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Abstract

Aims/hypothesis The gut microbiome is mainly shaped by diet, and varies across geographical regions. Little is known about the
longitudinal association of gut microbiota with glycaemic control. We aimed to identify gut microbiota prospectively associated
with glycaemic traits and type 2 diabetes in a geographically diverse population, and examined the cross-sectional association of
dietary or lifestyle factors with the identified gut microbiota.

Methods The China Health and Nutrition Survey is a population-based longitudinal cohort covering 15 provinces/megacities
across China. Of the participants in that study, 2772 diabetes-free participants with a gut microbiota profile based on 16S rRNA
analysis were included in the present study (age 50.8 + 12.7 years, mean + SD). Using a multivariable-adjusted linear mixed-
effects model, we examined the prospective association of gut microbiota with glycaemic traits (fasting glucose, fasting insulin,
HbA,. and HOMA-IR). We constructed a healthy microbiome index (HMI), and used Poisson regression to examine the
relationship between the HMI and incident type 2 diabetes. We evaluated the association of dietary or lifestyle factors with
the glycaemic trait-related gut microbiota using a multivariable-adjusted linear regression model.

Results After follow-up for 3 years, 123 incident type 2 diabetes cases were identified. We identified 25 gut microbial genera
positively or inversely associated with glycaemic traits. The newly created HMI (per SD unit) was inversely associated with
incident type 2 diabetes (risk ratio 0.69, 95% CI 0.58, 0.84). Furthermore, we found that several microbial genera that were
favourable for the glycaemic trait were consistently associated with healthy dietary habits (higher consumption of vegetable, fruit,
fish and nuts).

Conclusions/interpretation Our results revealed multiple gut microbiota prospectively associated with glycaemic traits and type
2 diabetes in a geographically diverse population, and highlighted the potential of gut microbiota-based diagnosis or therapy for
type 2 diabetes.

Data availability The code for data analysis associated with the current study is available at https://github.com/wenutrition/
Microbiota-T2D-CHNS
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What is already known about this subject?

o A number of human studies have reported a cross-sectional association of gut microbiota with type 2 diabetes

e  Gut microbial composition varies across geographic regions, which may confound the relationship between gut

microbiota and type 2 diabetes

What is the key question?

e Isit possible to identify gut microbiota prospectively associated with glycaemic traits and type 2 diabetes in a

geographically diverse population?

What are the new findings?

e  We identified a panel of gut microbial genera prospectively associated with glycaemic traits among participants

from various geographic regions

e  We identified multiple dietary or lifestyle factors associated with glycaemic trait-related gut microbiota

How might this impact on clinical practice in the foreseeable future?

e  Our results revealed multiple gut microbial genera prospectively associated with glycaemic traits and type 2
diabetes in a geographically diverse population, and these identified gut microbial genera may serve as early
preventive targets or biomarkers for type 2 diabetes in the future

Abbreviations

CHNS China Health and Nutrition Survey
FDR False discovery rate

HMI Healthy microbiome index
LightGBM Light Gradient Boosting Machine
SHAP Shapley Additive exPlanations
Introduction

Type 2 diabetes results in a huge social and economic burden
for society, and its prevalence has continued to increase glob-
ally in the past decade [1]. Gut microbiota interact with dietary
constituents, producing choline, phenols, bile acids and short-
chain fatty acids. These microbiota-derived metabolites may
play vital roles in modulating the development of host meta-
bolic diseases, including type 2 diabetes [2, 3]. Gut microbial
markers are potential interventional targets for the prevention
of type 2 diabetes [4]. Several human studies have reported a
cross-sectional association of the microbiota with type 2
diabetes [3, 5, 6]. Recently, two European cohorts with rela-
tively moderate sample sizes (n = 273 and 608, respectively)
examined the prospective association of the gut microbiota
with type 2 diabetes or glycaemic traits [7, 8]. However, the
results from these previous studies were inconsistent, and
evidence from large prospective cohorts is still lacking.

Gut microbial composition varies across geographic regions,
which may confound the relationship between gut microbiota
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and type 2 diabetes [9]. Studies covering participants from vari-
ous geographic regions may capture the enormous heterogene-
ities in gut microbial composition and other environmental
factors, and are therefore highly necessary in gut microbial
research. In addition, the complex interaction between diet and
the gut microbiome may play an important role in modulating the
host’s metabolic health [10]. For example, dietary fibre may be
fermented by specific gut microbes, generating short-chain fatty
acids that stimulate the secretion of glucagon-like peptide-1 and
regulate glucose metabolism [11]. Gut microbiota-targeted
dietary intervention is a promising and cost-efficient method to
reduce disease risk [12, 13]. However, neither of the prospective
studies [7, 8] evaluated the association of dietary or lifestyle
factors with gut microbial genera that were specifically associat-
ed with type 2 diabetes or glycaemic traits.

Therefore, using a population-based longitudinal cohort,
the China Health and Nutrition Survey (CHNS), covering 15
provinces/megacities across China, we aimed to identify gut
microbiota prospectively associated with glycaemic traits and
type 2 diabetes. As a secondary objective, we aimed to iden-
tify potential dietary or lifestyle factors associated with the
glycaemic trait-related gut microbiota.

Methods
Study design

The present study was based on data from the CHNS, a
unique population-based longitudinal study in China that
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covers key phenotypes, diet and health outcomes of
participants from 15 provinces or megacities in China
(six in the Northern region, nine in the Southern region)
[14]. The detailed study design of CHNS has been
described previously [14]. CHNS rounds were completed
in 1989, 1991, 1993, 1997, 2000, 2004, 2006, 2009,
2011, 2015 and 2018. Stool samples and dietary informa-
tion were collected in the 2015 survey, and participants
with a gut microbiota profile based on 16S rRNA analysis
from stool samples were included in the present study (n
= 3248). Participants were excluded if they had used
antibiotics within the month preceding stool collection
(n = 71), had ever had an intestinal disease (n = 26,
including ulcerative colitis, Crohn’s disease, localised
enteritis or irritable bowel syndrome), or had prevalent
type 2 diabetes in 2015 (n = 379). Therefore, a total of
2772 diabetes-free participants from the 2015 survey for
whom a gut microbiota profile was available were includ-
ed in the present study (age 50.8 + 12.7] years, mean =+
SD). After a median follow-up period of 3.04 years (IQR
2.9-3.1 years), 1829 participants remained at the time of
the 2018 survey, 123 of whom had incident type 2 diabe-
tes. These participants were included in our longitudinal
analysis of gut microbiota with glycaemic traits and inci-
dent type 2 diabetes.

The CHNS protocol was approved by the Institutional
Review Boards of the Chinese Center for Disease Control
and Prevention (number 201524), the University of North
Carolina at Chapel Hill, USA, and the US National Institute
for Nutrition and Health (number 07-1963). Informed consent
was obtained from all participants.

Faecal sample collection and 16S rRNA profiling

Stool samples were collected by the participants them-
selves, who received instruction for the collection process
during a home visit on one of the two weekdays when the
24 h dietary recall data were recorded, and immediately
frozen at —20°C after collection. All stool samples were
transported through a cold chain to the central laboratory
within 24-48 h and stored at —20°C until processing. We
obtained a mean of 76,881 paired-end raw reads for each
sample. The methods for DNA extraction, amplification
and sequencing have been described previously [15]. The
16S rRNA sequencing data were analysed using the
Quantitative Insights Into Microbial Ecology 2 platform
(QIIME 2) [16]. DADA2 software [17] was used to filter
out sequencing reads with quality score 0<25 and to de-
noise reads into amplicon sequence variants, resulting in
feature tables and representative sequences. Taxonomy
classification was performed based on the naive Bayes
classifier using the classify-sklearn package against the
Silva-132-99 reference sequences [18].

Data collection

Demographic, lifestyle and dietary data were collected by ques-
tionnaires during the home visits on three consecutive days.
Anthropometric factors were measured on-site by trained staff.
Habitual dietary and total energy intakes were assessed by three
consecutive 24 h dietary recalls, including two weekdays and one
weekend day. The participants were asked to report the types and
amounts of all food eaten during the previous 24 h [19]. The
energy intake was calculated from the collected dietary data
based on the Chinese Food Composition Table [20]. Physical
activity was assessed as a total metabolic equivalent for task
hours per week from 7-day recalls of occupational, trans-
portation, domestic and leisure activities [21]. Urbanisation
was quantified by a validated index covering 12 urbanicity-
related components [22]. We assessed household income as
the total income of all household members.

Following an overnight fast, a blood sample was collected by
venepuncture. Blood glucose levels were measured using a
glucose oxidase phenol 4-aminoantipyrine peroxidase kit
(Randox, Crumlin, UK) and a Hitachi 7600 Analyzer (Hitachi,
Tokyo, Japan). Serum insulin levels were measured using a
radioimmunology assay kit (North Institute of Biological
Technology, Beijing, China) and a XH-6020 gamma counter
(North Institute of Biological Technology). HPLC (model
HLC-723 G7; Tosoh Corporation, Tokyo, Japan) was used to
measure HbA . [23]. The coefficients of variation for fasting
glucose, insulin and HbA . at follow-up were 19%, 13% and
16%, respectively. HOMA-IR (calculated as fasting glucose X
fasting insulin/22.5) was used to represent insulin resistance.

Ascertainment of type 2 diabetes

Incident type 2 diabetes cases were ascertained based on fasting
blood glucose >7.0 mmol/l or HbA,. >47.5 mmol/mol (6.5%),
or being currently under medical treatment for diabetes during
the follow-up visits, according to the American Diabetes
Association criteria for the diagnosis of diabetes [24].

Bioinformatics and statistical analysis

Statistical analyses were performed using Stata 15 (StataCorp,
College Station, TX, USA). The classifier was based on codes
adapted from the scikit-learn package [25]. Missing values of
the continuous covariates were imputed from the mean value
in the corresponding regions (i.e. North or South China), and
categorical covariates were imputed from the highest frequen-
cy value. Only microbial genera present in at least 10% of the
participants were included in our analyses.

Comparison of the gut microbial composition between partic-

ipants from North and South China At the genus level, we
used the vegdist function from the R package vegan [26] to
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calculate the gut microbial Bray—Curtis dissimilarity matrix.
The p value was determined by 1000 permutations, and a p
value <0.05 was considered statistically significant.

A machine learning model (gradient boosting decision trees
from the Light Gradient Boosting Machine [LightGBM] pack-
age [27]) was used for classification of participants from North
or South China. The genus-level taxonomic abundance was
used as the predictive feature. We used the ‘leave one out’
strategy to evaluate the classifier’s performance, meaning that
each training set was created by taking all provinces or mega-
cities except for the test set. The above process was repeated
ten times, resulting in a probability for each participant belong
to the Southern region.

We used the SHAP (Shapley Additive exPlanations) algo-
rithm [28] to estimate the contribution of each gut microbial
genus to the overall classifier prediction. Combination of the
LightGBM and SHAP method has shown unique strength in
prediction and feature selection [6, 29]. Microbial genera with
a mean absolute SHAP value greater than 0 contributed to the
classification of geographic regions, and were treated as a
region-discriminating gut microbe.

Region-discriminating gut microbiota predicted
dietary habits

For each of the dietary factors, we used the LightGBM
method to predict the dietary intake based on the region-
discriminating microbial genera. The tested dietary factors
including rice, wheat, fruit, vegetable, nuts, pork, poultry,
milk, egg, fish, animal oil and vegetable oil. We construct-
ed an index by generating the wheat/rice ratio to reflect the
staple food preference. A tenfold cross-validation predic-
tive implementation was used to generate genera-predicted
intake values for each participant. The performance of the
model was quantified using Pearson correlation for regres-
sion and the AUC of the receiver operating characteristic
for classification. The R package pROC [30] was used for
receiver operating characteristic curve analyses. As a
sensitivity analysis, we also imputed the missing dietary
factors by multiple imputation using chained equations. The
multiple imputation model included the outcome (dietary
factors), age, sex, education, marital status, education and
geographic region (North or South China). Five imputed
datasets were generated, and the prediction analyses were
based on the mean values of the imputed datasets.

Longitudinal relationship between gut microbiota and
glycaemic traits At the genus level, we used a linear
mixed-effects model to examine the longitudinal associa-
tion of gut microbiota with glycaemic traits (fasting
glucose, fasting insulin, HbA ;. and HOMA-IR), adjusted
for the corresponding baseline glycaemic trait, demo-
graphic, anthropometric and lifestyle factors. Sensitivity
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analysis was performed by adding the dietary factors into
the covariate list. The demographic, anthropometric and
lifestyle factors included age, sex, housechold income,
marital status, self-reported educational level, place of
residence (rural or urban), urbanisation index, BMI, total
energy intake, alcohol consumption, smoking and physi-
cal activity. To further identify microbial genera associat-
ed with glycaemic traits that are potentially mediated by
BMI, we re-examined the association of the gut microbi-
ota with glycaemic traits without adjusting for the BMI.
Here, associations were expressed as the difference in
glycaemic traits (in SD units) per SD difference in each
gut microbial genus. The linear mixed-effects model
contains a random intercept and random coefficient on
the provinces or megacities to adjust for the heterogeneity
of the gut microbiota composition among the provinces or
megacities. We independently examined the gut
microbiota/glycaemic trait association in the Northern
and Southern populations, and combined the effect esti-
mates from the two regions using random-effects meta-
analysis. A p value <0.05 was considered statistically
significant. The Benjamini-Hochberg method was used
to control the false discovery rate (FDR).

Healthy microbiome index and incident type 2 diabetes We
used an additive model to construct a healthy microbiome
index (HMI) with the glycaemic trait-related genera as

HMI = 3 g,
j=1

where HM], is a healthy microbiome index for individual 7, m
is the number of glycaemic trait-related genera, and g;; is the
score for gut microbial genus j for the individual i. If the
individual i carries genus j that is in favour of a glycaemic
trait, or does not carry genusj that is harmful to the glycaemic
trait, g;; equals 1, otherwise g; equals 0.

We then examined the prospective association of the base-
line HMI (per SD unit) with incident type 2 diabetes using a
Poisson regression model, adjusted for the aforementioned
demographic, anthropometric and lifestyle factors. We also
performed subgroup analysis stratified by the geographic
region, age group, sex, BMI level and urbanisation level (city
or rural), to test the robustness of the model.

Relationship between dietary or lifestyle factors and
glycaemic trait-related gut microbiota Linear regression was
used to estimate the difference in the above glycaemic trait-
related gut microbiota or HMI (in SD units) per SD change for
continuous dietary or lifestyle factors (per-category change for
categorical dietary or lifestyle factors), with adjustment for
potential confounders and mutually adjusted for the other
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dietary or lifestyle factors. The tested dietary or lifestyle factors
included wheat, rice, wheat/rice ratio, fruit, vegetable, nuts,
pork, poultry, milk, egg, fish, alcohol consumption, smoking
and physical activity. The adjusted covariates included age,
sex, BMI, total energy intake, household income, marital
status, self-reported educational level, place of residence (rural
or urban), urbanisation index, and animal or vegetable oil
intake. In addition to the above food groups, we also used
linear regression to evaluate the association of dietary fibre
with glycaemic trait-related gut microbial genera, with adjust-
ment for the above covariates. The Benjamini—-Hochberg
method was used to control the FDR. An FDR value <0.05
was considered statistically significant. We further used linear
regression to examine the association between the included
food groups and glycaemic traits with and without adjustment
for the gut microbial genera (i.e. HMI).

Results
Participant characteristics

The overview of the study workflow is shown in electronic
supplementary material (ESM) Fig. 1. The proportions of
prevalent and incident type 2 diabetes in Northern China were
12.8% and 6.73%, respectively, and 11.6% and 6.72%,
respectively, in Southern China. Baseline characteristics of
the CHNS study participants are shown in Table 1. The
proportions of participants for whom data were missing were
low, as shown in ESM Table 1. After excluding rare microbial
genera that were present in less than 10% of all the partici-
pants, 191 gut microbial genera were included in our study.

Dietary habits and gut microbial composition among
participants from North and South China

The dietary habits and gut microbial composition showed
strong geographic differences between Northern and
Southern China (Fig. la,b). Participants from Northern
China had a high consumption of wheat-based foods, milk
and egg, while those from Southern China consumed more
rice-based foods, animal oil, fish, vegetables, nuts, pork and
poultry (Fig. la). The absolute values for the significant
Pearson’s correlation coefficients within the dietary factors
were low to moderate (ESM Table 2, 0.041< 1] <0.366).
The genera-based classifier showed a high performance for
regional prediction (Fig. 1c). We identified 46 region-
discriminating gut microbial genera (ESM Table 3) that
contributed to the classification of Northern or Southern
China based on the SHAP method. Several food groups
(wheat, rice, pork) showed moderate to high correlation
(Pearson’s correlation coefficients >0.15) in the tenfold
cross-validation between predicted dietary values (based on

region-discriminating gut microbiota) and measured dietary
values (ESM Table 4). Further analysis showed that the
region-discriminating gut microbial genera could predict a
participant’s staple food preference (Fig. 1d).

Prospective association of gut microbiota with
glycaemic traits and type 2 diabetes

Overall, a total of 25 gut microbial genera were positively or
inversely associated with at least one glycaemic trait (Fig. 2),
including seven region-discriminating genera
(Erysipelatoclostridium, Dialister, Fusobacterium,
[Ruminococcus] torques group, Lachnospira,
Marvinbryantia and Catenibacterium). Similar results were
obtained after further adjustment for dietary factors in the
sensitivity analysis (ESM Fig. 2). However, no individual
gut microbial genera were found to be associated with
glycaemic traits after adjusting for multiple testing. Most iden-
tified genera had a high prevalence in our cohort (ESM
Table 5, mean 55%). Seven of the 25 genera were consistently
associated with at least two glycaemic traits, including
Erysipelatoclostridium, Dialister, Mollicutes RF39 spp.,
Paraprevotella, Enterococcus, Family XIII AD3011 group
and Dorea. In addition to the above microbial genera, we
identified additional genera that were inversely associated
with glycaemic traits, including Atopobium, Anaerofustis
and Defluviitaleaceae UCG-011 in our model without adjust-
ment for the BMI (ESM Table 6). We found that the HMI (per
SD unit) showed an inverse association with incident type 2
diabetes (risk ratio 0.69, 95% CI 0.58,0.84) (Fig. 3a).
Subgroup analysis showed similar results (Fig. 3a).

Association of dietary and lifestyle factors with
glycaemic trait-related microbial genera

A total of 53 pairs of dietary (or lifestyle) factor/gut microbiota
associations were identified after multiple testing correction
(Fig. 3b). Most glycaemic trait-related gut microbial genera
were associated with at least one dietary or lifestyle factor (23/
25). Overall, vegetable intake was positively associated with
HMI. However, when considering the specific glycaemic
trait-related bacteria, vegetable intake was significantly asso-
ciated with a higher abundance of two genera
(Terrisporobacter and [Eubacterium] brachy group) (Fig.
3b), which were unfavourable for the glycaemic trait. Wheat
intake was significantly associated with 14 of the 25
glycaemic trait-related microbial genera. High intake of wheat
was not consistently associated with genera, which were
favourable or unfavourable for the glycaemic trait (Fig. 3b).
High intakes of fruit, fish and nuts were consistently associat-
ed with lower abundance of the glycaemic trait-positive asso-
ciated genera, and higher abundance of the glycaemic trait-
negative associated genera. None of the gut microbial genera
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Table 1 Characteristics of the

participants included in this study Overall Northern China Southern China

Number of participants 2772 992 1780
Duration of follow-up, years 3.0+0.09 3.0+0.1 3.0+0.07
Age, years 50.8+£12.7 50.9+13.2 50.7+12.5
Women, n (%) 1328 (47.9) 461 (46.5) 867 (48.7)
BMI, kg/m> 24.1+3.3 24.8+3.4 23.7+3.2
Education, n (%)

Middle school or lower 1801 (65.0) 616 (62.1) 1185 (66.6)

High school or professional college 608 (21.9) 215 21.7) 393 (22.1)

University 363 (13.1) 161 (16.2) 202 (11.3)
Married, n (%) 2407 (86.8) 894 (90.1) 1513 (85.0)
Income (10,000 yuan/year per household) 7.3+10.5 6.4+8.6 7.8t11.4
Urban, n (%) 954 (34.4) 315 (31.8) 639 (35.9)
Urbanisation index 72.5€17.5 69.1£18.1 74.5+16.8
Physical activity, MET 147.0£150.8 138.8+141.7 151.6+155.5
Mean daily energy intake, kJ/day 8316.9+2837.5 8372.6+2869.8 8285.9+2819.6
Current smoking, n (%) 748 (27.0) 253 (25.5) 495 (27.8)
Current alcohol consumption, 7 (%) 819 (29.5) 284 (28.6) 535 (30.1)
Rice intake, kg/day 0.2+0.2 0.2+£0.2 0.3+0.1
Wheat intake, kg/day 0.1+£0.2 0.2+0.2 0.07+0.07
Fruit intake, kg/day 0.04+0.07 0.04+0.07 0.04+0.06
Vegetable intake, kg/day 0.3+0.1 0.2+0.1 0.3+0.1
Nut intake, kg/day 0.003+0.009 0.003+0.008 0.004+0.01
Pork intake, kg/day 0.08+0.07 0.04+0.04 0.09+0.07
Poultry intake, kg/day 0.02+0.04 0.01+0.03 0.02+0.04
Milk intake, kg/day 0.01+0.05 0.02+0.07 0.01+0.04
Egg intake, kg/day 0.03+0.03 0.03+0.04 0.02+0.02
Fish intake, kg/day 0.03+0.04 0.02+0.03 0.03+0.05
Vegetable oil intake, kg/day 0.02+0.03 0.02+0.02 0.02+0.03
Animal oil intake, kg/day 0.004+0.01 0.0004+0.003 0.007+0.01
Fasting glucose, mmol/l 5.2+0.6 5.3£0.6 5.1+£0.6
HbA ., mmol/mol 36.6+4.3 36.7+4.1 36.6+4.4
HbA,., % 55404 55404 5.5+0.4
Fasting insulin, pmol/l 50.7+44.1 47.4+36.2 52.4+47.5
HOMA-IR 1.7+1.5 1.6£1.3 1.7£1.6

Data are presented as number of participants (%) or mean + SD

MET, metabolic equivalent of task hours per week

were associated with fibre intake after adjustment for multiple
testing. We obtained similar results for the associations
between dietary factors and glycaemic traits with and without
adjustment for glycaemic trait-related microbial genera (ESM
Fig. 3).

Discussion
In this longitudinal cohort study, we demonstrated a large

variability in the composition of gut microbiota between
participants from Northern and Southern regions of China,
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and found that the geographic variation in gut microbiota
was highly associated with habitual diet, especially the staple
food preference of the participants. We identified key gut
microbial genera, and created a new microbial index prospec-
tively associated with type 2 diabetes among participants from
the two geographic regions. We found multiple dietary or
lifestyle factors associated with the identified gut microbial
genera.

China is divided into Northern and Southern regions by the
Qinling Mountains/Huai River line. Gut microbiota-based
region classifiers worked well in our present study, suggesting
that gut microbiota in the Northern and Southern China
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Fig. 1 Region-discriminating gut microbiota and dietary habits. (a)
Comparison of dietary habits among participants from Northern and
Southern China (n = 2772). For each dietary factor, data are presented
as scaled mean values (i.e. mean values divided by the corresponding
maximum mean value of two regions). (b) Dissimilarities in gut microbial
composition between participants from Northern and Southern China
represented by a Bray—Curtis dissimilarity matrix and principal coordi-
nate analysis. The p value was determined by 1000 permutations. The
level of confidence for the ellipses was 85%. The values on the axes
represent the variance of the gut microbial composition at the genus level
explained by principal components PCoAl and PCoA2. (¢) The micro-
bial genera-based classifier achieved a high performance in regional

populations were notably different. Wheat (7riticum spp.) and
rice (Oryza sativa var. sinica) are generally considered as the
main staple foods in China, accounting for a high proportion
of'the daily diet in Northern and Southern China, respectively.
The majority of the dietary wheat and rice were refined grains.
Wheat contains about 1.7% (dry matter) non-digestible carbo-
hydrates, mainly as xylose and arabinose, while rice contains
0.2% non-digestible carbohydrates [31]. A previous interven-
tion study suggested that the staple foods, especially wheat,
may rapidly alter gut microbial community structure and
metabolic pathways [31]. The long-term differences in staple
food preferences may shape the distinct gut microbial struc-
tures of the participants from Northern and Southern China.
In our present study, we identified a panel of microbial
genera that were prospectively associated with the glycaemic
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prediction. The genus-level taxonomic abundance was used as the predic-
tive features for the LightGBM model to predict the probability for each
participant of belonging to the Southern region. (d) Receiver operator
characteristic curves classifying participants’ staple food preference. We
used the region-discriminating genera as input for the LightGBM model
to predict the staple food preference. Staple food preference was calcu-
lated as the ratio of wheat intake to rice intake. A ratio >1 was considered
as a wheat preference, otherwise a rice preference was inferred. Here,
missing values were imputed using strategies (single mean imputation
and multiple imputation). AUC indicates a tenfold cross-validated
AUC. The range shown by the AUC is the 95% CI of the receiver oper-
ator characteristic curves

traits. No individual gut microbial genera were found to be
associated with glycaemic traits after adjusting for multiple
testing. Most of the identified genera—glycaemic trait associa-
tions were first reported in a prospective study. The region-
discriminating genus Erysipelatoclostridium was inversely
associated with fasting glucose, insulin and insulin resistance
in our study, consistent with a previous study showing that
Erysipelatoclostridium was positively correlated with the
glucose-lowering effects of metformin in humans [32]. Our
results for Dorea are consistent with results from several
cross-sectional studies that reported a positive relationship
between Dorea and type 2 diabetes [33, 34]. It has been
suggested that Parabacteroides is a beneficial commensal
microbe producing short-chain fatty acids, which are benefi-
cial for glucose metabolism [35]. In line with that study, our
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<« Fig. 2 Prospective association between the gut microbiota and glycaemic
traits. Prospective association of baseline gut microbiota with (a) fasting
glucose, (b) HbA |, (¢) fasting insulin and (d) HOMA-IR. A total of 1829
participants were included in this analysis. A linear mixed-effects model
was used to examine the prospective association of gut microbiota with
the glycaemic traits fasting glucose, HbA, fasting insulin and HOMA-
IR, adjusting for the baseline glycaemic traits, demographic,
anthropometric and lifestyle confounders. We independently examined
the gut microbiota/glycaemic trait association in the Northern and
Southern populations, and combined the effect estimates from the two
regions using random-effects meta-analysis. Associations are expressed
as the difference in glycaemic traits (in SD units) per SD difference for
each genus. Superscript letters (a to g) indicate that the marked gut
microbial genera were associated with at least two glycaemic traits. A p
value <0.05 was considered as statistically significant. No individual gut
microbial genera were found to be associated with glycaemic traits after
adjusting for multiple testing

results showed that Parabacteroides was inversely associated
with HbA .. Parabacteroides has been reported to be posi-
tively associated with type 2 diabetes in several cross-
sectional studies [33, 36, 37]. However, previous human and
animal studies have demonstrated that hypoglycaemic agents
increase the abundance of Parabacteroides [37—40]. These
results may support the hypothesis that enrichment of
Parabacteroides in type 2 diabetes patients may be a result
of the drug treatment.

We also confirmed several microbial genera—glycaemic
trait associations that have been reported in a Finnish prospec-
tive study [8]. Specifically, in the Finnish study,
Paraprevotella, [Ruminococcus) torques group and Family
XIII AD3011 group were considered as the most predictive
microbial biomarkers (three of the top five ranked) for type 2
diabetes-associated variables. A high abundance of
Paraprevotella was inversely associated with HbA . levels.
In agreement with these results, Paraprevotella was negative-
ly associated with fasting glucose and HbA . in our study. In
the Finnish study, the [Ruminococcus] torques group contrib-
uted to the prediction of fasting insulin. Similarly, one of the
region-discriminating genera, [Ruminococcus| torques group,
was positively associated with fasting glucose in our study.
Overall, despite the different study designs, population ethnic-
ities and analysis strategies between the present study and the
Finnish study, several microbial signatures were consistently
associated with the risk of type 2 diabetes in the two studies.
Additionally, we also identified some microbial genera
(Atopobium, Anaerofustis and Defluviitaleaceae UCG-011)
that were inversely associated with glycaemic traits potentially
through BM], although the detailed mechanism has yet to be
determined. In support of this finding, a previous study found
that Atopobium was inversely associated with BMI, and the
abundance of Atopobium was higher in individuals with type
2 diabetes compared with healthy individuals [41].

Geographic variations in the gut microbial composition
may limit application of a universal gut microbiota reference

for diseases such as type 2 diabetes [9]. However, we demon-
strated that the HMI was consistently associated with type 2
diabetes risk among participants from different geographic
regions, age groups, sex, BMI levels and urbanisation levels.
The strength of the current HMI was that it was developed and
validated based on data from large national representative
samples, and thus has high generalisability.

Understanding the role of habitual diet in gut microbiota is
important for type 2 diabetes management and prevention
[42]. Previous intervention studies have found that staple
foods, especially wheat, effectively improved gut function
and rapidly altered gut microbial community structure [31,
43]. In our study, wheat was associated with most genera that
were favourable or unfavourable for glycaemic traits, high-
lighting the important role of wheat in gut microbial compo-
sition and glucose metabolism. An intervention study in
humans found that grains such as whole-grain barley and
brown rice reduced plasma interleukin-6 and glucose levels,
and increased the abundance of Dialister [43]. In our study,
Dialister showed a consistent inverse association with fasting
glucose and HbA |, and was positively associated with wheat
intake. Overall, vegetable intake was positively associated
with the HMI, suggesting that higher vegetable intake may
help improve the gut microbiota profile. We also found sever-
al microbial genera that were favourable for glycaemic traits
were consistently associated with healthy dietary habits
(higher consumption of vegetables, fruit, fish and nuts). The
associations of gut microbial genera with glycaemic traits
remained largely unchanged after adjustment for dietary
confounders. There are several possible reasons for this. On
one hand, participants within each region may share similar
dietary habits, and therefore the influence of dietary adjust-
ment on the results may be attenuated as we evaluated the
microbiota/glycaemic trait association in the Northern and
Southern regions separately. On the other hand, many other
lifestyle factors or even early-life factors such as delivery
mode and maternal microbiota may also affect the abundance
of gut microbiota [44].

This study has several strengths. First, as far as we are
aware, it is the largest prospective study to date to investigate
the association of gut microbiota with glycaemic traits and
incident type 2 diabetes across geographic regions. In addi-
tion, we demonstrated that the inverse association of the HMI
with type 2 diabetes was independent of the geographic
region. This highlights the potential for gut microbiota-
based diagnosis or therapy for type 2 diabetes across regions
in China. Finally, we identified multiple dietary or lifestyle
factors associated with glycaemic trait-related gut microbiota.
A major limitation of the present study is that all participants
included in the present study are Chinese, and caution should
therefore be exercised in extrapolating our findings to other
ethnic groups. Another limitation is that the gut microbes
were measured only once and may not represent long-term
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a No.
of cases/ Mean
Subgroup Total No. (HMI) RR (95% CI)
Overall 123/1829 3.3 —— 0.69 (0.58, 0.84)
Geographic region
North 44/654 3.2 — 0.59 (0.43, 0.81)
South 7911175 3.3 —— 0.72 (0.58, 0.90)
Age
<52 years 50/916 3.2 — 0.55 (0.42, 0.73)
52 years 73/913 3.3 — 0.74 (0.57, 0.96)
Sex
Women 58/987 3.3 —— 0.63 (0.50, 0.80)
Men 65/842 3.2 — 0.81 (0.64, 1.02)
BMI
<25 kg/m? 61/1131 3.3 — 0.73 (0.57, 0.92)
225 kg/m? 62/698 3.3 — 0.72 (0.55, 0.95)
Urbanisation
Urban 40/592 3.1 — 0.66 (0.49, 0.89)
Rural 83/1237 3.4 — 0.72 (0.57, 0.90)
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<« Fig. 3 Association of HMI with incident type 2 diabetes and modulation
by dietary and lifestyle factors. (a) HMI and type 2 diabetes incidence (n
= 1829). Poisson regression was used to examine the association of
baseline HMI (per SD unit) with incident type 2 diabetes, adjusted for
demographic, anthropometric, dietary and lifestyle factors. Subgroup
analyses stratified by geographic region, age group, sex, BMI level and
urbanisation level (city or rural) were performed to test the robustness of
the model. (b) Association of dietary and lifestyle factors with gut
microbiota (n = 2772). Linear regression was used to estimate the
difference in glycaemic trait-related gut microbiota or HMI (in SD
units) per SD change for continuous dietary or lifestyle factors (per-
category change for categorical dietary or lifestyle factors), with
adjustment for the confounders and mutually adjusted for the other
tested dietary or lifestyle factors. Red arrows indicate gut microbiota
that were positively associated with glycaemic traits; green arrows
indicate gut microbiota that were inversely associated with glycaemic
traits. The Benjamini-Hochberg method was used to control the FDR.
An FDR value <0.05 was considered statistically significant

status. Changes in gut microbes over time are likely. Finally,
our analyses are based on genera rather than bacterial species.
It is possible that different species within a genus may have
different effects on glucose metabolism and different associ-
ations with dietary exposures.

In summary, we characterised the variations of gut micro-
biota among participants from Northern and Southern China.
We identified a panel of gut microbiota that are prospectively
associated with glycaemic traits and type 2 diabetes, and
found several dietary and lifestyle factors to be associated with
the identified specific gut microbial genera. The identified gut
microbiota may serve as potential early preventive targets or
biomarkers for type 2 diabetes.
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