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Abstract

Disruption of intracellular Ca2+ homeostasis plays an important role as an upstream pathology in 

Alzheimer’s disease (AD), and correction of Ca2+ dysregulation has been increasingly proposed 

as a target of future effective disease-modified drugs for treating AD. Calcium dysregulation 

is also an upstream pathology for the COVID-19 virus SARS-CoV-2 infection and replication, 

leading to host cell damage. Clinically available drugs that can inhibit the disturbed intracellular 

Ca2+ homeostasis have been repurposed to treat COVID-19 patients. This narrative review aims 

at exploring the underlying mechanism by which lithium, a first line drug for the treatment of 

bipolar disorder, inhibits Ca2+ dysregulation and associated downstream pathology in both AD and 

COVID-19. It is suggested that lithium can be repurposed to treat AD patients, especially those 

afflicted with COVID-19.
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Introduction

Alzheimer’s disease (AD) is the 6th leading cause of death in the United States and 

the 5th leading cause of death among those age 65 and older, without disease-modifying 

treatment1. In 2020, the costs of treating dementia in the United States were projected to 

be about $256.7 billion1. Most (>95%) cases of AD are sporadic (SAD); while <5% cases 

are familial AD (FAD)2,3. FAD arises from genetic mutations in the amyloid β precursor 

protein (APP), and presenilin 1 and 2 (PSEN1 and PSEN2), resulting in increased amyloid 
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β peptide (Aβ42) fragments which aggregate into soluble intracellular amyloid oligomers 

and/or insoluble extracellular plaques4–8. Pathological tau phosphorylation results in the 

formation of neurofibrillary tangles9–12. Although pathological markers are common in 

both FAD and SAD, the etiology of SAD and associated AD pathology, including synaptic 

and cognitive dysfunctions, is largely unknown, which impedes the development of new 

effective drugs for AD treatment13,14. The apolipoprotein E4 (ApoE4) allele is considered a 

predominant risk factor for SAD among all other recognized risk factors15–17. This tends to 

shift current research focus from amyloid pathologies to tau pathologies or to a combination 

of both amyloid and tau alongside other related downstream AD pathologies14. In turn, the 

following strategies have been proposed to develop new effective drugs for the treatment 

of AD patients13,18: 1) Targeting an upstream AD pathology that results in other multiple 

pathology pathways; 2) Utilizing a combination of drugs targeting different AD aberrant 

pathways, given the multifaceted etiology of AD; 3) The prevention or treatment of AD 

patients in the early stages of their disease, thanks to the improved techniques for the early 

diagnosis of AD19.

Besides AD, the ongoing COVID-19 pandemic has resulted in over 364 million infection 

cases and over 5.63 million deaths worldwide (https://covid19.who.int/), impacting every 

aspect of our societies. The elderly, notably the demented population, is one of the groups 

most at risk of having severe COVID-19 symptoms. AD patients have greater than seven-

times the risk of being infected with the COVID-19 virus, and more than a two-fold 

rate of mortality20. Disruption of intracellular Ca2+ homeostasis is considered an upstream 

pathological pathway in not only AD, but also SARS-CoV-2 virus infection and replication 

in COVID-1921–23. Specifically, aberrant elevation of Ca2+ concentrations in the cytosol 

and endosome as well as associated amyloid pathology in AD promote SARS-CoV-2 virus 

binding to host cells, subsequent infection, and RNA replication in host cells22,24,25 – a 

potential underlying mechanism which could increase COVID-19 severity in AD patients. 

This narrative review addresses mechanisms underlying neuroprotection via lithium (the 

current first-line treatment for patients with bipolar disorder) against AD and, to a lesser 

extent, against COVID-19. We propose that lithium provides protection in both AD and 

COVID-19, at least in part, by restoring the disrupted intracellular Ca2+ homeostasis. 

Lithium is expected to inhibit both AD and COVID-19 pathologies and therefore may be 

utilized as a potential repurposed drug for the treatment of AD patients, especially those also 

infected with SARS-CoV-2.

Lithium as a Potential Therapeutic Drug for AD by Correcting Upstream Ca2+ 

Dysregulation and Aberrant Signaling Pathways

Changes of cytosolic Ca2+ concentrations ([Ca2+]c) regulate a variety of physiological 

functions, such as cell survival, cell death, cell division, neurogenesis, synaptogenesis 

and autophagy, among others26–29. As shown in Figure 1, pathological and prolonged 

elevation of [Ca2+]c and mitochondrial Ca2+ concentrations ([Ca2+]m) due to Ca2+ 

influx via over-activation of NMDAR30–34, AMPAR35–38 and metabotropic GluRs 

(mGluRs)39–42 glutamate receptors in AD results in multiple AD-like pathologies including 

neurodegeneration43–46, impaired neurogenesis34,47,48, disrupted autophagy34,49–51, and 

excessive inflammation, etc.33,52–55. Additionally, the SAD high risk protein, ApoE4, 
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pathologically aggravates over-activation of NMDAR and subsequent activation of L type 

voltage-dependent Ca2+ channel (L-VDCC)30,56,57. Further, L-VDCC is increased in the 

hippocampus of AD transgenic mice58, which can be modulated by amyloid β peptide59. 

The Ca2+ release from the endoplasmic reticulum (ER) via InsP3 receptors (InsP3Rs) 

and/or ryanodine receptors (RyRs) is also pathologically increased in AD, due to the 

PSEN1 or PSEN2 mutation51,60–66. This Ca2+ dysregulation described above has been 

considered an upstream trigger for multiple AD pathologies, including activation of cyclin-

dependent kinases 5 (CDK-5)67–70 and glycogen synthase kinase-3β (GSK-3β)71–74, tau 

hyperphosphorylation, and the spreading of tau pathology75,76, mitochondrial damage77–79, 

elevation of reactive oxygen species (ROS)46,80,81, and energy failure82,83 (Figure 1). These 

pathologies, especially when combined, result in the previously mentioned downstream 

AD pathologies, and eventually lead to synaptic/cognitive dysfunction61,84–87 (Figure 1). 

A drug that can inhibit upstream Ca2+ dysregulation13,76 and associated tau pathology14,88 

is expected to be a good candidate for all above mentioned AD pathologies and to be an 

effective treatment of AD patients.

Lithium has long been a primary drug for treating bipolar disorder and has been shown 

to exhibit neuroprotective properties in various neurodegenerative diseases, including 

AD89–94, stroke95–98, Parkinson’s disease72,99–102, Huntington’s disease103–105, and brain 

trauma106,107. In preclinical models of AD, lithium treatment has been reported to 

inhibit multiple pathological features of AD, including amyloid108–110 and tau71,111,112 

pathology, oxidative stress113, autophagy impairment95, as well as synapse and learning/

memory deficits110,114. In some clinical investigations, lithium at moderate doses improves 

cognitive function and memory performance in AD patients115,116. Although inhibition 

of GSK-3β and CDK-5 is thought to be one of the primary mechanisms for inducing 

lithium’s neuroprotective efficacies117,118, the role of Ca2+ modulation in mediating 

lithium-induced neuroprotection has been under-explored. Increasing evidence suggests 

that lithium also inhibits the upstream pathologically elevated [Ca2+]c and associated tau 

hyperphosphorylation, as well as other downstream AD pathological pathways93,95,119,120. 

As shown in Figure 1, lithium inhibits toxic glutamate-induced over-activation of NMDARs, 

both alone and when this NMDAR over-activation is aggravated by the AD high risk 

protein ApoE430,93. Lithium may inhibit NMDAR by inhibiting NMDA NR2B subunit 

tyrosine phosphorylation due to suppression of Src/Fyn tyrosine kinase119,121. Lithium also 

suppresses excessive Ca2+ release caused by over-activation of InsP3R in AD conditions 

by downregulating an aberrant level of the InsP3R agonist, insP3
122. Additionally, the 

aforementioned effects of lithium indirectly reduce Ca2+ release from the ER via RyRs 

through inhibiting Ca2+-induced Ca2+ release (CICR)33,123. Moreover, lithium has also been 

demonstrated to increase the number and activity of the sarco/endoplasmic reticulum Ca2+ 

ATPase (SERCA) pump and to facilitate the Ca2+ uptake from the cytosol to ER lumen, thus 

ameliorating cell damage due to significant ER Ca2+ depletion and associated ER stress124.

In neurophysiological conditions, transfer of Ca2+ from the ER into mitochondria through 

InsP3Rs/RyRs plays an important role in the generation of mitochondrial ATP as an energy 

source125,126. However, excessive transfer of Ca2+ from the ER into mitochondria, together 

with impaired electronic transfer chain (ETC) function caused by hyperphosphorylated 

tau in AD will impair mitochondrial function in energy production127–129. Furthermore, 
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overloading mitochondria with Ca2+ due to elevated Ca2+ concentration in cytosolic space 

([Ca2+]c), especially those transferred from the ER via InsP3Rs/RyRs, pathologically 

increases the generation of reactive oxygen species (ROS)130–133. Lithium can inhibit 

upstream abnormal Ca2+ influx from extracellular space by ameliorating dysfunctional 

changes of NMDARs93,119,134, AMPAR135, Kainite (KA) receptors136, mGluRs135,137, as 

well as excessive Ca2+ transfer from the ER into mitochondria via InsP3Rs/RyRs122,138,139. 

Lithium also promotes Ca2+ uptake into the ER lumen by increasing the SERCA Ca2+ pump 

activity124 and ameliorating ER stress and associated cell damage in AD120. Considering the 

ability of lithium to ameliorate the above-mentioned AD pathologies, it may be prudent to 

repurpose lithium as an effective disease-modifying drug for AD treatment72,91,93.

Intracellular Ca2+ homeostasis plays critical roles in determining cell survival and 

death140–144. Both an aberrant elevation of [Ca2+]c
145,146 and Ca2+ concentration in 

mitochondria ([Ca2+]m)127,147, and the depletion of ER Ca2+143,148,149 contribute to 

neuronal death. Overloading mitochondria with Ca2+ collapses the mitochondria membrane 

potential and releases cytochrome c into the cytosol142,150, leading to caspase activation and 

apoptotic cell death127,150–152. Neurodegeneration and brain atrophy are commonly seen in 

AD patients153,154, and are key mechanisms underlying synapse/cognitive dysfunction85,155. 

Maintenance of cytosolic, especially mitochondrial Ca2+ homeostasis also plays prominent 

roles in neurogenesis and synaptogenesis48,156–159. Mounting evidence suggests that 

adult neurogenesis and synaptogenesis in AD are significantly impaired due to Ca2+ 

dysregulation34,47,48,77,84,160,161. Thus, drugs that restore intracellular Ca2+ homeostasis 

have been demonstrated to protect and/or promote neurogenesis/synaptogenesis in various 

AD models34,162. These drugs eventually improve synapse and cognitive dysfunction 

by restoring and/or promoting neurogenesis/synaptogenesis34,114,163–166. Through the 

correction of disrupted intracellular Ca2+ homeostasis, lithium is expected to inhibit 

neurodegeneration72,91,119,134,136 and impaired neurogenesis/synaptogenesis166–170, or even 

to further promote neurogenesis/synaptogenesis166,171.

Physiological autophagy plays a key role in maintaining protein homeostasis172–174, 

especially via the removal of harmful proteins, such as β-amyloid and tau proteins or 

their aggregates175–181. It is known that intracellular Ca2+ homeostasis, especially in 

the lysosome and mitochondria, helps to maintain normal autophagy49,51,182–187. Ca2+ 

dysregulation in the cytosolic space, mitochondria and/or lysosome in AD contributes to 

impaired autophagy49,51,182,188, leading to the accumulation of AD pathological proteins 

and a vicious cycle of Ca2+ dysregulation. This in turn ultimately results in cell and 

synapse damage as well as associated memory impairments32,34,164,177,179. Lithium has 

been proposed to suppress impaired autophagy in AD by ameliorating the upstream Ca2+ 

dysregulation and therefore restoring neuronal, synaptic, and cognitive functions90,95,189,190.

The over-expression of inflammation cytokines is likely involved in cell damage and 

synapse dysfunction in AD53,54,191–194. Intracellular Ca2+ homeostasis plays an important 

role in regulating levels of cytokine production and inflammation130,195–198. On the other 

hand, some pathologically elevated cytokines further disrupt intracellular Ca2+ homeostasis, 

forming a vicious cycle196,199–201. The upstream Ca2+ dysregulation contributes to 

the excessive production of toxic cytokines (TNF-α, Il-1, Il-6, etc.) and associated 

WEI et al. Page 4

Eur Rev Med Pharmacol Sci. Author manuscript; available in PMC 2022 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neuroinflammation55,195,197,202,203, leading to neuronal and glial cell damages192,194,204. 

As shown in Figure 1, lithium can suppress excessive inflammation in AD brains via 

normalizing upstream Ca2+ dysregulation, eventually resulting in improvement of synaptic 

function and cognitive performance168,190,205–207.

Potential Utility of Lithium in Treating COVID-19 Patients by Ameliorating the Upstream 
Pathology of Ca2+Dysregulation

COVID-19 is a systemic disease, involving multiple organ failures. Massive inflammation 

(cytokine storm) and cell damage or death in various organs likely contribute to COVID-19-

related mortality21,208–212. Although multiple mechanisms and pathways are likely involved 

in the infection, replication and host cell damage caused by the COVID-19 virus 

SARS-CoV-223,213–216, Ca2+ dysregulation has been proposed to be an integral upstream 

pathological event21,23,198,217–219. Infection of host cells by SARS-CoV-2 requires initial 

binding of spike (S) protein to the angiotensin-converting enzyme 2 (ACE2) receptor 

on the plasma membrane and subsequent cleavage of S protein into S1 and S2 by the 

transmembrane proteases, serine 2 (TMPRSS2) and/or cathepsin L220,221. S1 binds to 

ACE-2 which can be promoted by the amyloid protein25, while S2 fuses with the plasma 

membrane and facilitates the endocytosis and invasion of the virus into the host cells220,221 

(Figure 1). Activation of cathepsin L is dependent upon the elevation of [Ca2+]c caused by 

Ca2+ influx from various glutamate receptor subtypes or voltage-dependent Ca2+ channels 

(VDCC)22,24,217–219,222, and pathologically increased Ca2+ release from the ER via InsP3R/

RyRs21,24,223. Activation of the L type Ca2+ channel facilitates the SARS-CoV-2 viral entry 

and spread in host cells218. Endocytosis of the SARS-CoV-2 virus inside the endosome 

and cytosol also depends on high levels of Ca2+ in the endosome lumen, which originates 

from elevated [Ca2+]c
21,224. This Ca2+−dependent pathological process eventually promotes 

virus entry and spread, leading to host cell damage or death21,22,217,218. COVID-19 viral 

replication appears to require GSK-3β-mediated phosphorylation of the viral N protein 

of SARS-CoV-2 and accordingly GSK-3β inhibitors including lithium suppress the viral 

replication by blocking this GSK-3β-dependent event225,226. Additionally, lithium dose-

dependently inhibited replication of foot-and-mouth disease virus (FMDV), a single strand 

RNA virus227, and replication of herpes simplex virus (a DNA virus) by suppression of 

DNA polymerase228. As shown in Figure 1, lithium can suppress both the fusion of SARS-

CoV-2 with the host cell plasma membrane and subsequent virus replication inside host cells 

and thus reduces cell damage by normalizing the described upstream Ca2+ dysregulation. 

Therefore, lithium is expected to protect against host cell damage and associated multiple 

organ failures in COVID-19 patients225,226,229–231. A recent preliminary clinical study 

reported that lithium treatment of a small group of COVID patients showed significant 

benefits including improvement of inflammatory activity and the immune response231.

Conclusions

Aged people, especially those in nursing homes, are disproportionately affected by the 

COVID-19 pandemic232,233. Currently, 45 million people in the world suffer from AD, and 

this number is expected to triple by 20501,234,235. Unfortunately, no disease-modifying drugs 

have been developed for effective treatment of AD. A drug that can inhibit the pathologies 
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of both AD and COVID-19 is expected to benefit those AD patients infected, or at high 

risk of being infected with SARS-CoV-2 virus. As shown in Figure 1 and discussed above, 

lithium inhibits the upstream pathology Ca2+ dysregulation in both AD and COVID-19 

via its ability to restore intracellular Ca2+ homeostasis and could have the potential to be 

repurposed to treat AD patients suffering with COVID-19. Further timely preclinical and 

clinical investigations of this possibility are warranted.
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Figure 1. 
Proposed mechanisms underlying lithium inhibition of calcium dysregulation and associated 

pathological features in Alzheimer’s Disease (AD) and COVID-19.

WEI et al. Page 20

Eur Rev Med Pharmacol Sci. Author manuscript; available in PMC 2022 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Lithium as a Potential Therapeutic Drug for AD by Correcting Upstream Ca2+ Dysregulation and Aberrant Signaling Pathways
	Potential Utility of Lithium in Treating COVID-19 Patients by Ameliorating the Upstream Pathology of Ca2+Dysregulation

	Conclusions
	References
	Figure 1.

