Skip to main content
. 2021 Jul 14;9(29):9541–9562. doi: 10.1021/acssuschemeng.1c02558

Table 5. Summary of the Principal Properties of the PHU-Based Coatings Reported in Academiaaa.

type of coating substrates curing/application conditions film hardness solvent resistancea chemical resistance cross-cut adhesion others ref
solvent-free glass 160 °C, 16 h         140 GUj (65)
solvent-free glass 80 °C, 14 h         scratch resistant (66)
solvent-free glass 120 °C         19.9–31.2°k,l (40)
19.1–32.3°k,l (39)
12.5–61.1°k,l (67)
58–79°k (68)
solvent-free composite bare and anodized Al 70 °C, 12 h + 100 °C, 3 h   >350   5BASTM >85°k (62)
Al   >200   5BASTM >95°k (63)
solvent-free Al 100 °C, 18 h       5BASTM 57–61°k (38)a
solvent-free tin 120 °C, 6 h HPe     0ISO 60e (69)
504 hm
>106.8°k
solvent-free pine 130 °C, 24 h         49.2°k (41)
300 °C, 5 min       5BASTM,o 62.3°k
solvent-based cold-rolled steel (CRS) 150 °C, 3 h     ac., alk., DMF, eth, acetone poor   (70)
solvent-based   80 °C, 45 min + rt, 7 days 172 >300       (71)
solvent-based steel, glass rt, 1 h, 80 °C, 2 h       5BASTM   (72)
solvent-based mild steel 150 °C, 10–30 min 2H–3HPe >200b H2O, ac., alk. 2.37–2.83c 70d (73)
solvent-based mild steel 150 °C, 5 min 4HPe >200b ac., alk. 5BASTM,4.9c 70d (74)
>1000f
solvent-based CSRg 150 °C, 30 min + rt, 7 days 3H–6HPe, 160–178 >300 H2O, DEET, alk., aro. fuel, hy. fl. not to ac. 5BASTM, 2–4BASTM,h faili 10–30d (75)
solvent-based tin 100 °C, 30 min 2H   poor H2O, EtOH, ac., alk. 1ISO <10e (76)
solvent-based bare steel 120 °C, 3 h 65, 2HPe >400   5BASTM 172d (77)
solvent-based mild steel 140 °C, 1 h >H   ac. poor: alk. 5BASTM 71d (78)
NaClt
solvent-based glass spin-coating         B. Subtilisn (79)
E. colin
solvent-based glass rt, 2 h + 60 °C, 16 h         Gram-positive,n Gram-negativen (80, 81)
water-borne tin 90 °C, 1–2 h + 120 °C, 2 h HB–3HPe,p   xy, to, EtOH, ac. bad to alk. 0–1ISO optimal gloss values (87)
HPe,p, 0.74Pen,p   0ISO 70e (88)
water-borne hybrid glass rt, 12 h + 100 °C, 2 h or rt, 7 days 2BPe, 14 >100     >80e (89)
water-borne Al 60 °C, 2 h + 120 °C, 2 h + 160 °C, 2 h 3HPe     1ISO 35–68°k (90)
radiation-curable tin UV-cured, rt, 30 min 2H–2B     5B–4BASTM   (98)
radiation-curable Al UV-cured + rt, 3 days 2B–HBPe >200     88–92e (99)
radiation-curable steel UV-cured         25.5Young (100, 101)
radiation-curable polyester textile UV-cured + 50 °C, 24 h at 75% RH         >30 washing cycles (102)
radiation-curable Al 2024-T3 UV-cured, 3 passesq   85–90 H2O, hy. fl. poor: aro. fuel, lub. oil   –54 °C, passedi (103)
PHU–epoxy hybrid   rt, 5–8 days 2HPe   ac., alk., NaClr 4BASTM 50e (97, 105, 106)
PHU–epoxy hybrid Al 60 °C, 2 h + 120 °C, 2 h 4H–5HPe     1ISO   (90)
PHU–epoxy hybrid CRS rt, 7 days   100 aro. fuel, hy. fl., lub. oil 5BASTM –54 °C, passedi (109)
PHU–nanocomposite hybrid Al 75 °C, 24 h   190   5BASTM gloss 70–100e (116)
PHU–nanocomposite hybrid Al 100 °C, 24 h       1ISO gloss 132–140 (107)
PHU–POSS hybrid Tin 100 °C, 8–12 h 2H–3H     1ISO 50e (117, 118)
PHU–POSS hybrid glass 80 °C, 14 h + 100 °C, 4 h         scratch resistants (119)
PHU–silica hybrid carbon steel 130–140 °C, 3 h     H2O, ac. poor: alk. 5BASTM flame retardant (120)
PHU–Ly–gibbsite hybrid stainless Steel 80 °C, 24 h + 100 °C, 4 h         flame retardant (121)
PHU–MWCNT hybrid tin 60 °C, 12 h + 90 °C, 4 h HB     0ISO 50e (122)
nanocomposite PHU hybrid mild steel/Al 70 °C, 30 min + 135 °C, 1 h 4H >2002 ac., alk., boiling H2O 5B 70.8d, 500 hv, 120 hw (123)
nanocomposite PHU hybrid steel rt, 24 h + 100 °C, 2 h         55 daysv,w (124)
nanocomposite PHU hybrid glass 90 °C, 72 h under vacuum 3B–2HPe       UV-weather resistant (125, 126)
PHU–sol–gel hybrid glass 60 °C, 24 h       7c alk.t, ac.t, NaClt (59)
stainless steel 1.4c
Ti6Al4V 0.7c
PHU–sol–gel hybrid Ti6Al4V 60 °C, 24 h       2.2x,c, 3.0y,c Hank’s solutiont (134)
stainless steel 3.3x,c, 4.0y,c
PHU–sol–gel hybrid Al rt, 24 h + 80 °C, 12 h + 120 °C, 2 h 202Pe >200   2.95c 82°k (108)
a

MEK rub test.

b

Also resistant to xylene.

c

Pull-off test, MPa.

d

Impact resistance, lbs in.

e

Impact resistance, cm/kg.

f

Abrasion resistance, in cycles.

g

Iron phosphate pretreated.

h

After 24 h, immersed in deionized water.

i

Mandrel flexibility (1/8 in.);

j

Gloss, 60°.

k

Contact angle of water.

l

Contact angle of iodomethane.

m

No rust immersed in 10% NaCl solution.

n

Antibacterial activity against.

o

Crosscut adhesion performed on steel. Kept performance after washing in hot water.

p

Measured on glass.

q

12 ft/min, 0.70 J/cm2.

r

Saline solution.

s

Retained 85% of gloss after 200 double strokes.

t

Anticorrosion properties.

u

Against xylene.

v

NaCl salt-spray test at 35 °C.

w

EIS test in 5% NaCl.

x

Laser treatment.

y

Oxygen plasma treated.

z

Antibacterial activity against Methicillin-resistant S. aureus, P. aeruginosa, and C. albicans without toxicity.

aa

ac. acidic solution; alk. alkali solution; aro. fuel aromatic fuel; ASTM according to the ASTM D 3359 scale 0B worst–5B best; DEET N,N-diethyl-m-toluamide; DMF dimethyl formamide; eth. petroleum ether; Hank’s solution: physiological pH solution including sodium, potassium, calcium, magnesium and chloride; hy. fl. hydraulic fluid; ISO ISO 2409 scale: 0 best–5 worst; Kö König pendulum hardness (s); lub. oil lubricating oil; MDF: medium density fiberboard; MWCNTs multiwalled carbon nanotubes; Pe pencil hardness; Pen pendulum hardness; ref reference; rt room temperature; Sh Shore A hardness; Ti6Al4V titanium alloy; to. toluene; xy. xylene, Young Young’s modulus in MPa.