A RTl C L E W) Check for updates

Language models can learn complex molecular
distributions

Daniel Flam-Shepherd® 2% Kevin Zhu' & Alan Aspuru-Guzik@ 1234

Deep generative models of molecules have grown immensely in popularity, trained on
relevant datasets, these models are used to search through chemical space. The downstream
utility of generative models for the inverse design of novel functional compounds, depends on
their ability to learn a training distribution of molecules. The most simple example is a
language model that takes the form of a recurrent neural network and generates molecules
using a string representation. Since their initial use, subsequent work has shown that lan-
guage models are very capable, in particular, recent research has demonstrated their utility in
the low data regime. In this work, we investigate the capacity of simple language models to
learn more complex distributions of molecules. For this purpose, we introduce several
challenging generative modeling tasks by compiling larger, more complex distributions of
molecules and we evaluate the ability of language models on each task. The results
demonstrate that language models are powerful generative models, capable of adeptly
learning complex molecular distributions. Language models can accurately generate: dis-
tributions of the highest scoring penalized LogP molecules in ZINC15, multi-modal molecular
distributions as well as the largest molecules in PubChem. The results highlight the limita-
tions of some of the most popular and recent graph generative models- many of which
cannot scale to these molecular distributions.

1 Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada. 2Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1,
Canada. 3 Department of Chemistry, University of Toronto, Toronto, ON M5G 178, Canada. 4 Canadian Institute for Advanced Research, Toronto, ON M5G
178, Canada. ™email: danielfs@cs.toronto.edu; alan@aspuru.com

| (2022)13:3293 | https://doi.org/10.1038/s41467-022-30839-x | www.nature.com/naturecommunications 1

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30839-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30839-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30839-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30839-x&domain=pdf
http://orcid.org/0000-0002-9568-3451
http://orcid.org/0000-0002-9568-3451
http://orcid.org/0000-0002-9568-3451
http://orcid.org/0000-0002-9568-3451
http://orcid.org/0000-0002-9568-3451
http://orcid.org/0000-0002-8277-4434
http://orcid.org/0000-0002-8277-4434
http://orcid.org/0000-0002-8277-4434
http://orcid.org/0000-0002-8277-4434
http://orcid.org/0000-0002-8277-4434
mailto:danielfs@cs.toronto.edu
mailto:alan@aspuru.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

he efficient exploration of chemical space is one of the

most important objectives in all of science, with numerous

applications in therapeutics and materials discovery.
However, exploration efforts have only probed a very small subset
of the synthetically accessible chemical space!, therefore devel-
oping new tools is essential. The rise of artificial intelligence may
provide the methods to unlock the mysteries of the chemical
universe, given its success in other challenging scientific questions
like protein structure prediction?.

Very recently, deep generative models have emerged as one of
the most promising tools for this immense challenge®. These
models are trained on relevant subsets of chemical space and can
generate novel molecules similar to their training data. Their
ability to learn the training distribution and generate valid,
similar molecules—is important for success in downstream
applications like the inverse design of functional compounds.

The first models involved re-purposing recurrent neural net-
works (RNNs)* to generate molecules as SMILES strings®. These
language models can be used to generate molecular libraries for
drug discovery® or built into variational autoencoders (VAE)37
where bayesian optimization can be used to search through the
model’s latent space for drug-like molecules. Other models gen-
erate molecules as graphs either sequentially®-14 using graph
neural networks!>1® or generate whole molecules in one
shot!7-20. Two of the most popular: CGAVE and JTVAE can be
directly constrained to enforce valency restrictions. Other models
generate molecules as point clouds in 3D space?!.

Language models have been widely applied*? with researchers
using them for ligand-based de novo design®3. A few recent uses
of language models include: targeting natural-product-inspired
retinoid X receptor modulators®4, designing liver X receptor
agonists2®, generating hit-like molecules from gene expression
signatures®®, designing drug analogs from fragments®’, compos-
ing virtual quasi-biogenic compound libraries?® and many others.
Additional studies have highlighted the ability of language models

in the low-data regime?%30 with improved performance using
data augmentation’!

Initially the brittleness of the SMILES string representation
meant a single character could lead to invalid molecules. This
problem has been largely solved with more robust molecular
string representations’?~3°. Additionally, with improved training
methods, deep generative models based on RNNs consistently
generate a high proportion of valid molecules using SMILES®30,
One area that has not been studied is the ability of language
models and generative models to generate larger more complex
molecules or generate from chemical spaces with large ranges in
size and structure. This is beneficial because of increased interest
in larger more complex molecules for therapeutics3’.

To test the ability of language models, we formulate a series of
challenging generative modeling tasks by constructing training
sets of more complex molecules than exist in standard
datasets>3638, In particular, We focus on the ability of language
models to learn the distributional properties of the target datasets.
We train language models on all tasks and baseline many other
graph generative model as well—although we focus on CGAVE
and JTVAE. The results demonstrate that language models are
powerful generative models and can learn complex molecular
distributions better than most graph generative models.

Results
We define three tasks, generating: (1) distributions of molecules
with high scores of penalized LogP? (Fig. 1a, d), (2) multi-modal
distributions of molecules (Fig. 1b, e), and (3) the largest mole-
cules in PubChem (Fig. 1c, e). Necessarily, each different gen-
erative modeling task is defined by learning to generate from the
distribution of molecules in a dataset. We build three datasets
using relevant subsets of larger databases.

In Table 1 there are some summary statistics of atom and ring
number in all datasets compared with two standard datasets Zinc>

a b c
Penalized LogP Task Multi-distribution Task Large scale Task
5
5|GDB 13 s 9
) : 8 P 2
Q
@ ‘ POLYMERS b
s ZINC 7 f
2 ’ 2 2 6 v
4 5 6 7 200 400 600 800 1000 1500 2000 2500
. . Density — .
Penalized LogP Molecular Weight Molecular Weight

Penalized LogP = 4.5

el
Penalized LogP = 4.1

O
O
O
g’o

Molecular Weight ~ 1600

Fig. 1 The generative modeling tasks. a-c The molecular distributions defining the three complex molecular generative modeling task. a The distribution of
penalized LogP vs. SA score from the training data in the penalized logP task. b The four modes of differently weighted molecules in the training data of the
multi-distribution task.c Large scale task’s molecular weight training distribution. d-f examples of molecules from the training data in each of the generative
modeling tasks. d The penalized LogP task, e The multi-distribution task. f The large-scale task.

2 | (2022)13:3293 | https://doi.org/10.1038/541467-022-30839-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

and Moses®°. All tasks involve larger molecules with more sub-
structures and contain a larger range of atom and ring number
per molecule.

For each task we assess performance by plotting the distribu-
tion of training molecules properties and the distribution learned
by the language models and graph models. We use a histogram
for the training molecules and fit a Gaussian kernel density
estimator to it by tuning its bandwidth parameter. We plot KDE’s
for molecular properties from all models using the same band-
width parameter.

From all models we initially generate 10K (thousand) mole-
cules, compute their properties and use them to produce all plots
and metrics. Furthermore, for fair comparison of learned dis-
tributions, we use the same number of generated molecules from
all models after removing duplicates and training molecules.

For quantitative evaluation of any model’s ability to learn its
training distribution, we compute the Wasserstein distance
between property values of generated molecules and training
molecules. We also compute the Wasserstein distance between
different samples of training molecules in order to determine a
most optimal baseline, which we can compare with as an oracle.

Table 1 Dataset statistics for all three tasks compared to
standard datasets.

Atoms # Rings

Min Mean Max Min Mean Max
Zinc 6 232 38 0 2.8 9
Moses 8 21.6 27 0 2.6 8
LogP 12 34.7 78 0 4.2 37
Multi 7 311 106 0 53 23
Large 101 140.1 891 0 1.2 399

a

For molecular properties we consider: quantitative estimate of
drug-likeness (QED)3?, synthetic accessibility score (SA)40,
octanol-water partition coefficient (LogP)*!, exact molecular
weight (MW), Bertz complexity (BCT)*2, natural product likeness
(NP)22, We also use standard metrics like validity, uniqueness,
novelty- to assess the model’s ability to generate a diverse set of
real molecules distinct from the training data.

For models, our main consideration is a chemical language model
using a recurrent neural network with long short-term memory*3
and is trained on SMILES (SM-RNN) or SELFIES (SF-RNN). We
also train two of the most popular deep graph generative models: the
junction tree variational autoencoder (JTVAE)!? and the con-
strained graph variational autoencoder (CGVAE)°.

Penalized LogP Task. For the first task, we consider one of the
most widely used benchmark assessments for searching chemical
space, the penalized LogP task—finding molecules with high
LogP%* penalized by synthesizability?® and unrealistic rings. We
consider a generative modeling version of this task, where the
goal is to learn distributions of molecules with high penalized
LogP scores. Finding individual molecules with good scores
(above 3.0) is a standard challenge but learning to directly gen-
erate from this part of chemical space, so that every molecule
produced by the model has high penalized LogP, adds another
degree of difficulty. For this we build a training dataset by
screening the ZINC15 database?> for molecules with values of
penalized LogP exceeding 4.0. Many machine learning approa-
ches can only find a handful of molecules in this range, for
example JTVAE!? found 22 total during all their attempts. After
screening, the top scoring molecules in ZINC amounted to
roughly 160K (K is thousand) molecules for the training data in
this task. Thus, the training distribution is extremely spiked with
most density falling around 4.0-4.5 penalized LogP as seen in
Fig. 1la with most training molecules resembling the examples

Density

o o = Train
/@[)—@—é —— SM-RNN
dLN N SF-RNN
a —— JTVAE
—— CGVAE

Tl d 0.

0 1 2 3 4 5 6 7 8
Penalized LogP

b c d

ol

‘0

C

[}

[a]

0.0 05 B 1.0 0 5 10 15 0 5 10
QED LogP SA score

Fig. 2 Penalized LogP Task l. a The plotted distribution of the penalized LogP scores of molecules from the training data (TRAIN) with the SM-RNN trained
on SMILES, the SF-RNN trained on SELFIES and graph models: CGVAE and JTVAE. For the graph models we display molecules from the out of distribution
mode at penalized LogP score € [1.75,2.25] as well as molecules with penalized LogP score in the the main mode [4.0,4.5] from all models.

b-d Distribution plots for all models and training data of molecular properties QED, LogP, and SA score.

| (2022)13:3293 | https://doi.org/10.1038/s41467-022-30839-x | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a b C d
Train
e SM-RNN
|_| SF-RNN
.g —— JTVAE = =
S CGVAE = —
a LLL m
|—'—| — == =il !_l — | .
0 10 15 0 10 25 50 75 0 10 20
Penalized LogP Ring Number Atom Number Largest Carbon Chain
e
6 Train SM-RNN SF-RNN JTVAE CGVAE
2 -
g 4
7]
b =
R = | | = | |
2
6 10 15 6 10 15 6 10 15 6 10 15 6 10 15

Density —>

Fig. 3 Penalized LogP Task Il. a-d Histograms of penalized LogP, Atoms #, Ring # and length of largest carbon chain (all per molecule) from molecules
generated by all models or from the training data that have penalized LogP > 6.0. e 2d histograms of penalized LogP and SA score from molecules
generated by the models or from training data that have penalized LogP > 6.0. f A few molecules generated by all models or from the training data that

have penalized LogP > 6.0.

shown in Fig. 1d. However, some of the training molecules,
around 10% have even higher penalized LogP scores—adding a
subtle tail to the distribution.

The results of training all models are shown in Figs. 2 and 3.
The language models perform better than the graph models, with
the SELFIES RNN producing a slightly closer match to the
training distribution in Fig. 2a. The CGVAE and JTVAE learn to
produce a large number of molecules with penalized LogP scores
that are substantially worse than the lowest training scores. It is
important to note, from the examples of these shown in Fig. 2a
these lower scoring molecules are quite similar to the molecules
from the main mode of the training distribution, this highlights
the difficulty of learning this distribution. In Fig. 2b-d we see that

JTVAE and CGVAE learn to produce more molecules with larger
SA scores than the training data, as well, we see that all models
learn the main mode of LogP in the training data but the RNNs
produce closer distributions— similar results can be seen for QED.
These results carryover for quantitative metrics and both RNNs
achieve lower Wasserstein distance metrics than the CGVAE and
JTVAE (Table 2) with the SMILES RNN coming closest to the
TRAIN oracle.

We further investigate the highest penalized LogP region of the
training data with values exceeding 6.0—the subtle tail of the
training distribution. In the 2d distributions (Fig. 3e) it’s clear that
both RNNs learn this subtle aspect of the training data while the
graph models ignore it almost completely and only learn

| (2022)13:3293 | https://doi.org/10.1038/541467-022-30839-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

Table 2 Wasserstein distance metrics for LogP, SA, QED, MW, BT, and NP between molecules from the training data and
generated by the models for all three tasks.
Task Samples LogP SA QED MW BCT NP
LogP TRAIN 0.020 0.0096 0.0029 1.620 7.828 0.013
SM-RNN 0.095 0.0312 0.0068 3.314 21.12 0.054
SF-RNN 0.177 0.2903 0.0095 6.260 25.00 0.209
JTVAE 0.536 0.2886 0.08M 35.93 76.81 0.164
CGVAE 1.000 2.1201 0n47 69.26 141.2 1.965
Multi TRAIN 0.048 0.0158 0.0020 2177 14.149 0.010
SM-RNN 0.081 0.0246 0.0059 5.483 2118 0.012
SF-RNN 0.286 0.1791 0.0227 1.35 68.809 0.079
JTVAE 0.495 0.2737 0.0343 27.71 171.87 0.109
CGVAE 1.617 1.8019 0.0764 30.31 183.58 1376
Large TRAIN 0.293 0.030 0.0003 18.92 85.04 0.005
SM-RNN 1.367 0.213 0.0034 124.49 363.0 0.035
SF-RNN 1.095 0.342 0.0099 67.322 457.5 om
JTVAE - - - - - -
CGVAE - - - - - -
TRAIN is an oracle baseline-values closer to it are better.

molecules that are closer to the main mode. In particular, CGVAE
learns molecules with larger SA score than the training data.
Furthermore, the molecules with highest penalized LogP scores in
the training data typically contain very long carbon chains and
fewer rings (Fig. 3b, d)—the RNNs are capable of picking up on
this. This is very apparent in the samples the model produce, a few
are show in Fig. 3f, the RNNs produce mostly molecules with long
carbon chains while the CGVAE and JTVAE generate molecules
with many rings that have penalized LogP scores near 6.0. The
language models learn a distribution that is close to the training
distribution in the histograms of Fig. 3a-d. Overall, the language
models could learn distributions of molecules with high penalized
LogP scores, better than the graph models.

Multi-distribution task. For the next task, we created a dataset
by combining subsets of: (1) GDB134® molecules with molecular
weight (MW) <185, (2) ZINC>*> molecules with 185 <MW <
425, (3) Harvard clean energy project (CEP)47 molecules with
460 < MW <600, and the (4) POLYMERS4® molecules with
MW > 600. The training distribution has four modes- (Figs. 1b,
e and 4a). CEP & GDB13 make up 1/3 and ZINC & POLYMERS
take up 1/3 each of ~200K training molecules.

In the multi-distribution task, both RNN models capture the
data distribution quite well and learn every mode in the training
distribution (Fig. 4a). On the other hand, JTVAE entirely misses
the first mode from GDB13 then poorly learns ZINC and CEP. As
well, CGVAE learns GDBI13 but underestimates ZINC and
entirely misses the mode from CEP. More evidence that the
RNN models learn the training distribution more closely is
apparent in Fig. 4¢ where CGVAE and JTVAE barely distinguish
the main modes. Additionally, the RNN models generate
molecules better resembling the training data (Supplementary
Table 4). Despite this, all models— except CGVAE, capture the
training distribution of QED, SA score and Bertz Complexity
(Fig. 4b-d). Lastly, in Table 2 the RNN trained on SMILES has the
lowest Wasserstein metrics followed by the SELFIES RNN then
JTVAE and CGVAE.

Large-scale task. The last generative modeling task, involves
testing the ability of deep generative models to learn large mole-
cules, the largest possible molecules relevant to molecular gen-
erative models that use SMILES/SELFIES string representations or

graphs. For this we turn to PubChem?® and screen for the largest
molecules with more than 100 heavy atoms, producing ~300K
molecules. These are molecules of various kinds: small biomole-
cules, photovoltaics and others. They also have a wide range of
molecular weight from 1250 to 5000 but most molecules fall into
the 1250-2000 range (Fig. 1c).

This task was the most challenging for the graph models, both
failed to train and were entirely incapable of learning the training
data. In particular, JTVAE’s tree decomposition algorithm
applied to the training data produced a fixed vocabulary of
~11,000 substructures. However, both RNN models were able to
learn to generate molecules as large and as varied as the training
data. The training molecules correspond to very long SMILES and
SELFIES string representations, in this case, the SELFIES strings
provided an additional advantage and the SELFIES RNN could
match the data distribution more closely (Fig. 5a). In particular,
learning valid molecules is substantially more difficult with the
SMILES grammar, as there are many more characters to generate
for these molecules and a higher probability that the model will
make a mistake and produce an invalid string. In contrast, the
SELFIES string generated will never be invalid. Interestingly, even
when the RNN models generated molecules that were out of
distribution and substantially smaller than the training molecules
—they still had similar substructures and resemblance to the
training molecules (Fig. 5a). In addition, the training molecules
seemed to be divided into two modes of molecules with lower and
higher LogP values (Fig. 5b): with biomolecules defining the lower
mode and molecules with more rings and longer carbons chains
defining the higher LogP mode (more example molecules can be
seen in supplementary Fig. 8). The RNN models were both able to
learn the bi-modal nature of the training distribution.

The training data has a variety of different molecules and
substructures, in Fig. 6a the RNN models adequately learn the
distribution of substructures arising in the training molecules.
Specifically the distribution for the number of: fragments, single
atom fragments as well as single, fused-ring and amino acid
fragments in each molecule. As the training molecules get larger
and occur less, both RNN models still learn to generate these
molecules (Fig. 5a when molecular weigh >3000).

The dataset in this task contains a number of peptides and
cyclic peptides that arise in PubChem, we visually analyze the
samples from the RNNs to see if they are capable of preserving
backbone chain structure and natural amino acids. We find that

| (2022)13:3293 | https://doi.org/10.1038/s41467-022-30839-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30839-x

a
z
(9]
C
o
o
200 400 600 800 1000 1200
Molecular Weight
b C d
2z
[92]
c
o
a
0.0 0.5 1.0 0 20 0 2000 4000 6000
QED LogP Bertz Complexity
e
Train SM-RNN SF-RNN JTVAE CGVAE
6 TE
g { ; g
34 i § i B # ok
< =
%) &
i 5
2 3 A
500 1000 500 1000 500 1000 500 1000 500 1000

Density —>

Molecular Weight

Fig. 4 Multi-distribution Task. a The histogram and KDE of molecular weight of training molecules along with KDEs of molecular weight of molecules
generated from all models. Three training molecules from each mode are shown. b-d The histogram and KDE of QED, LogP and SA scores of training
molecules along with KDES of molecules generated from all models. e 2d histograms of molecular weight and SA score of training molecules and molecules

generated by all models.

the RNNs often sample snippets of backbone chains which are
usually disjoint—broken up with other atoms, bonds and
structures. In addition, usually these chains have standard side
chains from the main amino acid residues but other atypical side
chains do arise. In Fig. 6¢c we show two examples of peptides that
are generated by the SM-RNN and SF-RNN. While there are
many examples where both models do not preserve backbone and
fantasize weird side-chains, it is very likely, that if trained entirely
on relevant peptides the model could be used for peptide design.
Even further, since these language models are not restricted to
generating amino acid sequences that could be used to design any
biochemical structure that mimic the structure of peptics or even
replicate their biological behavior. This makes them very
applicable to design modified peptides®, other peptide mimetics
and complex natural products®!>2. The only requirement would
be for a domain expert to construct a training dataset for specific
targets. We conduct an additional study on how well the RNNs

learned the biomolecular structures in the training data, in Fig. 6b
we see both RNNs match the distribution of essential amino acid
(found using a substructure search). Lastly, it is also likely that the
RNNs could also be used to design cyclic peptides. To highlight
the promise of language models for this task we display molecules
generated by the RNNs with the largest Tanimoto similarity to
colistin and vancomycin (Fig. 6d). The results in this task
demonstrate that language models could be used to design more
complex biomolecules.

We also evaluate models on standard metrics in the literature:
validity, uniqueness and novelty. Using the same 10K molecules
generated from each model for each task we compute the
following statistics defined in ref. 17 and store them in Table 3: (1)
validity: the ratio between the number of valid and generated
molecules, (2) uniqueness: the ratio between the number of
unique molecules (that are not duplicates) and valid molecules,
(3) novelty: the ratio between unique molecules that are not in the

6 NATURE COMMUNICATIONS | (2022)13:3293 | https://doi.org/10.1038/541467-022-30839-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

a
®
2 Train
2 SM-RNN
8 SF-RNN
3000 5000
Molecular Weight
b OH
yoe s
OH I .
5 i,
HO' © N
o OO O Z
LKL 2 J
wn
fe
- 9! 8 999
N OO~
HNLO u/\/\/\/HQI;J\O - O
6HO WOH O X
HO\/K/:)\@.{ O N O
HO. OH
HO' T OHO/ © -25 0 LogP25 50

Fig. 5 Large-scale Task I. a The histogram and KDE of molecular weight of training molecules along with the KDEs of molecular weight of molecules

generated from the RNNs. Two molecules generated by the RNN's with lower molecular weight than the training molecules are shown on the left of the
plot. In addition, two training molecules from the mode and tail of the distribution of molecular weight are displayed on the right. b The histogram and KDE
of LogP of training molecules along with the KDEs of LogP of molecules generated from the RNNs. On either side of the plot, for each mode in the LogP

distribution, we display a molecule from the training data.

training data and the total number of unique molecules. In the
first two tasks (Table 3), JTVAE and CGVAE have better metrics
with very high validity, uniqueness and novelty (all close to 1),
here the SMILES and SELFIES RNN perform worse but the
SELFIES RNN is close to their performance. The SMILES RNN
has the worse metrics due to its poor grammar but is not
substantially worse than the other models.

We also considered many additional graph generative model
baselines®12:17:19:53-58 on all tasks. These include some
GANs!LI9, some autoregressive models®>37, normalizing
flows>*>8 and single shot models!” Most do not scale at all and
the few baselines that do—could only handle the LogP and multi-
distribution tasks, but do not perform better than the language
models. Results are shown in Supplementary Tables 1, 2 and
Fig. 1.

Discussion

In this work, in effort to test the ability of chemical language
models, we introduce three complex modeling tasks for deep
generative models of molecules. Language models and graph
baselines perform each task, which entails learning to generate
molecules from a challenging dataset.s The results demonstrate
that language models are very powerful, flexible models that can

learn a variety of very different complex distributions while the
popular graph baselines are much less capable.

In comparison of SELFIES and SMILES, both the SM-RNN
and SF-RNN perform well in all tasks, better than the baselines.
We report that the SF-RNN has better standard metrics (Table 3)
in every task, but the SM-RNN has better Wasserstein distance
metrics (Table 2). Furthermore, the SE-RNN has better novelty
than the SM-RNN—this may mean that the SELFIES grammar
leads to less memorization of the training dataset in language
models. This could also help explain why the SE-RNN has better
standard metrics but worse Wasserstein metrics than the SM-
RNN. In addition, data augmentation and random SMILES3!
could be used to improve the novelty score of the SM-RNN. In
future, it would be valuable to have a more comprehensive eva-
luation of the use of SMILES and SELFIES representations in
deep generative models.

The results show that the main baseline graph generative
models, JTVAE and CGVAE are not as flexible as language
models. For the penalized LogP task, the difference between a
molecule that has a score of 2 and one that scores 4 often can be
very subtle. Sometimes changing a single carbon or other atom
can cause a large drop in score—this likely explains why the
CGVAE severely misfit the main training mode. For the multi-
distribution task, JTVAE and CGVAEF’s difficulties are clear but

| (2022)13:3293 | https://doi.org/10.1038/s41467-022-30839-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a
H - L Train
=1 1 [SM-RNN
ey A0 SF-RNN
2 . =y _ !
c - 1
o
o H [Ly L
LLIR L L. | L J 5
" ;T Han T, il =
0 20 150 0 20 0 10 0 20 40
Total number of Number of single Number of single Number of fused Number of amino
fragments atom fragments ring fragments ring fragments acid fragments
b
— — = = —
Py H] H
‘@ - = =
S = — L o | -
o — L
= —ii e o — — 1 = i -
2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6
Number of Val Number of Thr Number of His Number of lle Number of Leu Number of Lys Number of Phe ~ Number of Trp Number of Met
Frequency of amino acids
C

SF-RNN Generated peptide

N

SM-RNN Generated peptide

T L s

o o

o

SM-RNN Nearest Sample
Tanimoto Similarity = 0.91

Colistin
T S ¢L K

SM-RNN Nearest Sample

H Tanimoto Similarity = 0.38

o

o

OH

SF-RNN Nearest Sample
Tanimoto Similarity =(9.93

SF-RNN Nearest Sample Nl e
Tanimoto Similarity = 0.35

W%Jfﬁﬁé

Iv
NHZ)IW

H
He N\/\/\/"

NH2

Fig. 6 Large-scale Task Il. a Histograms of fragment #, single atom fragment #, single ring fragment #, fused-ring fragment #, amino acid fragment # (all
per molecule) from molecules generated by the RNN models or from the training data. b Histograms of specific amino acid number in each molecule
generated by the RNNs or from the training data. ¢ A peptide generated by the SM-RNN—MKLSTTGFAMGSLIVVEGT (right) and one generated by the SF-
RNN—ERFRAQLGDEGSKEFVEEA (left). d Molecules generated by the SF-RNN and SM-RNN that are closest in Tanimoto similarity to colistin and
vancomycin. The light gray shaded regions highlight differences from vancomycin.

very understandable. For JTVAE, it has to learn a wide range of
tree types: many of which have no large substructures like rings
(the GDB13 molecules) while others are entirely rings (CEP and
POLYMERS). For CGVAE, it has to learn a wide range of very
different generation traces—which is difficult especially since it
only uses one sample trace during learning. For the same reasons,
these models were incapable of training on the largest molecules
in PubChem.

The language models also perform better than the additional
graph generative baselines—which have the same limitations as
JTVAE and CGVAE. This is almost expected, as graph generative
models have the more difficult task of generating both the atom
and bond information—while a language model only has to
generate a single sequence. Given this- it is natural that language

models display such flexible capacity and the evaluated graph
generative models do not. Outside of molecular design some
graph generative models have attempted to scale to larger
graphs®®®0 but these models have not been augmented for
molecules. The results here do highlight the fact that many widely
used graph generative models are designed only for small drug-
like3® molecules and do not scale to larger more complex mole-
cules. On the other hand, while language models can scale and
flexibly generate larger molecules, graph generative models are
more interpretable®>>” which is important for drug and material
discovery.

Based on the experiments conducted, language models are very
powerful generative models for learning any complex molecular
distribution and should see even more widespread use. However,

8 | (2022)13:3293 | https://doi.org/10.1038/541467-022-30839-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

Table 3 Standard metrics validity, uniqueness and novelty of
molecules generated by all models in every task.

Task Metric SM-RNN SF-RNN JTVAE CGVAE
LogP Validity 0.941 1.000 1.000 1.000
Uniqueness 0.987 1.000 0.982 1.000
Novelty 0.721 0.871 0.980 1.000
Multi Valid 0.969 1.000 0.999 0.999
Uniqueness 0.996 0.989 0.998 0.996
Novelty 0.937 0.950 0.998 1.000
Large Valid 0.876 1.000 - -
Uniqueness 0.999 0.994 - -
Novelty 0.999 0.999 - -

Closer to 1.0 indicates better performance.

it is still possible to see improvements to these models as these
models cannot account for other important information like
molecular geometry. In addition, we hope that the molecular
modeling tasks and datasets introduced can motivate new gen-
erative models for these larger, more complex molecules. Future
work will explore how capable chemical language models are in
learning larger and larger snapshots of chemical space.

Methods

Hyper-parameter optimization. For hyper-parameter optimization we use the
simplest most effective method—namely random search®!. We randomly sample
from discrete grids of hyper-parameters with equal probability of selection for each
value. The values are roughly equally spaced with 3-5 values in each grid. The
upper and lower bounds for each hyper-parameter are defined as such: learning
rate € [0.001,0.0001], hidden units € [100, 1000], layer number € [1, 5], dropout
(probability) in [0.0,0.5]. We do not optimize the number of epochs— we just use
the default value for the baseline models used during training on other datasets
(MOSES, ZINC or Chembl).

Model selection criteria. There are many model selection criteria possible, for
example—the MOSES benchmark3® suggest the Frechet Distance, however, this
and other performance metrics have been shown to have issues®2. We evaluate and
select models using all metrics employed in combination with the distribution
plots. First we compile the top 10% of models with highest validity, uniqueness and
novelty. Then we plot distribution plots for the main property of interest (i.e.
penalized logP for LogP task and molecular weight for others)—then take the
model that has the closest distribution to the training distribution and scores the
lowest on largest number of the six Wasserstein distance metrics.

Further details. Language models are implemented in Python 3 with PyTorch®3
molecules are processed and relevant properties are computed using RDkit¢4.
Wasserstein distances are computed using SciPy®® as scipy.stats.wasserstein_-
distance based on®—also known as the earth mover’s distance, it can be viewed as
the minimum amount of distribution weight that must be moved, multiplied by the
distance—in order to transform samples from one distribution into samples from
the another.

Penalized LogP task details. For the SM-RNN we used an LSTM with 2 hidden
layer with 400 units and dropout in the last layer with prob = 0.2 and learning rate
of 0.0001. For the SF-RNN we used an LSTM with 2 hidden layer with 600 units
and dropout in the last layer with prob = 0.4 and learning rate of 0.0002. The
CGVAE used 8 propagation layers and hidden layer side of 100 with kl annealed to
0.1 and a learning rate of 0.0015. The JTVAE used a learning rate of 0.001 and 3
GNN layers with a hidden size of 356.

Multi-distribution task. For the SM-RNN we used an LSTM with 3 hidden layer
with 512 units and dropout in the last layer with prob = 0.5 and learning rate of
0.0001. For the SF-RNN we used an LSTM with 2 hidden layer with 500 units and
dropout in the last layer with prob = 0.2 and learning rate of 0.0003. The CGVAE
used 8 propagation layers and hidden layer side of 100 with kl annealed to 0.1 and
a learning rate of 0.001. The JTVAE used a learning rate of 0.0001 and 3 GNN
layers with a hidden size of 356.

Large-scale task. For the SM-RNN we used an LSTM network with 2 hidden
layers with 512 units and dropout in the last layer with prob = 0.25 and learning

rate of 0.001. For the SF-RNN we used an LSTM network with 2 hidden layers with
800 units and dropout in the last layer with prob = 0.4 and learning rate of 0.0001.

Data availability
The processed data used in this study are available in https://github.com/danielflamshep/
genmoltasks.

Code availability

The code used to train models is publicly available. JTVAE: https://github.com/wengong-
jin/icml18-jtnn. CGVAE: https://github.com/microsoft/constrained-graph-variational-
autoencoder. The RNN models were trained using the char-rnn code from https:/github.
com/molecularsets/moses. Trained models are available upon request.

Received: 6 December 2021; Accepted: 16 May 2022;
Published online: 07 June 2022

References

1. Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-
based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3
(1996).

2. Jumper, J. et al. Highly accurate protein structure prediction with alphafold.
Nature 596, 583 (2021).

3. Gomez-Bombarelli, R. et al. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Cent. Sci. 4, 268 (2018).

4. Sutskever, I, Martens, J. & Hinton, G. E. Generating text with recurrent neural
networks. In International Conference on Machine Learning (2011).

5. Weininger, D. Smiles, a chemical language and information system. 1.
introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci.
28, 31 (1988).

6. Segler, M. H., Kogej, T., Tyrchan, C. & Waller, M. P. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS
Cent. Sci. 4, 120 (2018).

7. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. In
International Conference on Learning Representations (2014).

8. Li Y, Vinyals, O., Dyer, C,, Pascanu, R. & Battaglia, P. Learning deep generative
models of graphs. In International Conference on Machine Learning (2018).

9. Liu, Q., Allamanis, M., Brockschmidt, M. & Gaunt, A. in Advances in Neural
Information Processing Systems 7795-7804 (2018).

10. Jin, W,, Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for
molecular graph generation. In International Conference on Machine Learning
(2018).

11. You, J, Liu, B,, Ying, Z., Pande, V. & Leskovec,]. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in Neural
Information Processing Systems 31 (2018).

12. Seff, A., Zhou, W., Damani, F.,, Doyle, A. & Adams, R. P. in Advances in
Neural Information Processing Systems.

13. Samanta, B. et al. Nevae: a deep generative model for molecular graphs. In:
AAAI Conference on Artificial Intelligence (2019).

14. Mahmood, O., Mansimov, E., Bonneau, R. & Cho, K. Masked graph modeling
for molecule generation. Nat. Commun. 12, 1 (2021).

15. Duvenaud, D. et al. in Neural Information Processing Systems (2015).

16. Flam-Shepherd, D., Wu, T. C,, Friederich, P. & Aspuru-Guzik, A. Neural
message passing on high order paths. Mach. Learn.: Sci. Technol. (2021).

17. Simonovsky, M. & Komodakis, N. in International Conference on Artificial
Neural Networks 412-422 (Springer, 2018).

18. Ma, T., Chen, J. & Xiao, C. in Advances in Neural Information Processing
Systems 7113-7124 (2018).

19. De Cao, N. & Kipf, T. Molgan: an implicit generative model for small
molecular graphs. Preprint at arXiv:1805.11973 (2018).

20. Flam-Shepherd, D., Wu, T. & Aspuru-Guzik, A. MPGVAE: improved
generation of small organic molecules using message passing neural nets.
Machine Learning: Science and Technology 2.4 (2021): 045010.

21. Gebauer, N., Gastegger, M. & Schiitt, K. Symmetry-adapted generation of 3d
point sets for the targeted discovery of molecules. Adv. Neural Inf. Process.
Syst. 32, (2019).

22. Ertl, P, Roggo, S. & Schuffenhauer, A. Natural product-likeness score and its
application for prioritization of compound libraries. J. Chem. Inf. Model. 48,
68 (2008).

23. Perron, Q. et al. Deep generative models for ligand-based de novo design
applied to multi-parametric optimization. Journal of Computational
Chemistry 43,10 (2022).

| (2022)13:3293 | https://doi.org/10.1038/s41467-022-30839-x | www.nature.com/naturecommunications 9

https://github.com/danielflamshep/genmoltasks
https://github.com/danielflamshep/genmoltasks
https://github.com/wengong-jin/icml18-jtnn
https://github.com/wengong-jin/icml18-jtnn
https://github.com/microsoft/constrained-graph-variational-autoencoder
https://github.com/microsoft/constrained-graph-variational-autoencoder
https://github.com/molecularsets/moses
https://github.com/molecularsets/moses
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. De novo design of
bioactive small molecules by artificial intelligence. Mol. Inform. 37, 1700153
(2018).

Grisoni, F. et al. Combining generative artificial intelligence and on-chip
synthesis for de novo drug design. Sci. Adv. 7, eabg3338 (2021).
Méndez-Lucio, O., Baillif, B., Clevert, D.-A., Rouquié, D. & Wichard, J. De
novo generation of hit-like molecules from gene expression signatures using
artificial intelligence. Nat. Commun. 11, 1 (2020).

Awale, M., Sirockin, F., Stiefl, N. & Reymond, J.-L. Drug analogs from
fragment-based long short-term memory generative neural networks. J. Chem.
Inf. Model. 59, 1347 (2019).

Zheng, S. et al. Qbmg: quasi-biogenic molecule generator with deep recurrent
neural network. J. Cheminform. 11, 1 (2019).

Skinnider, M. A., R. G. Stacey, R.G., Wishart, D.S. & Foster, L. J. Deep
generative models enable navigation in sparsely populated chemical space.
(2021).

Moret, M., Friedrich, L., Grisoni, F., Merk, D. & Schneider, G. Generative
molecular design in low data regimes. Nat. Mach. Intell. 2, 171 (2020).
Arts-Pous, J. et al. Randomized smiles strings improve the quality of
molecular generative models. J. Cheminform. 11, 1 (2019).

Kusner, M. J., Paige, B. & Hernandez-Lobato, J. M. in International Conference
on Machine Learning (2017).

Dai, H,, Tian, Y., Dai, B., Skiena, S. & Song, L. Syntax-directed variational
autoencoder for structured data. In International Conference on Learning
Representations (2018).

O’Boyle, N. & Dalke, A. Deepsmiles: an adaptation of smiles for use in
machine-learning of chemical structures. (2018).

Krenn, M., Hise, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-
referencing embedded strings (SELFIES): A 100% robust molecular string
representation. Machine Learning: Science and Technology 1, 4 045024 (2020).
Polykovskiy, D. et al. Molecular sets (moses): a benchmarking platform for
molecular generation models. Front. Pharmacol. 11, 1931 (2020).

Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. Natural
products in drug discovery: advances and opportunities. Nat. Rev. Drug
Discov. 20, 200 (2021).

Gaulton, A. et al. Chembl: a large-scale bioactivity database for drug discovery.
Nucleic Acids Res. 40, D1100 (2012).

Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L.
Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90 (2012).

Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-
like molecules based on molecular complexity and fragment contributions. J.
Cheminform. 1, 1 (2009).

Wildman, S. A. & Crippen, G. M. Prediction of physicochemical parameters
by atomic contributions. J. Chem. Inf. Comput. Sci. 39, 868 (1999).

Bertz, S. H. The first general index of molecular complexity. J. Am. Chem. Soc.
103, 3599 (1981).

Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9,
1735 (1997).

Ghose, A. K. & Crippen, G. M. Atomic physicochemical parameters for three-
dimensional structure-directed quantitative structure-activity relationships I.
Partition coefficients as a measure of hydrophobicity. . Comput. Chem. 7, 565
(1986).

Irwin, J. J. & Shoichet, B. K. Zinc—a free database of commercially available
compounds for virtual screening. J. Chem. Inf. Model. 45, 177 (2005).

Blum, L. C. & Reymond, J. -L. 970 million druglike small molecules for virtual
screening in the chemical universe database gdb-13. J. Am. Chem. Soc. 131,
8732 (2009).

Hachmann, J. et al. The harvard clean energy project: large-scale
computational screening and design of organic photovoltaics on the world
community grid. J. Phys. Chem. Lett. 2, 2241 (2011).

St. John, P. C. et al. Message-passing neural networks for high-throughput
polymer screening. J. Chem. Phys. 150, 234111 (2019).

Kim, S. et al. Pubchem substance and compound databases. Nucleic Acids Res.
44, D1202 (2016).

Bisht, G. S., Rawat, D. S., Kumar, A., Kumar, R. & Pasha, S. Antimicrobial
activity of rationally designed amino terminal modified peptides. Bioorg. Med.
Chem. Lett. 17, 4343 (2007).

Reker, D. et al. Revealing the macromolecular targets of complex natural
products. Nat. Chem. 6, 1072 (2014).

Sorokina, M., Merseburger, P., Rajan, K., Yirik, M. A. & Steinbeck, C. Coconut
online: collection of open natural products database. J. Cheminform. 13, 1
(2021).

Mercado, R. et al. Graph networks for molecular design. Mach. Learn.: Sci.
Technol. 2, 025023 (2021).

Lippe, P. & Gavves, E. Categorical normalizing flows via continuous
transformations. International Conference on Learning Representations.
(2020).

55. Jin, W., Barzilay, R. & Jaakkola, T. in International Conference on Machine
Learning (PMLR, 2020) 4839-4848.

56. Popova, M., Shvets, M., Oliva, J. & Isayev, O. Molecular-RNN: Generating
realistic molecular graphs with optimized properties. Preprint at
arXiv:1905.13372 (2019).

57. Li, Y., Zhang, L. & Liu, Z. Multi-objective de novo drug design with
conditional graph generative model. J. Cheminform. 10, 1 (2018).

58. Madhawa, K., Ishiguro, K., Nakago, K. & Abe, M. Graphnvp: an invertible
flow model for generating molecular graphs. Preprint at arXiv:1905.11600
(2019).

59. Dai, H,, Nazi, A,, Li, Y., Dai, B. & Schuurmans, D. in International Conference
on Machine Learning (PMLR, 2020) 2302-2312.

60. Liao, R. et al. Efficient graph generation with graph recurrent attention
networks. Adv. Neural Inf. Process. Syst. 32, (2019).

61. Bergstra,]. & Bengio, Y. Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, (2012).

62. Renz, P., Van Rompaey, D., Wegner, J. K., Hochreiter, S. & Klambauer, G. On
failure modes in molecule generation and optimization. Drug Discov. Today.:
Technol. 32, 55 (2019).

63. Paszke, A. et al., Pytorch: an imperative style, high-performance deep learning
library. Adv. Neural inf. Process. Syst. 32, (2019).

64. Landrum, G. Rdkit: a software suite for cheminformatics, computational
chemistry, and predictive modeling. (2013).

65. Virtanen, P. et al. Scipy 1.0: fundamental algorithms for scientific computing
in python. Nat. Methods 17, 261 (2020).

66. Vaserstein, L. N. Markov processes over denumerable products of spaces,
describing large systems of automata. Probl. Pereda. Inf. 5, 64 (1969).

67. Baldwin, S. in Journal of Physics: Conference Series, Vol. 341, 012001 (IOP
Publishing, 2012).

Acknowledgements

A.A.-G. acknowledge funding from Dr. Anders G. Froseth. A.A.-G. also acknowledges
support from the Canada 150 Research Chairs Program, the Canada Industrial Research
Chair Program, and from Google, Inc. Models were trained using the Canada Computing
Systems®”.

Author contributions

D.F.-S. conceived the overall project, designed the experiments, prepared the datasets and
wrote the paper. D.F.-S. and K.Z. trained the models and analyzed results. A.A.-G. led the
project and provided overall directions.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-30839-x.

Correspondence and requests for materials should be addressed to Daniel Flam-
Shepherd or Aldn. Aspuru-Guzik.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons
37 Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

| (2022)13:3293 | https://doi.org/10.1038/541467-022-30839-x | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-022-30839-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Language models can learn complex molecular distributions
	Results
	Penalized LogP Task
	Multi-distribution task
	Large-scale task

	Discussion
	Methods
	Hyper-parameter optimization
	Model selection criteria
	Further details
	Penalized LogP task details
	Multi-distribution task
	Large-scale task

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

