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Abstract
Purpose  In women under the age of 40, primary ovarian insufficiency (POI) is a devastating diagnosis with significant preva-
lence of 1–4% (Rajkovic and Pangas, Semin Reprod Med. 35(3):231–40, 2017). POI is characterized by amenorrhea with 
elevated levels of follicle stimulating hormone (FSH) and reduced estrogen levels, mimicking the menopausal state. Genetic 
determinants account for just over 10% of POI cases, yet determining whether particular single nucleotide polymorphisms 
(SNPs) are pathogenic is challenging.
Methods  We performed exome sequencing on a cohort of women with POI. CRISPR mutagenesis was employed to create 
a mutation in a conserved amino acid in the nematode protein. Functional relevance was assessed by analysis of bivalents 
and aberrant DNA morphologies in diakinesis nuclei.
Results  We identified a nonsynonymous c.C1051G; p.R351G variant, in a conserved region of the MSH5 protein. Mutation 
of this conserved amino acid in the C. elegans homolog, msh-5,  revealed defective crossover outcomes in the homozygous 
and hemizygous states.
Conclusions  These studies further implicate MSH5 as a POI gene and c.C1051G; p.R351G variant as likely playing a 
functional role in mammalian meiosis. This approach also highlights the ability of model organisms, such as C. elegans, to 
rapidly and inexpensively identify alleles of interest for further studies in mammalian models.
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Background

Over the last several decades, as women have delayed 
childbirth into their thirties, the diagnosis of primary ovar-
ian insufficiency (POI) has increased. POI is defined as 
loss of ovarian follicles function with amenorrhea prior 

to the age of 40 [1]. A clinically heterogenous disorder, 
POI can be caused by infection, chronic disease, X-linked 
chromosomal abnormalities, and environment. Single gene 
defects are associated with > 10% of POI cases. More than 
forty genes (reviewed in [2, 3]), functioning in various 
oogenic processes, have been implicated through both 
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traditional cytogenetic and mapping studies and more 
recently through genome-wide associate studies (GWAS).

The age of menopause is directly related to the size of 
ovarian reserve: the lower the size of the initial oocyte 
pool, the earlier the onset of menopause. Accordingly, 
genes involved in early steps of oogenesis, such as Nanos 
3, Solh1, and Sohlh2, have been implicated in POI [4–8]. 
During embryogenesis, after migration into the genital 
ridge, female germ cells divide to produce upwards of a 
million progenitor cells that enter meiosis, undergoing the 
events of double-strand break formation, pairing, synap-
sis, and homologous recombination-mediate repair to form 
crossovers between homologous chromosomes. Errors in 
meiotic processes lead to checkpoint activation and oocyte 
loss [9–11], decreasing the oocyte anlage. This is in addi-
tion to the process of atresia which eliminates over 90% 
oocytes prior to birth, leaving a pool of oocytes that will 
be continuously lost throughout childhood and through 
reproductive life. While meiotic crossover genes are prime 
candidates for POI-associated loci [2], functional data sup-
porting this role is only available for a handful of these 
genes. These include the crossover commitment factors 
MSH4 and MSH5 [12, 13], the cohesin STAG3 [14], the 
synaptonemal complex protein SYCE1 [15, 16], and, more 
recently, the nuclease EXO1 and the recombinase RAD51 
[17].

While exome sequencing studies have increased the num-
ber of putative POI genes over the last decade, determin-
ing whether specific variants are pathogenic is particularly 
challenging when rare variants cause missense mutations 
rather than the premature stop or frameshift mutations which 
would be easily classified as pathogenic. In the current study, 
we identified the c.C1051G;p.R351G variant in a conserved 
position of MSH5. To test the pathogenicity of this allele, 
we took advantage of the genetic model system, the nema-
tode C. elegans, to create this variant and test its function 
in vivo. Importantly, C. elegans shares many of the features 
of meiosis with humans, including a critical role for the 
MSH4/MSH5 dimer in specifying crossover sites [18, 19]. 
We show here that hemizygosity for the MSH5 mutation 
causes crossover defects implicating arginine 351 as critical 
for MSH5 function.

Materials and methods

Patient recruitment

We investigated pathogenic variants in a cohort of 173 par-
ticipants diagnosed with POI. The study was approved by the 
Institutional Review Board of the University of Pittsburgh 
(PRO09080427).

Whole exome sequencing

We conducted exome sequencing on the proband from a 
cohort of women with POI recruited at the University of 
Pittsburgh. Exons and splice sites were captured with the 
Agilent SureSelectXT Human Exon V4 + UTRs Kit, and 
2 × 100 bp paired-end exome sequencing was performed on 
an Illumina HiSeq 2500. We prepared reads for analysis with 
Cutadapt version 1.2.1 to remove the adapters and with the 
FASTX-Toolkit version 0.0.13.2 to trim the first 5 bp at the 
5’ end of reads. We aligned data to UCSC Genome Browser 
hg19 by using Burrows-Wheeler Aligner version 0.7.3a 
MEM (maximal exact match). Local realignment around 
insertions and deletions, recalibration of read base quality, 
and variant calling were conducted with Genome Analysis 
Toolkit (GATK) version 2.6–5. GATK Haplotype Caller was 
used for calling variants.

CRISPR editing of C. elegans

Alignments between the C. elegans, mouse, and human 
MSH5 homologs were performed using ClustalW [20] and 
the relevant region of homology is shown in Fig. 1. R351 
corresponds to R404 in the worm protein. Nearby Cas9 rec-
ognition sites were identified using the CRISPOR tool at 
mit.crispor.edu. Two cuts were made to remove the wild-
type nucleotides and allow repair with a ssDNA oligonu-
cleotide (IDT). Sequences of CRISPR reagents:

msh-5 sgRNA 1: rGrArArUrArUrUrArUrCuAuGrGr-
CrArGrArCrArCrCrGrG.

msh-5 sgRNA 2: rGrArArCrArGrCrUrCrArGrCrUr-
CrArUrUrCrArUrUrGrG.

Repair template: 5’-TTC ATT TTT GGC CGA TTT CAG 
AGT GTA TTC CAA AAA TTT CAA AGT GGA ACC 
GCC CAG CTT ATC CAC TGG GAG TGC TTC GTC TCG 
ACA GTC AAC GCG CTT GTT GAA ATC TTG AAT 
ATT ATC GGA CAG ACA CCA GTA AAT TCA AAT 
AAT TAA TTT TTA TAA AAA AGC GAG GTT TCA AAT 
AAT TT-3’.

Analysis of diakinesis chromosomes

Whole mount fixation of 1-day-old adults was performed 
using Carnoy’s Fixation (six parts acetic acid, 3 parts 100% 
ethanol, 1 part chloroform). Worms were collected in 5 µl of 
1 × M9, rinsed once, and 10 µl Carnoy’s fixative was added. 
Just prior to drying, 50 µl of 1 × phosphate-buffered saline 
(PBS) with DAPI (4’,6-diamidino-2-phenylindole) was 
added for 15 min in a humidity chamber. After removal of 
the PBS + DAPI solution, samples were mounted in Prolong 
Gold with DAPI (Invitrogen) and cured overnight prior to 
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imaging. Imaging was performed on a Nikon A1r confocal 
microscope as 0.2 µm Z-stacks using a 60 × oil immersion 
objective. Reconstruction of images for quantifying diakine-
sis figures was performed using Volocity 3D imaging soft-
ware (Quorum Technologies).

C. elegans strains and growth

C. elegans were grown on NGM media [21] seeded with 
OP50 bacteria. Strains utilized in this study were CB128: 
dpy-10(e128) II, AV115: msh-5(me23) IV/nT1 [unc?9n745) 
let-? qIs50] (IV;V), QP989: msh-5(ea36), QP1790: dpy-
1(e1) II; msh-5(ea36) IV. To generate transheterozygotes, 
msh-5(ea23)/nT1 was heat-shocked to generate males which 
were backcrossed to maintain a male-producing stock. 
dpy-1; msh-5(ea36) hermaphrodites were crossed to msh-
5(ea36)/nT1 males and non-Dpy, non-GFP cross-progeny 
were collected for analysis. These were compared to control 
non-Dpy, non-GFP heterozygotes from dpy-10 hermaphro-
dites crossed to msh-5(me23)/nT1 males and to dpy-1; msh-
5(ea36) × N2 males.

Results

Novel missense variant in MSH5 identified in POI 
patient

We conducted exome sequencing on a cohort of women with 
POI recruited at the University of Pittsburgh. PPOF22 is 
a white American who was diagnosed at 18 years of age 
with primary amenorrhea and experienced normal puberty. 
There were no significant structural abnormalities noted on 
her physical exam. She did not have a history of cancer, 
previous chemo or radio therapy, and no history of pelvic 
or ovarian surgeries. Ultrasound examination showed small 
ovaries and absent follicles. She had elevated FSH level (85 

mIU/ml), LH level (72.8 mIU/ml), undetectable AMH, 46, 
XX, negative FMR1, negative chromosomal microarray, and 
low estradiol level (15 pg/ml).

There was no evidence of autoimmune disease: both 
anti-thyroid and anti-adrenal gland antibodies were nega-
tive in the affected individual. She was diagnosed with non-
syndromic POI. Her mother had menarche at 13 years of 
age and menopause at 48 years of age. ES was performed 
on her and her parents to identify nucleotide variants that 
may account for the idiopathic and nonsyndromic hypergon-
adotropic hypogonadism. Variants were filtered for quality 
and significance as previously reported [22]. We filtered for 
nonsynonymous variants (in exons or splice sites) that are 
presumed to be damaging, with a minor allele frequency 
of < 5% and assumed recessive inheritance given the lack 
of other family members with POI. A homozygous variant 
in MSH5, c.C1051G; p.R351G, was identified, and inher-
ited from each parent (Fig. 1A). Alignments of the MSH5 
protein identified R351 as a highly conserved amino acid 
across from worms to humans (Fig. 1B). R351G variant was 
previously deposited as pathogenic in ClinVar by the Center 
for Reproductive Medicine, Shandong Provincial Hospital. 
However, no functional evidence for the pathogenicity of 
this variant was provided. Moreover, this particular variant 
was present at a relatively high allele frequency of 1.4% in 
the gnomAD database [23]. Given the high degree of con-
servation of the R351 amino acid among multiple species, as 
well as PPOF22’s and Shandong Center’s association with 
POI, we decided to study its functional significance in C. 
elegans.

MSH‑5(R404G) displays meiotic defects in C. elegans

Using CRISPR gene editing, we created mutant worms 
containing the R404 mutation, which is the amino acid 
corresponding to human R351, and designated the allele 
msh-5(ea36). Unlike the canonical null allele, msh-5(me23) 
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Fig. 1   Identification of putative pathogenic allele in POI patient. A 
Pedigree of POI patient. B CLUSTAL multi-sequence alignment of 
the C. elegans, human, and mouse MSH5 proteins showing the con-

served arginine that is mutated in the human patient and the CRISPR-
edited worms (grey highlight)
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which produces only rare viable offspring and therefore 
needs to be maintained as a heterozygous, balanced strain 
[18], msh-5(ea36) could be maintained as a homozygote and 
was highly fertile at both 20 °C and the elevated growth tem-
perature of 25 °C. Furthermore, the strain did not segregate 
males or a large fraction of dead eggs (not shown), both of 
which result from nondisjunction of the X chromosome and 
autosomes, respectively. Therefore, we inferred that ea36 
does not substantially abrogate crossover formation.

To directly assess the integrity of crossover formation in 
these animals, we fixed 1-day-old adults and assessed cross-
over formation by counting the number of DAPI staining fig-
ures in diakinesis-arrested (equivalent to dictyate) oocytes. 
In wild type, 6 DAPI bodies are observed in diakinesis since 
the 6 pairs of chromosomes achieve crossovers and form 
bivalents. In msh-5(me23), the impairment of crossover 
designation prevents bivalent formation and 12 univalent 
chromosomes are instead observed in almost all nuclei 
(Fig. 2). In a small subset of nuclei, fewer than 12 DAPI 
are seen (10 or 11), either because 2 univalents abut one 
another or because 2 chromosomes have fused as a result of 
non-homologous recombination (HR)-mediated repair. By 
contrast, in msh-5(ea36) mutant animals, 6 bivalents were 
observed in the vast majority of diakinesis oocytes (Fig. 2). 
However, unlike in wild type, 6% of oocytes contained 7 or 
8 DAPI bodies, suggesting that one or two homolog pairs did 
not receive a crossover. The presence of univalent in msh-
5(ea36) suggests that the R404G mutation mildly impairs 
MSH-5 function.

To more rigorously test ea36 functionality, we wanted to 
determine how much of wild-type function that it confers in 
the hemizygous state (mutation/null). To this end, we first 
confirmed that msh-5 mutation is not haploinsufficient by 
observing diakinesis figures in dpy-10/ + ; + /msh-5(me23) 

hermaphrodites. As shown in Fig. 2, no univalent chromo-
somes were observed in animals heterozygous for the msh-5 
null allele. Therefore, we infer that a single wild-type copy 
of the msh-5 locus is able to confer full meiotic functions at 
the normal growth temperature of 20 °C.

We next generated animals transheterozygous for the 
null and ea36 alleles (complete genotype: dpy-1/ + ; msh-
5(me23)/msh-5(ea36)). These hemizygous animals showed 
worse meiotic crossover outcomes, with 18% of diakinesis 
oocytes exhibiting defects. Nearly 9% of diakinesis nuclei 
contained univalent chromosomes, the vast majority of these 
with a single pair of univalents, although 2 and 3 pairs were 
also observed. We also noted a substantial increase in nuclei 
with fewer than 6 DAPI bodies (8/117 with 5 and 3/117 with 
4 DAPI bodies). Five or fewer DAPI bodies may arise from 
the close juxtaposition of bivalents or from the fusion of 
two or more homolog pairs. While 5 DAPI figures were seen 
rarely in wild type or in heterozygous controls (Fig. 2), the 
prevalence in the msh-5(ea36)/msh-5(me23) animals sug-
gests that partial abrogation of MSH-5 function may lead to 
chromosome fusions. No adverse phenotypes were observed 
in dpy-1/ + ; msh-5(ea36)/ + heterozygotes, confirming that 
the dpy-1 mutation in the strain did not contribute to the phe-
notype. The diakinesis nuclei with univalents and/or fusion 
chromosomes in the msh-5(ea36)/msh-5(me23) hemizygous 
animals strongly supports the conclusion that msh-5(ea36) 
is impaired in function.

Discussion

POI affects 1–4% of women in the USA and has significant 
consequences for fertility as well as other adult disorders, 
including increased morbidity and mortality [1].

Fig. 2   msh-5(ea36) is impaired 
in crossover formation. Shown 
are the numbers of DAPI+ bod-
ies in diakinesis oocytes for the 
respective genotypes. Control 
dpy-1 animals had only the 
expected 6 DAPI+ bodies. msh-
5 heterozygous worms similarly 
had predominantly 6 DAPI bod-
ies, whereas the msh-5(me23) 
null worms had 12 univalents in 
almost all nuclei. msh-5(ea36) 
mutant animals have increased 
numbers of univalents and 
chromosome fusions.
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Using exome sequencing analysis of POI patients, we 
were able to identify a variant in the MSH-5 gene that has 
been previously assigned as pathogenic without functional 
evidence. The mutated arginine lies is a highly conserved 
region of the protein between mouse and humans and a 
well-conserved domain between worms and humans. Argi-
nine 351 is conserved between worms, mice, and humans 
suggesting possible conservation in function. The variant 
is present in gnomad database at 1.4% allele frequency. 
Although not as rare as other pathogenic variants identified 
with POI, common variants, such as nonsynonymous MCM8 
rs16991615 variant, have significant impact on reproductive 
life span and age of menopause (PMID: 24,493,794). To 
determine if this variant of interest might be pathogenic, 
we mutated it in the worm and analyzed meiotic crossover 
outcomes. The appearance of non-bivalent chromosomes 
in the arrested diakinesis nuclei in both the homozygous 
and hemizygous ea36 mutant animals indicated that R404 
is required for full MSH-5 function. By analogy, these 
data also support a mutagenic role of R351G in the human 
protein.

R351 is a surface residue situated in an alpha helical 
bundle above the ATP binding pocket of the MSH4-MSH5 
heterodimer. While the helices in this region are conserved 
from across phyla, no function-blocking mutations have 
been identified in these domains. However, the human 
MSH5 protein has at least 13 additional putative interaction 
partners (https://​thebi​ogrid.​org/​110576), a number of which, 
e.g., MLH1 and MLH3, FANCA, and BRCA1, contribute 
to crossover recombination [22–27]. Thus, it is possible that 
R351G interferes with these binding interfaces, conferring a 
partial recombination defect.

With the advent of CRISPR, the use of model organ-
isms to test variants of unknown interest from exome 
and genome sequencing studies has gained traction (e.g., 
[28–30]) due to the rapidity, ease, and low cost of creat-
ing mutations and analyzing mutant phenotypes. We show 
herein the ease of testing conserved meiotic functions in 
the nematode C. elegans, where changes in the morphol-
ogy and number of chromosome masses in diakinesis 
nuclei serve as a readout for proper crossover formation 
[31]. Given the growing list of meiotic genes that are 
implicated in premature ovarian failure and the high con-
servation between the repair machinery involved in homol-
ogous recombination repair, the worm provides a tractable 
and affordable option for assaying conserved functions. 
While the absence of a phenotype may not rule out patho-
genicity in humans, the appearance of mutant phenotypes, 
we believe is strongly suggestive of a deleterious role and 
would warrant additional studies in mammalian systems. 
In the case of this particular family, the studied variant, 
MSH5, c.C1051G; p.R351G, may contribute to the overall 
phenotype. Additional studies and additional patients with 

MSH5 c.C1051G homozygous variant will be needed to 
determine if observed variant is truly pathogenic or a sig-
nificant modifier for the loss of ovarian function.
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