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A large-scale multi-label 12-lead 
electrocardiogram database 
with standardized diagnostic 
statements
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Deep learning approaches have exhibited a great ability on automatic interpretation of the 
electrocardiogram (ECG). However, large-scale public 12-lead ECG data are still limited, and the 
diagnostic labels are not uniform, which increases the semantic gap between clinical practice. In 
this study, we present a large-scale multi-label 12-lead ECG database with standardized diagnostic 
statements. The dataset contains 25770 ECG records from 24666 patients, which were acquired from 
Shandong Provincial Hospital (SPH) between 2019/08 and 2020/08. The record length is between 10 and 
60 seconds. The diagnostic statements of all ECG records are in full compliance with the AHA/ACC/HRS 
recommendations, which aims for the standardization and interpretation of the electrocardiogram, and 
consist of 44 primary statements and 15 modifiers as per the standard. 46.04% records in the dataset 
contain ECG abnormalities, and 14.45% records have multiple diagnostic statements. The dataset also 
contains additional patient demographics.

Background & Summary
Electrocardiogram (ECG) is an important tool for diagnosing heart diseases and early screening1,2. In recent 
years, as the rapid growth in leveraging wearable devices (e.g. smartwatch3 and smart vest4) for ECG monitoring, 
the automatic classification of ECG has become a hot topic. It is known that the ECG classification problems can 
be efficiently addressed by deep learning based approaches, providing that large-scale ECG data with labels of 
high quality are available. Successful cases include the cardiologist-level arrhythmia detection5 and the screening 
for cardiac contractile dysfunction2, where tens of thousands ECGs with restricted access were used in these 
studies.

Many ECG datasets have been published in past decades6, e.g., the MIT-BIH arrhythmia database7, the 
INCART database8, and the QT database9, but there are mostly dozens of ECG recordings in them, where the 
recordings usually have only one or two leads. In fact, such databases were mostly employed for developing mod-
els for the classification of heartbeats rather than whole ECG records. Recently, several large 12-lead ECG data-
sets have been made public (Table 1), e.g. the PTB-XL dataset10,11 and the Shaoxing People’s Hospital dataset12,13 
respectively containing 21837 and 10646 records. Especially, the PTB-XL database, the CPSC database14,15, the 
INCART database8, and the Georgia database15, which are summarized in Table 1, have been exploited in the 
PhysioNet/CinC 2020 challenge15, leading to significant progress on real-world evaluation of the ECG classifi-
cation methods. However, the existing sources of ECG are still limited for assessing the generalization ability. 
More importantly, ECG diagnostic statements, i.e. the label, used in the literature and competitions are not 
uniform. Specifically, the PTB-XL dataset adopts SCP-ECG (i.e. standard communications protocol for com-
puter assisted electrocardiography) statements16 and the PhysioNet/CinC challenge uses SNOMED-CT codes17, 
and many ECG statements used by the two standards do not exactly match. In addition, more approaches just 
use non-standardized statements, e.g. a collection of common rhythms5,12. Such divergence hinders real-world 
application of large-scale ECG data, and may result in unfair or misleading comparison.
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In this study, we present a large 12-lead ECG dataset18 with standardized diagnostic statements conforming 
to the AHA/ACC/HRS (i.e., the American Heart Association, the American College of Cardiology, and the 
Heart Rhythm Society) recommendations (hereinafter referred to as “AHA standard”)19. Our dataset contains 
25770 12-lead clinical ECG records from 24666 patients (55.36% male and 44.64% female) and, to our best 
knowledge, this is the largest accessible single-source ECG dataset. The data were collected from Shandong 
Provincial Hospital from 2019/08 to 2020/08. The sampling frequency is 500 Hz and the length of records ranges 
from 10 to 60 seconds. Patient demographics such as age and sex are also included. 46.04% records in the dataset 
contain ECG abnormalities, which are described in Chinese. The original Chinese diagnostic statements were 
checked by cardiologists and then converted to standardized diagnostic statements as per the AHA standard, 
including primary statements, modifiers and pairing rules.

The AHA standard aims for the standardization and interpretation of the ECG. It has been widely adopted in 
clinical scenario across the world. Compared with SNOMED-CT or SCP-ECG, which are mainly designed for 
medical information interchange and hence involve redundant or uncertain terms, the AHA recommendation 
mainly presents clinically useful statements and excludes unnecessary overlapping or vague terminology19. As 
supervised learning depends on accurate ECG labels to distinguish different ECG classes, a clearly organized 
and non-overlapping system of statements helps the deep learning models to efficiently learn the intrinsic ECG 
characteristics. Using the AHA terminology uniformly also enables valid model comparison and real-world 
clinical assessment.

The Shandong Provincial Hospital (SPH) database covers a wide range of ECG abnormalities and includes 
44 primary statements and 15 modifiers as per the AHA standard. Especially, the separation of statements and 
modifiers as well as the pairing rules between them can characterize ECG more thoroughly, which is of great 
value to explore precise ECG analysis. 14.45% records in the database and 31.39% abnormal records have multi-
ple diagnostic statements, providing the opportunity to develop and evaluate multi-label classification methods.

Methods
Data acquisition.  This study was approved by the Institutional review board of Shandong Provincial 
Hospital. Requirement for individual patient consent was waived and the database is allowed to be shared publicly 
after the data were de-identified.

Original ECG records were generated at Shandong Provincial Hospital, Jinan, China during 
2019/08∼2020/08. The ECG signal was recorded by the MedEx MECG-200 machine, where the A/D con-
verter has 24-bit resolution and the unit is mV. The ECG signal has 16-bit precision and the sampling frequency 
is 500 Hz. Noises caused by the power line interference, baseline wander, and muscle contraction have been 
removed by the machine. Next, the filtered ECG signal was presented to a responsible cardiologist belonging 
to the department of electrocardiogram for clinical diagnosis. All cardiologists have at least three-year clinical 
experience before they are qualified to conduct ECG diagnosis. The ECG analysis system can automatically cal-
culate nine ECG features for reference, which include heart rate, P wave duration, P-R interval, QRS duration, 
QT interval, corrected QT (QTc) interval, QRS axis, the amplitude of the R wave in lead V5 (RV5), and the 
amplitude of the S wave in lead V1 (SV1). The features might be inaccurate, especially when the ECG signal is 
abnormal. The responsible cardiologist made the final diagnosis in consideration of the patient health record.

Under the limitations that the record length should be between 10 and 60 seconds and the patient age should 
be larger than 18, the filtered signal and the diagnostic statements made by the doctor were then exported from 
the MedEx MECG-200 ECG analysis system together with the following related information from the health 
record database of the hospital:

•	 unique ID of the patient
•	 age and sex of the patient
•	 acquisition date

Data processing.  Since ECG signals have been filtered by the ECG machine and were mostly of good quality, 
we did not make additional processing to the signals. The ID of ECG records and patients were generated ran-
domly, where ECG records from the same patient were still associated with the same patient ID. In order to pro-
tect the privacy of patients, the acquisition date of ECG records were shifted by a random offset for each patient10. 

Name # ECG
Length 
(seconds) Standard # Classes # Patient Single-source

CPSC database14,15 10330 6∼60 — 23 10330 N

INCART database8 74 1800 — 10 32 Y

PTB-XL dataset10,11 21837 10 SCP-ECG16 71 18885 Y

Georgia database15 10344 10 SNOMED-CT17 24 10344 N

Shaoxing People’s Hospital dataset12,13 10646 10 — 11 10646 Y

SPH dataset (this work)18 25770 10∼60 AHA19 44 24666 Y

Table 1.  Overview of large public 12-lead ECG datasets.
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When there are multiple records for the same patient, the chronological order was kept unchanged during date 
randomization. ECG records with missing age or sex information were excluded.

The original diagnostic statements, which were written in Chinese, mainly follow the proprietary statement 
set of ECG machine vendor, and also contain many inconsistent use of idioms and punctuation due to manual 
input. The AHA standard has 117 primary diagnostic statements under 14 categories. Each primary statement 
can be paired with one or more secondary statements or modifiers, which cannot be used alone. The steps to 
convert the original diagnostic statements to standardized AHA terminology are as follows.

	 1.	 An experienced cardiologist re-checked all original diagnostic statements and made corrections (also in 
Chinese). ECG records of poor quality were excluded by visual inspection at the same time.

	 2.	 We eliminated inconsistent use of idioms and punctuation as much as possible by manually converting 
them to uniform terminology.

	 3.	 We developed a series of translation rules mapping Chinese statements to standardized statements con-
forming to the AHA standard, where each original statement may correspond to multiple AHA diagnostic 
statements. The rules do not cover all cases since there still exists vague or clinically useless statements. The 
rules were revised by the cardiologist and are described in the Supplemental File 1.

	 4.	 We applied the rules to all records with original diagnostic statements. Any ECG record with untranslata-
ble statements was excluded.

Finally, there were 25770 12-lead ECG records with standardized diagnostic statements after all steps.

Data Records
The SPH database includes ECG signal data, associated metadata and diagnostic statement dictionary (see 
Fig. 1), which are all available online at figshare18. Each unique ECG record was saved as a 12 × L array in HDF5 
format with 16-bit precision, and the file was named by the associated ID (e.g. A00001.h5). The sampling 
frequency is 500 Hz. L is the number of samples and 12 is the number of leads. The order of leads is I, II, III, aVR, 
aVL, aVF, V1, V2, V3, V4, V5, V6. There are 25770 ECG data files in total.

The diagnostic statement dictionary file (code.csv) describes the AHA statements and codes used in the 
SPH dataset. As shown in Table 2, there are 44 primary statements spanning across 11 categories (see Table 3). 
The distribution of primary statements shown in the table is highly unbalanced and should not be viewed as the 
actual reflection of the population since many records were excluded for various reasons (see Methods Section). 
There are also 15 modifiers in Table 2, which are used to refine the meaning of core statements and cannot be 
used alone19. There are more than 40 modifiers according to the AHA standard. Some modifiers (e.g. 308 and 
310) can be used with a wide range of core statements, and some modifiers can only be used with a specific cat-
egory, e.g. 330–334 should be paired with statements in category M.

In the metadata file, each line represents a unique ECG record and contains the ECG ID, the patient ID, 
the AHA code, the age and sex, the record length, and the acquisition date, as described in Table 4. Since an 
ECG record can have multiple diagnostic statements, we used the semicolon as the separator between them. 
Besides, each diagnostic statement consists of one primary statement and additional modifiers, and the plus 
sign is used to joint them. Figure 2 describes the encoded representation of multiple statements, where the 
order of statements and modifiers is arbitrary. The proportions of male and female in the dataset are 55.36% and 
44.64%. Tables 5 and 6 show the overview of patient age and the record length respectively. Most ECG records 
are between 10 and 15 seconds.

According to Table 2, there are 13905 normal ECG records, i.e., the remaining 11865 records, 46.04% of the 
SPH dataset, contain ECG abnormalities. Table 7 shows the overview of the number of statements per ECG 
record. 14.45% records in the dataset and 31.39% abnormal records have multiple diagnostic statements. Table 8 
presents the overview of the number of ECG records per patient, and 4.32% patients have more than one ECG 
record.

Fig. 1  Files in the SPH database.
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Category Code Primary Statement (+ Modifier) Count

A 1 Normal ECG 13905

C 21 Sinus tachycardia 725

C 22 Sinus bradycardia 2711

C 23 Sinus arrhythmia 1553

D 30 Atrial premature complex(es) 539

308 + Occasional 153

310 + Frequent 125

340 + Couplets 11

341 + In a bigeminal pattern 31

349 + With aberrancy 16

D 31 Atrial premature complexes, nonconducted 4

D 36 Junctional premature complex(es) 64

D 37 Junctional escape complex(es) 20

E 50 Atrial fibrillation 675

346 + With a rapid ventricular response 210

347 + With a slow ventricular response 6

E 51 Atrial flutter 99

E 54 Junctional tachycardia 13

F 60 Ventricular premature complex(es) 1067

308 + Occasional 271

310 + Frequent 277

340 + Couplets 3

341 + In a bigeminal pattern 70

342 + In a bigeminal pattern 38

350 + Polymorphic 3

H 80 Short PR interval 11

H 81 AV conduction ratio N:D 3

H 82 Prolonged PR interval 238

H 83 Second-degree AV block, Mobitz type I 
(Wenckebach) 9

H 84 Second-degree AV block, Mobitz type II 3

H 85 2:1 AV block 35

H 86 AV block, varying conduction 47

H 87 AV block, advanced (high-grade) 3

H 88 AV block, complete (third-degree) 22

I 101 Left anterior fascicular block 154

I 102 Left posterior fascicular block 6

I 104 Left bundle-branch block 84

I 105 Incomplete right bundle-branch block 1259

I 106 Right bundle-branch block 710

I 108 Ventricular preexcitation 27

J 120 Right-axis deviation 161

J 121 Left-axis deviation 138

J 125 Low voltage 322

K 140 Left atrial enlargement 19

K 142 Left ventricular hypertrophy 209

K 143 Right ventricular hypertrophy 6

L 145 ST deviation 1829

362 + Depression 1024

363 + Elevation 37

L 146 ST deviation with T-wave change 1063

L 147 T-wave abnormality 2218

367 + Inversion 176

L 148 Prolonged QT interval 24

L 152 TU fusion 9

L 153 ST-T change due to ventricular hypertrophy 88

L 155 Early repolarization 32

Continued
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Technical Validation
To validate the quality of ECG records, after all the steps described in Methods Section, we conducted signal 
quality assessment for original ECG records using two signal quality indices20, basSQI and pSQI representing 
the relative power in the baseline and the QRS complex respectively. For each record, the index was first calcu-
lated for 12 leads separately and then averaged. Next, we checked ECG records with low SQI values to make sure 
their quality is still acceptable. Figures 3 and 4 visualize the distributions of basSQI and pSQI of ECG records 
in the database, which have a minimum of 0.418 and 0.370 respectively. Specifically, ECG records whose SQI 
values are close to the minimum were reviewed and no significant quality defect was found. Figure 5 shows four 
records with lowest basSQI values. It is worth pointing out that ECG records containing one or two noisy leads 
or short corrupted segments, as shown in Fig. 5, were not rejected as long as reliable diagnosis can be made.

Category Code Primary Statement (+ Modifier) Count

M 160 Anterior MI 52

330 + Acute 1

332 + Old 47

M 161 Inferior MI 120

330 + Acute 2

331 + Recent 3

332 + Old 114

M 165 Anteroseptal MI 91

330 + Acute 4

331 + Recent 9

332 + Old 75

M 166 Extensive anterior MI 7

332 + Old 7

Table 2.  Overview of primary statements and modifiers in the dataset.

Code Category Count

A Overall interpretation 13905

B Technical conditions 0

C Sinus node rhythms and arrhythmias 4643

D Supraventricular arrhythmias 622

E Supraventricular tachyarrhythmias 787

F Ventricular arrhythmias 1067

G Ventricular tachyarrhythmias 0

H Atrioventricular conduction 370

I Intraventricular and intra-atrial conduction 2195

J Axis and voltage 612

K Chamber hypertrophy or enlargement 229

L ST segment, T wave, and U wave 5125

M Myocardial infarction 260

N Pacemaker 0

Table 3.  Overview of ECG categories in the dataset.

Field Type Description

ECG_ID String Unique identifier for ECG

AHA_Code String Encoded representation (see Fig. 2) of the AHA standard

Patient_ID String Unique identifier for patient

Age Integer Age (18∼100)

Sex String Sex (’M’: male,’F’: female)

N Integer The number of sampling point

Date String Acquisition date

Table 4.  Metadata describing the ECG record.
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Since an ECG record may have multiple diagnostic statements, we computed the co-occurrence matrix for 
primary statements to show the co-occurrence relationship (see Fig. 6). For a specific primary statement, the 
diagonal element represents the number of records labeled only by the specified statement, and other element in 
the same row means the number of records labeled by both statements. If two statements are not likely to hap-
pen at the same time in clinical practice, e.g. atrial fibrillation and other sinus rhythms, the matrix can indicate 

Fig. 2  Encoded representation of AHA diagnostic statements.

Age [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, 100]

#Records 86 2229 5145 5110 5723 4441 2161 822 53

Table 5.  Overview of patient age.

Seconds [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 60]

#Records 24242 1141 257 71 26 15 11 3 3 1

Table 6.  Overview of ECG record length.

#Statements 1 2 3 4 5 6

#Records 22046 2936 665 109 12 2

Table 7.  Overview of number of statements per ECG record.

#Records 1 2 3 4 5

#Patients 23600 1033 29 3 1

Table 8.  Overview of number of ECG records per patient.

Fig. 3  Distribution of basSQI of all ECG records.
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whether such records exist in the database intuitively. Since co-existing statements may describe different ECG 
intervals, the cardiologist revised the suspicious records to make sure the statements are correct. In addition, 
normal ECG records should not have statements indicating abnormalities, which is verified by the first column, 
thus the matrix was also used for quality control purposes.

AHA standard includes various pairing rules. As this dataset contains 44 primary statements as well as 15 
modifiers, we make sure that each modifier is pairing correctly with the primary statement by checking all 25 
combinations (see Table 2).

Usage Notes
The ECG data are stored in HDF5 format, a platform-independent format designed for data storage and widely 
supported by scientific software and programming languages. Python code for loading the ECG data and pro-
cessing diagnostic codes as well as the metadata is provided at figshare18.

The hierarchy of ECG terminology presented by the AHA standard is well-organized. 117 primary statements 
belong to core statements, and most ECG classification in the literature focus on this level only. Considering all 
kinds of AHA statements and various real-world use cases, we suggest four tasks from coarse to fine levels for 
the usage of SPH dataset (see Fig. 7).

The first task is the classification of normal ECG and abnormal ECG, which account for 53.96% and 46.04% 
in the dataset respectively. The detection of ECG abnormalities is useful in daily ECG monitoring. The remain-
ing three tasks are at the levels of ECG category, primary statement, and full statement respectively, correspond-
ing to the AHA standard, and all of them are multi-label classification. In addition, to avoid incorrect dataset 

Fig. 4  Distribution of pSQI of all ECG records.

Fig. 5  ECG signals with lowest basSQI values. The length is 10 seconds.
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partition (e.g. records from the same patient included in both training and testing sets) and improve compara-
bility of models trained on the dataset, we provide the Python code at figshare18 for dataset splitting.

Code availability
The Python code for reading the ECG data, attributes and diagnostic code dictionary, evaluating the signal 
quality, and dataset partition is available in figshare18.
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