayesian inference
with 1 × 107-step-long chains with the exception of the larger datasets (L2, L3,
L4.1.2, L4.3.4, L4.10), for which longer chains were run (1 × 108) and the tree
topology was fixed. In all cases, a total of 105 steps were sampled in the log
files, and the initial 10% of the MCMC was removed as burn-in. Adequate mix-
ing of parameters was assessed using Tracer v.1.7.1 (84) by verifying that each
parameter reached an effective sampling size above 200 and that traces showed
stationarity and good mixing. The final posterior distribution contained a total of
9,000 trees, annotated with Treeannotator v.2.6.3 and visualized in FigTree
v.1.4.3 (85).

Next, we have assigned an age to each mutation. Following the same
approach as in the distance to root value, for each mutation the age was calcu-
lated as the middle value between the inferred ages of the branch-defining
nodes in which the mutation was mapped. Once the mutations have been
dated, we have calculated new pN/pS trajectories using the inferred age instead
of the relative dating derived from the distance to root value.

Drug-Resistant Dataset Preparation and Analysis. Drug-resistant strains
were downloaded from the TBportals database (86) on 22 October 2019
(n = 656). Samples were classified according to their drug-resistant phenotype
and then passed through the variant analysis pipeline described above. A maxi-
mum likelihood phylogeny was constructed using IQTREE with the previously
described options, including samples from the Comas et al. (10) study to achieve
nodes from lineages underrepresented in the TBportals database.

The pN/pS trajectories were calculated and classified as explained for the
other dataset.

A matrix was next created that included, for each sample, phenotypic infor-
mation for each tested drug (resistant/susceptible) and the presence/absence
(one/zero) of nonsynonymous mutations in the gene set classified as having a

trajectory in which the pS > pN but inverts to pN > pS at a certain point for
each sample. These nonsynonymous mutations were those that appeared after
the point at which the pN/pS increases over one. The matrix has the form shown
in Table 1.

A set of binomial logistic regression models was constructed using this
matrix, explaining the observed phenotypes based on the presence of nonsynon-
ymous mutations on selected genes. Models were constructed using the glm()
function in R, specifying the binomial distribution and the logit link. They were
constructed as

model ¼ glm
�
DRUG ∼ gene1þ gene2þ gene3þ …, data

¼ MATRIX, family ¼ binomialðlink ¼ logitÞ
�
:

These models were trimmed a posteriori following a backward stepwise method-
ology using the step() function, selecting the set of regressors that show the best
Akaike information criterion. Later, the summary.glm() function was applied on
the trimmed models to obtain the P values of each coefficient.

Transposon Sequencing Experiment on Rv1830. We used TN-seq data
described in Furi�o et al. (43) to further confirm the role of Rv1830 in isoniazid
resistance. Briefly, a saturated transposon insertion library was generated and
grown in the presence and absence of isoniazid (two concentrations, 0.18 and
0.2 μg/mL, close to the minimum inhibitory concentration for this drug). Bacte-
rial populations for each condition were sequenced, and insertions were mapped
to each genomic feature to assess their importance in the context of resistance.
Rv1830 showed a significant insertion increase in isoniazid-treated experiments
of up to 3.6 SDs when compared with the genomic average.

Data Availability. Plots of all trajectories calculated (Dataset S7) have been
deposited in Figshare (https://dx.doi.org/10.6084/m9.figshare.19335854). Pre-
viously published data were also used for this work [data from Brites et al. (4),
Coll et al. (29), Stucki et al. (30), Guerra-Assunç~ao et al. (31), Zignol et al. (32),
Bos et al. (33), Ates et al. (34), Comas et al. (10, 35), Borrell et al. (36), and
Cancino-Mu~noz et al. (37)].
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