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The post-translational modification of proteins expands the
regulatory scope of the proteome far beyond what is
achievable through genome regulation. The field of protein
citrullination has seen significant progress in the last two
decades. The small family of peptidylarginine deiminase
(PADI or PAD) enzymes, which catalyse citrullination, have
been implicated in virtually all facets of molecular and cell
biology, from gene transcription and epigenetics to cell
signalling and metabolism. We have learned about their
association with a remarkable array of disease states and we
are beginning to understand how they mediate normal
physiological functions. However, while the biochemistry of
PADI activation has been worked out in exquisite detail
in vitro, we still lack a clear mechanistic understanding of the
processes that regulate PADIs within cells, under physiological
and pathophysiological conditions. This review summarizes
and discusses the current knowledge, highlights some of the
unanswered questions of immediate importance and gives a
perspective on the outlook of the citrullination field.

1. Introduction

Protein expression is subject to several, super-imposing layers of
regulation. Transcriptional, post-transcriptional and translational
control mechanisms determine whether a protein is expressed
within a certain cell, at a certain time. Once a protein is translated,
it can be chemically modified through enzymatic and non-
enzymatic reactions. These post-translational modifications (PTMs)
can impact the structure, stability, sub-cellular localization and
activity of a protein and modulate its binding affinity to other
proteins, metabolites and nucleic acids. Protein modifications can
be spatially and temporally controlled, allowing cells to respond
to environmental changes such as stress signals, developmental
cues, changes in nutrient or oxygen availability and oncogenic
insults. PTMs, therefore, expand the functional proteome far
beyond the complexity of the genome, and add an enormous
degree of sophistication to biological systems, making them
responsive and adaptable. Over 200 types of PTMs have been
described to date [1].
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Citrullination, or peptidylarginine deimination, is the post-translational conversion of an arginine [ 2 |
residue to citrulline and involves the hydrolysis of the arginine and concomitant release of ammonia.
Citrullination converts the guanidinium group of arginine to a ureido group, resulting in the loss of
positive charge and two potential hydrogen bond donors [2]. Depending on the location of the
modification within the protein, this may have profound consequences for protein function by altering
local electrostatic interactions and hydrogen bonding ability. Indeed, like other PTMs, citrullination
has been shown to impact several aspects of protein biology, such as structure, stability, localization,
protein and nucleic acid binding and catalytic activity, as well as affect the subsequent deposition of
other PTMs. As citrulline is a non-coded amino acid, its presence within a protein can only result
through modification, implying a change in the cell’s state or environment and the initiation of a
relevant response.

Citrullination is catalysed by a small family of enzymes, the peptidylarginine deiminases (PADIs or
PADs). The five PADI family members, PADI1, 2, 3, 4 and 6, are structurally similar and likely to operate
via common regulatory mechanisms, but they show varying tissue distributions and sub-cellular
localizations, suggesting that they have specific and non-overlapping organismal roles [3,4]. A large
number of citrullinated proteins have been identified in different biological and disease systems [5-10]
and this is likely to be a reflection of the wide regulatory capacity of citrullination. It is noteworthy
however that, unlike kinases, ubiquitinases, methyltransferases or acetyltransferases, PADIs comprise
a very small family of enzymes, with only four proteins having catalytic activity. This, coupled with
their remarkably strong association with the development of pathology, makes it worth considering
how PADIs are regulated and which molecular and cellular functions they modulate in health
and disease.

Although the presence of citrulline within proteins has been known for nearly 50 years [11], having
been suggested as early as the 1930s [12], and the first PADI was isolated 30 years ago [13], citrullination
has been a rather obscure PTM for a long time. Historically, PADIs have been best known for their role in
disease development. Research over many years has established strong and, in some cases, causal
associations between aberrantly high levels of citrullination and the development of autoimmunity,
neurodegeneration and cancer [14-16]. Conversely, lack of PADIs is associated with defects in
embryo development, neurodevelopment and infertility [10,17,18]. The involvement of deregulated
citrullination in disease has necessitated the development of biochemical, proteomic and
computational methods for its detection [5,8,19-22], as well as pharmacological approaches for its
inhibition [23,24], and important progress has been achieved in these areas.

A lot remains to be understood about the organismal functions of PADIs, the molecular and cellular
mechanisms that underlie their physiological roles and how these relate to the deregulation of the
modification in disease. Central to this is understanding the precise mechanisms of PADI activation
within cells in different physiological and pathophysiological contexts. This review will summarize
our current understanding, discuss some of the immediate open questions and provide a perspective
on the future outlook of the field.
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2. Distribution of citrullination across the tree of life and evolution
in animals—an evolutionary accident?

The distribution of PADIs across the tree of life is highly unusual and the PADI sequence has been subject
to extensive losses, modifications and duplications across evolution [25]. PADIs are present in some
bacteria and fungi and, although their functions in these organisms are completely unknown, they
have been shown to be catalytically active [25-27]. Paradoxically, PADIs are absent from yeast, worms
and flies, but are ubiquitous across vertebrates. Ray-finned fish have a single PADI gene, but
duplications down the vertebrate lineage have resulted in five paralogues in mammals. At least two
different PADI types can be found across life [25], the animal-type three-domain PADI and the
fungal-type, two-domain PADI. The animal-type PADI emerged during cyanobacterial evolution,
while the fungal-type PADI can be found in actinobacteria and other bacteria. This and other
complementary pieces of evidence, including phylogeny and sequence evolution rate analyses,
indicate that the ancestral cyanobacterial gene was introduced into animals by horizontal gene
transfer [25]. The cyanobacterial PADI is catalytically active and can citrullinate mammalian proteins
including histones, which are absent from bacteria, suggesting that the horizontal transfer event
introduced citrullination as a new catalytic activity in animals.



Two other types of enzymes can catalyse citrullination: pPAD, an extended agmatine deiminase B
found in the human pathogen Porphyromonas gingivalis [28] and gADI, an extended free L-arginine
deiminase found in the human parasite Giardia Lamblia [29]. These have evolved independently from
PADIs and are found in bacteria and some eukaryotic organisms [25]. Furthermore, a recent study
identified a protein with peptidylarginine deiminase activity in the plant Arabidopsis thaliana [30].
Protein At5g08170 was identified after searching the Arabidopsis thaliana genome for a protein
motif generated by aligning the catalytic core sequences of bacterial deiminases, after the authors
identified citrullinated proteins within the Arabidopsis proteome. It is unclear whether At5g08170
is a PADI homologue, since a comprehensive search for PADI orthologues across the tree of life
identified no PADI homologues in plants [25]. Regardless of this, however, At5g08170 was shown to
act in a calcium-dependent manner, similarly to PADIs, to citrullinate proteins with nucleic acid
functions, upon cold stress. The authors suggest that citrullination in plants is responsive to stress
and may be associated with cell reprogramming, although more evidence is required to support
this suggestion.

It is therefore intriguing that citrullination, as a catalytic function, has emerged in a variety of ways
across evolution (via PADIs, pPAD, gADI and At5g08170). Further research into the function of the
enzymes described above, in their corresponding host organisms, will ascertain whether they operate
via similar underlying molecular principles and have similar cellular functions across different species
(e.g. modulation of histone function or cellular reprogramming). This is a fascinating area of research
and an exciting next frontier for the citrullination field.
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3. Structure, sub-cellular localization, tissue distribution and substrate
specificities of PADIs—a PADI for nearly every cell

The PADI family enzymes exhibit high protein sequence homology, both between the five paralogues
(greater than 50%), as well as between orthologues from different mammalian species [4,25]. Human
PADIs consist of three structural domains, the N-terminal (PAD N, Pfam annotation: PF08526),
middle (PAD_M, Pfam annotation: PF08527) and catalytic C-terminal domain (PAD_C, Pfam
annotation: PF03068). PADI2, 3 and 4 are active as head-to-tail homodimers, where the N-terminal
domain of one monomer is in contact with the C-terminal domain of the other [3,4,31,32]. PADI1-4
are calcium-dependent and have highly conserved calcium binding and catalytic residues, while
PADI6 lacks some of the calcium-binding residues and the catalytic cysteine [3,4]. PADI6 is therefore
considered to be enzymatically dead and, to the author’s knowledge, no PADI6 protein substrates
have been identified to date.

PADIs differ in their sub-cellular localization and tissue distribution. PADI1, 3 and 6 localize in the
cytoplasm, PADI2 can shuttle between the cytoplasm and the nucleus and PADI4, the only PADI that
possesses a bona fide nuclear localization signal (NLS), is found predominantly in the nucleus [33,34].
Intriguingly, PADI4 has also been shown to be exposed on the cell surface of resting human
neutrophils and PADI2 to be released to the extracellular space by the same cells [35]. Although it
remains to be determined whether these findings translate across different cell types, they open new
possibilities regarding the regulatory scope of PADI2 and PADI4.

Under physiological conditions, PADIs show highly variable tissue-specific distribution. PADI1 is
expressed in the skin and the endometrium [36,37], while expression of the protein in the esophagus,
testis, kidney and cervix is also suggested in the Human Protein Atlas [38]. PADI2 expression is most
widespread and is found in the brain, uterus, spleen, pancreas, skeletal muscle and secretory
glands [39,40], while Human Protein Atlas additionally suggests expression in the human digestive
and gastrointestinal tract, kidney, bladder, testis and bone marrow [38]. In fact, Human Protein
Atlas suggests some level of PADI2 mRNA expression in virtually all tissues, making it possible
that all tissues have the potential for PADI2 expression under certain conditions, or within certain
cell sub-populations. The fact that PADI2, which is the ancestral vertebrate PADI paralogue [25],
is also the most widely expressed, may suggest that the remaining PADIs, which arose by
duplication, were selected during evolution to carry out specific functions. Support for this idea
comes from the finding that, while PADI2 expression in the pituitary is not indicated by the
Human Protein Atlas, it has been shown to increase in this tissue during the estrous cycle [41].
PADI3 expression is restricted mainly to the skin and hair follicles [42—44]. PADI4 (also known as
PAD V) is only strongly expressed in the bone marrow, spleen and blood, with highest expression
in monocytes and granulocytes and some expression in haematopoietic progenitor cells [33,45,46],



while emerging evidence demonstrates that it is also expressed in the uterus, sperm, oocytes and
mammalian embryos [10,47]. Like PADI2, however, data from Human Protein Altas suggests that
PADI4 mRNA is detectable at low levels in cell sub-populations of most tissues [38], suggesting that
its expression and, possibly activation, is possible upon certain stimuli. PADI6 (also known as ePAD),
is expressed in oocytes and mammalian embryos [48]. While PADIs show a well-defined tissue
distribution under physiological conditions, their tissue expression can be highly deregulated in
disease [49].

Although PADIs share high structural homology, they have different substrate specificities
in vivo [50,51]. The structural basis for substrate recognition specificities is not yet understood.
The differing substrate preferences may be a consequence of their differing sub-cellular localizations
and expression patterns, but may also be determined by whether conditions are permissive for
their activation in certain cellular contexts, for example, the presence of cofactors or inhibitory
interactions. We don’t have sufficient information at present to deduce general principles about
PADI target specificities, such as consensus amino acid sequence motifs, however our ever-
increasing understanding and advancements in proteomic and analytical methodologies, along with
better biochemical understanding of their regulation in vivo, is likely to yield these insights in the
years to come.
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4. Molecular and cellular functions requlated by citrullination—a small
family with a big reach

We are gaining an ever-increasing understanding of the molecular and cellular processes impacted by
citrullination. This knowledge has come both from large-scale proteomic studies, which have aimed to
deduce general principles through identifying the ‘citrullinome’ [5,6,8], as well as targeted studies that
have examined the role of PADIs and citrullination of specific substrates.

In a recent review, Genander et al. analysed published human citrullinomes of cells under resting
and inflammatory conditions and identified the gene ontology (GO) categories represented most
highly [52]. They demonstrate that, in resting cells, citrullinomes are enriched for proteins involved in
RNA metabolic processes and gene expression, while under inflaimmatory conditions they are
overwhelmingly enriched for GO categories relating to immune responses [52]. This may be a
manifestation of the magnitude of PADI activation achieved in the two different scenarios, while
it is also worth considering the conditions under which the citrullinome was measured. For example,
in studies that probed the citrullinome under conditions of aberrant activation (for example in
autoimmune disease or upon activation with broad stimuli, such as calcium ionophores), many
proteins that become citrullinated are not PADI targets under physiological conditions. In this respect,
we note that the GO categories found to be enriched within the citrullinomes of resting cells generally
comprise highly abundant proteins, such as cytoskeletal and ribonuclear proteins [52]. Advances in
mass spectrometric methods and associated computational analysis tools will undoubtedly lead to the
identification of low abundance substrates, or citrullination events that may be present in sub-
stoichiometric concentrations but nonetheless be functionally relevant, in the not too distant future.
A better understanding of the mechanisms that govern PADI activation in vivo, beyond inflammation,
will also allow researchers to tailor experiments so they reveal classes of PADI substrates that are
relevant in new contexts.

For the purposes of this review, the molecular and cellular processes impacted by PADIs, as have
been studied through specific protein substrates, are discussed.

4.1. Gene requlation

PADIs modulate gene expression in a number of ways: (i) via histone citrullination; (ii) via citrullination
of transcription factors and epigenetic regulators; and (iii) via citrullination of signalling mediators that
impact on gene expression. In addition, citrullination can modulate the likelihood and functional
consequences of other PTMs on neighbouring amino acids.

4.1.1. Histone citrullination

Core histones represent one of the prototypical PADI substrate classes [53] and citrullination of the
N-terminal tails of histones is intimately linked to transcriptional regulation. PADI4-mediated



citrullination of histone H3 at residues Arg2, Arg8 and Argl7 (H3R2/8/17) and histone H4 at Arg3
(H4R3) were initially shown to repress transcription through the pS2 promoter by antagonizing
CARM-1-mediated arginine methylation [54,55]. A subsequent study, which probed PADI4
localization and activity more globally, found that it is primarily associated with gene activation, as
PADI4 localizes near the transcriptional start sites of active genes and its binding correlates with the
binding of activating transcription factors, while it anti-correlates with repressive chromatin
modifications [16]. In addition, PADI2-mediated citrullination of histone H3 Arg26 (H3R26) has also
been shown to promote the transcriptional activation of estrogen receptor o (ERa) target genes in
breast cancer [56,57] and of interleukin 6 (IL-6) in multiple myeloma [58]. Further support for the role
of histone citrullination as a gene regulation mechanism comes from work in leukaemia cells, which
demonstrated that PADI4 acts as a co-activator of translocated in leukaemia 1 (Tall) through
citrullination of H3R2 [59]. Beyond mediating gene regulation, histone citrullination was also recently
shown to regulate non-coding RNA expression in pituitary cancers [60].

Although the above studies demonstrated disease-associated, aberrant PADI-mediated
transcriptional regulation, this has also been demonstrated in physiological contexts. A study of
normal canine mammary epithelial tissue suggested that PADI2-mediated H3 citrullination may
regulate lactation-related genes during diestrus [61]. Additionally, PADI2-mediated citrullination of
H3R26 mediates the expression of genes involved in oligodendrocyte differentiation [18], while
PADI4-mediated H3 citrullination regulates the expression of pluripotency genes in embryonic stem
cells [10].

Histone modifications act as a platform for the binding of transcriptional regulators. It is, therefore,
possible that citrullination ‘readers’ bind histone citrulline marks and direct transcriptional protein
complexes to specific genomic sites. Support for this mechanism comes from a study that showed that
citrullinated H3R26 (H3Cit26) is bound by the chromatin remodelling factor Smarcadl in pluripotent
stem cells [62]. On the other hand, citrullination can modulate the binding of transcription factors and
other chromatin-associated proteins to nearby histone marks and has been shown to work in
conjunction with lysine methylation and lysine acetylation. Citrullination of H3R8 reduces the binding
of heterochromatin protein 1 (HP1) to sites carrying trimethylation of H3 lysine 9 (H3K9me3), a
prototypical heterochromatic mark, resulting in de-repression of cytokine genes and human
endogenous retroviruses [63]. In addition, histone H3 citrullination was shown to be coordinated with
H3 lysine deacetylation, through association between PADI4 and histone deacetylase 1 (HDACI)
during repression of the pS2 promoter in cancer cells [64] and in haematopoietic progenitor cells [65],
suggesting that the crosstalk between citrullination and deacetylation may operate more broadly. It is
likely that many more instances of citrullinated-histone-associated factors and interplay between
citrullination and other PTMs will be uncovered in the future. Provided that PADI2 and PADI4 have
clear regulatory roles in development and disease, systematic approaches for the identification of
citrullination readers are warranted. In addition, it is exciting to consider how citrullination may play
into the ‘histone code’ [66].

Citrullination of linker histones impacts chromatin structure. PADI4-mediated citrullination of linker
HI at Argb54 (H1R54), which is positioned within the H1 globular domain, results in reduced association
with nucleosomal DNA and chromatin decondensation in mammalian embryonic stem cells and
neutrophils [10,67], while similar results have been obtained with the avian H1 orthologue, histone
H5 [68]. Citrullination of linker histones mediates both the local decondensation associated with a
transcriptionally permissive chromatin state, and the global and dramatic chromatin decompaction
associated with Neutrophil Extracellular Trap (NET) formation (discussed in detail below). The factors
that determine the degree of linker histone citrullination and the subsequent degree of chromatin
decondensation are unclear, however, it is likely that the nature or magnitude of PADI activation
differs between the two scenarios. As discussed above, understanding the mechanistic details of PADI
activation within the nucleus will not only allow us to understand this dichotomy but also potentially
allow us to manipulate the process to achieve a desired degree of chromatin decondensation.

4.1.2. Citrullination of transcriptional and epigenetic requlators

In addition to modifying histones, PADIs can regulate transcription via citrullination of transcription
factors and epigenetic regulators and by acting as transcriptional cofactors. PADI4-mediated
citrullination of Elk-1, a transcription factor and downstream target of MAPK-ERK signalling,
facilitates its phosphorylation by ERK2, which in turn increases its association with the histone
methyltransferase p300, ultimately leading to transcriptional activation of target genes [16].
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An independent study reported that, in 293T cells, PADI4 can target p300 directly, resulting in its [ 6 |
enhanced association with co-activator GRIP1 [69].

Additionally, citrullination can impact epigenetic state through modulation of the DNA
methyltransferases (DNMTs). In cancer cells, PADI4-mediated citrullination of the de novo
methyltransferase DNMT3a results in its stabilization and increased DNA methylation at certain
promoters [70]. Citrullination of DNMT3b has also been reported in mouse embryonic stem cells
[10], suggesting this may be a more widely applicable mechanism. Notably, citrullination of RNA
polymerase II (RNApolll) has been shown to impact on gene transcription [71]. In breast cancer
cells, PADI2 citrullinates the C-terminal domain (CTD) of RNApolll, which acts as a regulatory
hub where PTMs mediate the binding of auxiliary factors, determining polymerase progression
[72]. Citrullination of the RNApolll mediates its association with the positive transcription
elongation factor b (P-TEFb) kinase complex and its recruitment to chromatin, regulating
RNApolIl processivity.

It is unclear whether the above mechanisms operate in normal cells and are co-opted by cancer cells
upon positive selection of PADI upregulating mutations. An alternative scenario is that such
mechanisms only operate within transformed cells, where deregulated PADIs have the capacity to
acquire new protein targets (due to a breakdown in the regulation of their levels or activity) and
‘hijack’ additional molecular pathways. The above studies have generated sufficient knowledge and
novel reagents, such as citrullination-specific antibodies, to render possible comparative studies
between normal and cancer cells, allowing deeper understanding of how PADIs impact on cancer
initiation and progression.

Beyond studies in cancer cells, a significant amount of our current knowledge on citrullination-
mediated transcriptional regulation comes from studies of cytokine gene regulation in inflammatory
cells. PADI4-mediated citrullination of the transcription factor E2F1, cooperates with its acetylation
to enhance its binding to the BET family bromodomain reader BRD4 (bromodomain-containing
protein 4) [73]. This facilitates binding of E2F1 specifically to cytokine genes within granulocytes
during inflammation. Additionally, PADI4-mediated citrullination of the nuclear factor kB (NFxB) p65
promotes its nuclear localization and transcriptional activity by enhancing its interaction with
importin a3 [74]. The PADI4-mediated and enhanced transactivation activity of NFxB is specifically
targeted to inflammatory cytokine genes interleukin 18 (IL18) and tumor necrosis factor a (TNFa),
promoting inflammation. Additionally, PADI2 was shown to directly citrullinate transcription factors
GATA3 and RORyt and modulate their DNA binding activity, ultimately skewing T-cell differentiation
outcomes [75].
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4.1.3. PADI recruitment to chromatin

Although the effects of histone citrullination on transcription and chromatin compaction are well
documented and we are beginning to map the mechanisms underlying this type of regulation, the
mechanisms that govern the association of PADIs with chromatin remain unknown. PADIs do not
possess a bona fide DNA binding domain and we currently lack data that will allow us to ascertain
whether they preferentially associate with specific DNA sequences. Binding to specific genomic sites
may be mediated by the DNA sequence itself, by other histone modifications, or by association with
other transcriptional regulators or protein complexes. An example of the latter comes from studies
on the regulation of ERa-mediated transcription, where it was found that stimulation of breast
cancer cells with 17B-estradiol leads to association of PADI2 with ERa and recruitment of PADI2
to ERa target promoters [56]. Notably, in this system PADI2-mediated histone citrullination is
observed mere minutes after stimulation with 17p-estradiol and facilitates ERo binding to
chromatin, suggesting that it is one of the initiating events in ERa-mediated transcriptional regulation
[57]. It is therefore unclear at this point whether additional factors may mediate association of PADI2
with DNA, or whether this is mediated exclusively by ERa. The complexity of these scenarios,
coupled with the fact that chromatin-associated PADIs may, in principle, be catalytically active or
inactive under different conditions, necessitates detailed studies that will allow us to precisely
map PADIs and their activation across the genome under different cellular stimuli. This will
undoubtedly be facilitated by the generation of new and specific reagents, such as anti-PADI and
citrullination-specific antibodies.

In addition to modifying chromatin and associated proteins, PADIs may modulate the transcriptional
and epigenetic state of cells indirectly, through modulation of signalling pathways that affect DNA-based
events. The emerging role of citrullination in signal transduction is discussed next.



4.2. Cell signalling

A number of studies have started to integrate citrullination within cell signalling cascades. PADIs are
activated by inflammatory signalling and impact upon it. In addition to PADI-mediated
transcriptional regulation of cytokine genes, which is described above, citrullination of cytokines has
also been shown to biochemically regulate their function. PADI2 citrullinates chemokines CXCL10
and CXCL11 and reduces their chemoattracting capacity, as well as their ability to signal through the
chemokine receptor CXCR3, through a mechanism that’s independent of receptor binding impairment
[76]. Similarly, citrullination of CXCL8/IL-8 results in reduced CXCR2-mediated signaling [77], while
citrullination of CXCL12 at different sites differentially modulates its binding to receptors CXCR4 and
CXCR? [78]. Furthermore, TNF« citrullination leads to reduced production of chemokines CXCL8 and
CXCL10 [79]. The above findings seem paradoxical when considered against the strong association
between PADI activation, inflammation and inflammatory disorders, as well as the evidence for
PADI-mediated transcriptional activation of cytokine genes [58,63,73,74].

PADIs have also been implicated in signal transduction pathways that regulate cell growth,
invasiveness and the transition between the epithelial and mesenchymal states. PADI4 citrullinates
glycogen synthase kinase-3 (GSK3p) and mediates its translocation to the nucleus, thereby dampening
TGFB (transforming growth factor beta) signalling, while knock-down of PADI4in this system
promotes epithelial-to-mesenchymal transition and enhances the metastatic potential of cancer cells
[80]. In addition, PADI2 was shown to inhibit Wnt signalling through citrullination of B-catenin, which
enhances its degradation in a manner that’s independent of its GSK3B-mediated regulation [81]. These
two studies therefore describe anti-tumorigenic functions of PADI2 and PADI4, through dampening of
cancer promoting signal transduction pathways. On the other hand, it was shown that PADI1 is over-
expressed and may promote development of triple-negative breast cancer (TNBC) through direct
citrullination of MEK1 kinase and modulation of its potential to phosphorylate ERK1/2 [82]. A study by
the same laboratory showed that MEK1 is targeted by PADI2 in endometrial cancer and the citrullination
event promotes MEK1-mediated phosphorylation of ERK1/2, facilitating tumour progression [83].

The implication of citrullination in classical signal transduction pathways is both fascinating and
daunting and the fact that these pathways are highly pleiotropic may complicate, rather than clarify,
our understanding of the regulation and roles of PADIs. As discussed above, future efforts in the field
may build on these studies to assess whether PADIs impact on growth promoting signaling pathways
under conditions of homeostasis.

43. Cell and tissue structure

PADIs impact on cell and tissue robustness through citrullination of structural proteins. PADI1- and
PADI3-mediated citrullination of structural and intermediate filament-associated proteins such as
keratins, trichohyalin and filaggrin provide mechanical strength and contribute to the maintenance of
healthy skin and hair follicles, while their deregulation is associated with skin diseases such as
psoriasis [84-88]. PADI2-mediated citrullination of the ECM protein Fibulin-5 protects it from
proteolytic degradation and maintains elastogenic tissue function in the lungs [89]. Furthermore,
citrullination of collagen type I is thought to mediate mesenchymal-to-epithelial transition [90],
promoting cancer metastasis, while citrullination of fibronectin was also shown to promote cell
invasion through altering integrin-mediated signalling [91]. Similarly, citrullination of collagen type II
modulates its binding to integrins and decreases cell adhesion [92]. Finally, PADI6 localizes to the
intermediate filament structures of oocytes and mediates cytoskeletal integrity [48,93].

Another type of structural protein whose function is regulated by citrullination is Myelin Basic
Protein (MBP), a major constituent of the nerve myelin sheath and essential in the transmission of
action potentials and motor function [94]. A significant body of work has determined that the correct
level of citrullination is essential for proper MBP function. Aberrantly high levels of MBP
citrullination are associated with the development of multiple sclerosis (MS) and have been shown to
lead to destabilization of the myelin sheath [15,95].

The above studies demonstrate that precise regulation of PADI activity is essential for the
maintenance of healthy tissue function. PADI inhibition has been suggested as a therapeutic strategy
for autoimmune and neurodegenerative disorders, as well as cancer, due to the fact that these disease
states are typically associated with aberrantly high levels of citrullination. However, caution is
warranted to ensure therapeutic interventions that perturb the activity of PADIs are developed on
solid understanding of their roles in tissue physiology.
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4.4, Emerging functions

Recent work has implicated citrullination in a number of new biological processes. These are discussed
briefly below.

447, Cell metabolism

A study published last year showed that PADI1- and PADI3-mediated citrullination of the glycolytic enzyme
pyruvate kinase M2 (PKM2) alters its binding to amino acids and promotes glycolysis in cancer cells [96]. A
more recent study showed that citrullination of glukokinase leads to reduction of its catalytic activity and
results in reduced insulin secretion in response to glucose stimulation [97]. These are, to the author’s
knowledge, the first reports that mechanistically link protein citrullination to the regulation of metabolic
pathways. However, the first study identified several citrullinated proteins within the glycolytic pathway,
opening up the possibility that PADIs can impinge on cellular metabolism more broadly.

4.4.2. RNA biology

Another recently reported function of citrullination is in RNA metabolic processes. As mentioned above,
proteins within the GO categories relating to RNA biology are highly represented within citrullinome
datasets [52], but a functional role for PADIs in such processes has not been studied widely.
Citrullination of the splicing factor PSF was shown to regulate its binding to mRNA [98]. In this
respect, it is notable that a significant subset of citrullinated proteins identified in one study contain
the RG/RGG RNA binding motif [9]. This particular study showed that PADI4-mediated
citrullination inhibits arginine methylation of those proteins and prevents their aggregation. However,
these findings open the possibility that citrullination of RNA binding motifs may be a more general
mechanism of regulating the function of protein-RNA binding.

The fact that conversion of arginine to citrulline removes a positive change, which would be predicted
to modulate interactions with charged molecules such as nucleic acids or certain charged metabolites,
suggests that wider roles of citrullination in the regulation of metabolism or RNA-mediated processes
are plausible. Formal experimentation will determine whether this is indeed the case and whether
such mechanisms operate under physiological conditions or only become relevant under conditions of
PADI deregulation.

4.4.3. Autophagy

Functional links are also emerging between citrullination and autophagy. Induction of autophagy has
been shown to lead to activation of PADI4 and generation of citrullinated neo-epitopes that are
associated with autoimmunity [99], while processing of proteins via autophagic vesicles was shown to
lead to the generation and presentation of citrullinated peptides specifically, by antigen presenting
cells, synoviocytes and fibroblasts [99,100]. It is not understood how activation of autophagy leads to
citrullination. PADI activation within autophagic vesicles may be a result of increased local calcium
availability, however further investigation is required to ascertain whether specific autophagy-
associated signalling can modulate PADI activity. On the other hand, PADIs have been implicated in
the regulation of autophagy [101-103], suggesting that PADI activation may happen independently of
autophagy signalling. Understanding the mechanistic details of the interplay between autophagy and
citrullination may provide new ways of modulating autophagy in cancer therapy and new avenues of
alleviating tissue destruction in autoimmunity.

5. Citrullination in health and disease—the virtue and the vice

The last decade has seen significant progress in our understanding of the physiological functions of PADIs
in health and disease. Depending on their tissue distribution, different PADIs have been shown to
modulate the innate immune response, skin homeostasis, nerve myelination, stem cell biology, fertility
and reproductive functions (figure 1). Conversely, deregulation of PADI levels or PADI activating
pathways may lead to a breakdown in the tight regulation of PADI enzymatic activity and result in the
non-physiological citrullination of additional proteins and disruption of their normal functions. This is
illustrated in the fact that aberrant PADI activity is associated with an increasingly broad array of
diseases, from autoimmunity and neurodegeneration to atherosclerosis and cancer (figure 1).
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Figure 1. Organismal functions of citrullination in physiology and disease. (a) Under physiological conditions, PADIs are activated in
response to stimuli such as infection, hormone stimulation, developmental signals and, possibly, hypoxia. Depending on their tissue
expression, PADIs can regulate skin homeostasis, nerve myelination, immune responses and embryo development. PADI6, which is
considered to be catalytically inactive, is not included in this schematic. (b) When one of the activating signals or the level of PADI
activity are derequlated, aberrant levels of citrullination can underlie the development of skin disorders, multiple sclerosis, cancer
progression, metastasis and autoimmunity. Deregulation of NETosis can exacerbate autoimmunity, cancer metastasis and tissue
destruction associated with a number of disease states. Lack of PADI6 leads to compromised female fertility.

5.1. Neurobiology and neurodegeneration

Citrullination has been studied both in the context of central nervous system (CNS) physiology and
neurodegeneration [94]. PADI2 is the most highly expressed PADI in the brain and CNS [18,104]. Its
function as a transcriptional regulator is required for oligodendrocyte differentiation, while a tightly
regulated level of citrullination of MBP maintains myelin sheath stability, as demonstrated by the fact
that PADI2-KO mice display motor dysfunction [18]. On the other hand, aberrantly high levels of
MBP citrullination also destabilize myelin and are thought to underlie the development of MS, as
described above. This is supported by in vivo studies, which demonstrated that mice that over-express
PADI2 in oligodendrocytes exhibit myelin loss [15]. In addition, PADI-mediated inflammation in the
brain and PADI4-mediated transcriptional deregulation in oligodendrocytes have also been suggested
as mechanisms underlying the development of MS [105]. In this respect, PADI inhibition has been
suggested as a therapeutic strategy against MS [106]. Aberrantly high levels of citrullination have also
been associated with neurodegenerative disorders such as Alzheimer’s and prion diseases [107,108],
however, a clear mechanistic understanding of how PADI deregulation may mediate disease
progression in these cases still needs to be developed.

5.2. Skin homeostasis and skin diseases

A detailed review of the roles of PADIs in skin homeostasis and discussion of PADI-mediated
mechanisms that may underlie skin diseases has recently been published elsewhere [109]. Briefly,
PADI1 and PADI3 are expressed in the epidermis and hair follicles, where they mediate skin cell

571022 6 S tadg 205 'y sosy/jeunol/bioBusygndisaposiefor g



[ ] histone citrullination
LPS active\V
interleukins PADI4 Cit

TNFo
\ - L r _, response

T : . to infection
- ; inflammatory

o —— o cytokines,
- == TNFo

neutrophil

[&] histone
active hypercitrullination

interleukins | PADI4 rheumatoid arthritis

TNFo 2%
\>© o tissue lupus erythematosus
SR

inflammation ulcerative colitis
— and
inflammatory autoantigen SEps1s
histones i .
feedback DNA production atherosclerosis
Proteases cancer metastasis

Figure 2. Modes and outcomes of PADI4 activation in the immune system. Schematic representation of the outcomes of PADI4
activation in neutrophils. Upon infection, active PADI4 can citrullinate histones to mediate transcriptional activation of
inflammatory cytokines. Increased inflammatory signalling can lead to histone hypercitrullination and NETosis, which can cause
tissue destruction and exacerbate a number of pathologies.

differentiation and maintain epidermal barrier function through citrullination of skin structural proteins
[86]. It is not yet clear whether histone citrullination-mediated transcriptional regulation has a role in skin
differentiation and homeostasis [52]. Genetic Polymorphisms of PADI3 are associated with skin disorders
such as uncombable hair syndrome and certain forms of alopecia [110,111], while reduced levels of
keratin K1 citrullination are thought to compromise skin structure and are associated with psoriasis
and atopic dermatitis [87].

5.3. Reproductive biology, fertility and embryo development

PADIs have a regulatory role in the female reproductive system [112]. As described above, PADI6 is
specific to the oocyte and is essential for female fertility through maintaining the stability of the
oocyte cytoskeleton [48,93]. PADI2 and PADI4 have been shown to regulate the expression of insulin-
like growth factor-binding protein 1 (IGFBP1) in response to progesterone, in the uterine cells of
pregnant sheep [113,114]. As IGRBP1 is important for embryo implantation, it is suggested that PADI
activity is important for the establishment of pregnancy. Further indication that PADIs may regulate
female fertility comes from the finding that PADI2 expression in the mouse pituitary shows cyclic
expression according to the estrous cycle [41].

Citrullination also plays a role in embryo development. PADI4 and citrullinated H3 are detectable in
the mouse and pig pre-implantation embryo from the two-cell-stage onwards and PADI inhibition
leads to a reduction in the number of pluripotent cells of the Inner Cell Mass (ICM), while PADI4
also regulates the expression of pluripotency genes in embryonic stem cells [10,115-117]. PADI4-KO
mice are viable, but are born with skewed Mendelian ratios [118], suggesting that loss of PADI4
compromises embryonic development. It is possible that the loss of PADI4 is compensated by one of
the other PADI members, for example PADI2 which can also mediate some of the same
transcriptional mechanisms [18], however mouse models that are null for more than one PADI are
required to ascertain this.

5.4. Immunity, inflammation and autoimmunity

One of the best-established functions of protein citrullination is in immune responses and sterile
inflammation (figure 2). PADI4 is most prominently expressed in neutrophils and other leucocytes
and can mediate immune signalling via transcriptional and biochemical regulation of cytokines [74].
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Furthermore, PADI4 is strongly activated during the innate immune response to infection and mediates [ 11 |
NETosis, a process of inflammation-induced cell death, which involves profound decondensation and
release of chromatin from neutrophils [119]. PADIs also impact adaptive immune responses through
the regulation of T cell differentiation. As mentioned above, PADI2-mediated citrullination of
transcription factors GATA3 and RORyt affects T cell responses by modulating the relative numbers of
helper T cell sub-populations and, consequently, tissue inflammation [75]. Recent work suggested that
differentiation of helper T cells is also affected by NET-associated extracellular histones [120], a
process likely mediated by citrullination.

Citrullination is also inextricably associated with autoimmunity. The Padi4 gene falls within a
susceptibility locus for Rheumatoid Arthritis (RA), and certain single nucleotide polymorphisms are
associated with the disease [14]. The adaptive immune system reacts specifically to citrullinated
peptides of endogenous proteins and presentation of these modified peptides by Major
Histocompatibility Complex (MHC) molecules on antigen-presenting cells elicit highly specific T cell
responses [121], which are thought to be associated with autoimmunity. Citrullinated peptides have
also been shown to bind with higher affinity to certain HLA alleles, which are associated with
susceptibility to RA [122], providing a mechanistic basis for the strong links between citrullination
and autoimmunity, however more recent work has demonstrated that this may not a universally
applicable explanation [123]. Autoantibodies against citrullinated versions of such proteins (anti-
citrullinated protein autoantibodies, or ACPA) serve as diagnostic and prognostic RA biomarkers and
their presence is associated with faster progressing and more destructive disease [124], while similar
autoantigens have also been associated with lupus erythematosus and other autoimmune disorders [67].
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5.5. NETs and NET-associated pathologies

NETosis constitutes a fast and effective response to infection, however, the deregulation of this process
and associated release of inflammatory cytokines, proteases and active PADIs to the extracellular
space, are highly destructive for the surrounding tissue and have been associated with the
exacerbation of a remarkable array of pathologies, including RA, lupus erythematosus, ulcerative
colitis, inflammatory bowel disease, atherosclerosis, sepsis, type I diabetes and severe Covid-19
(reviewed recently in detail in [125]) (figure 2).

A large body of literature suggests that PADI4 activation is an essential step and operates in the early
stages of NETosis [68,118,126,127]. However, detailed imaging methods developed recently have mapped
the sequence of events that take place during NETosis and suggest that histone citrullination is a late, rather
than initiating event [128,129]. More recently, it was suggested that citrullination does not mediate NETosis
in neutrophils, but modulates the binding of histones to Toll-like receptors, thereby mediating downstream
signalling [130]. Additionally, a significant number of studies have shown that NETosis can progress in a
PADI4-independent manner [131,132]. While some of these studies may be complicated by the stimuli used
to induce NETosis in the different studies [133,134], in vivo experiments that examined the role of PADI4 in
NETosis associated with bacterial infection, diabetes, sepsis and cancer, among others, show that PADI4
inhibition interferes with the ability of neutrophils to release NETs [118,135,136]. As a result, PADI4
inhibition has been studied extensively as an approach to alleviate NET-associated pathologies that
manifest in diabetes, sepsis, infection-induced lung injury, age-related cardiac fibrosis, deep-vein
thrombosis and myocardial ischemia [137-142].

5.6. Cancer

A substantial body of work draws a strong association between PADI deregulation and cancer. Evidence
suggests that PADIs can impact on tumour development through modulating cell signalling, transcription
and the extracellular matrix (ECM), thereby regulating growth, apoptosis and the epithelial-to-
mesenchymal transition. PADI2-mediated transcriptional regulation is associated with the development
and metastasis of breast, gynecological and prostate cancers [60,143,144]. PADI4 is detected in the blood
of cancer patients and in a large array of malignant tumours whose normal tissue and benign tumour
counterparts lack PADI4 expression, while metastatic tumours exhibit significantly higher PADI4
expression than the corresponding primary tumours [49,90,145]. This suggests that cells that aberrantly
upregulate or activate PADI4, either through genetic mutation or deregulation of PADI4-activating
signalling pathways, have a growth advantage and are selected during cancer development and
metastasis. This has been mechanistically attributed to PADI4-mediated remodelling of the ECM and
initiation of metastatic colony formation [90]. In addition, PADI4-mediated regulation of gene



transcription has been shown to interfere with apoptosis and growth arrest in cancer cell lines [146-148]. [ 12 |
An expanding body of literature also suggests that PADI4 may have an indirect role in supporting cancer
progression, through the promotion of NETs [149]. Importantly, these studies showed that loss of PADI4 in
mice reduced both NETSs formation and cancer metastasis [150,151]. The above studies suggest that when
PADIs act to promote cancer their activation is co-opted by existing and emerging tumors rather than
acting as a tumour-initiating event. However, some evidence also exists to suggest that PADI2 over-
expression can act as a tumour initiating mechanism [152].

On the other hand, PADIs have also been suggested to have anti-tumour effects. PADI2 has been
shown to mediate the action of an anti-cancer compound that acts through the dampening Wnt
signalling [81], while PADI4 was shown to inhibit epithelial-to-mesenchymal transition [80].
Additionally, PADI4 has been suggested to act as a tumour suppressor as Padi4-null mice showed
resistance to DNA damage-induced apoptosis in the thymus and H4R3 citrullination was associated
with smaller tumour size in a cohort of non-small cell lung carcinoma patients [153]. However, this
study did not detect a significant association between levels of H4R3 citrullination in the tumours and
increase in patient survival. While PADIs cannot be broadly and unequivocally summarized as pro-
or anti-tumourigenic factors, the field has amassed enough evidence to warrant the serious
consideration of PADI inhibitors in cancer therapy, especially for late stage and metastatic cancers.

Beyond modulation of PADI activity as an approach to cancer therapy, an emerging body of work
suggests that citrullination may be exploited in the development of anti-cancer vaccines [154].
Citrullinated epitopes of endogenous proteins such as vimentin have been found to be presented by
cancer cells, in addition to antigen-presenting cells [155]. The authors demonstrated that
immunization with a citrullinated vimentin peptide resulted in a specific T cell response and
increased the survival of tumour bearing mice [156].

The studies discussed above collectively demonstrate that inhibition of PADIs, and PADI4 more
specifically, holds significant promise as a therapy for a large array of clinical conditions. Indeed, significant
effort has been devoted toward generating potent and specific PADI inhibitors [24,101,127]. The
demonstration that loss of PADI4 function in the haematopoietic system, where it is most highly expressed,
has no adverse effects for normal haematopoiesis in mice [46], suggests that PADI4 inhibition may be well
tolerated and increases the urgency for the development of inhibitors suitable for clinical use.
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6. Understanding requlation of PADI activity in vivo—how to exalt
the virtues while keeping the vices at bay

Given the strong association between aberrantly high levels of citrullination and disease states such as
autoimmunity, neurodegeneration and cancer [24], it is important to consider the mechanisms that govern
PADI activation, how they may operate in different cellular contexts and how they may be deregulated in
disease. An important open question in citrullination biology is how PADIs are regulated in vivo.

PADI1-4 are calcium-dependent enzymes and their activation mechanisms have been mapped in great
detail in vitro, showing that calcium binding is an obligatory step in generating the active cleft [3]. PADI4 is
bound by five calcium ions, which induce the activity of the enzyme by greater than 10°-fold [3]. Elegant
structural and biochemical studies of PADI2 by Slade et al. have shown that calcium binding sites are
bound by si calcium ions in a stepwise fashion and identified a calcium switch that exposes the enzyme
active site and positions the catalytic cysteine, rendering the enzyme greater than 7 x 10°-fold more
active [4]. The putative calcium switch residues are highly conserved among PADI1-4, suggesting that
the calcium switch is a universal activation mechanism.

Within a cellular context, PADI activation is tightly regulated and it is possible for the enzyme to be
expressed but catalytically inactive. For example, neutrophils express robust amounts of PADI4 but
citrullination is undetectable until the cells are stimulated with a calcium ionophore or inflammatory
stimuli such as TNFa and lipopolysaccharide (LPS) [157]. The calcium concentration necessary to
activate PADIs in vitro is at least 10-fold higher than reported intracellular calcium concentrations,
which reach up to 10 pM [158]. While activation is likely to be temporally and spatially controlled, it
is as yet unclear whether PADIs are always activated as a result of local calcium influx or whether
their activation is subject to allosteric regulation. Opening of calcium channels can lead to local
calcium concentrations in the micromolar range [159,160] and this would be sufficient to activate
catalysis. Indeed, it is known that some of the inflammatory stimuli that lead to PADI4 activation in
neutrophils, such as chemotactic peptides, incite a calcium influx and a similar mechanism has been
attributed to progesterone-dependent PADI2 activation in breast cancer cells [114,161]. However, it is



unclear how PADIs may be recruited to the proximity of high calcium areas, especially when considering [ 13 |
PADI activation within the nucleus, as in the case of PADI4- or PADI2-mediated citrullination of histone
proteins [54,55].

An alternative mechanism involves allosteric regulation. Binding to a cofactor, such as an interacting
protein or complex, may elicit a conformational change that mimics the calcium switch by exposing the
catalytic cysteine, thus rendering catalysis possible in intracellular calcium concentrations. Support for
this mechanistic scenario comes from studies that showed that RA-specific autoantibodies against
PADI4 bind near the calcium switch site and lower the calcium concentration required for activation
[162,163]. Similarly, it is plausible that the cell signalling pathways that are engaged under conditions
of PADI activation result in PTMs that confer a similar structural change. It has been suggested that
autocitrullination of PADI4 occurs during neutrophil activation and alters its catalytic activity [164],
while the heavy involvement of kinases within the inflammatory signalling pathways that are known
to lead to PADI activation makes it likely that phosphorylation events and other PTMs have a
regulatory role. In breast cancer cells, PADI4-mediated citrullination of the transcription factor Elk-1
happens upon stimulation with Epidermal Growth Factor (EGF), suggesting that PADI4 may be
activated by a component of EGF signalling [16], although it is yet unclear from this study whether it
is the catalytic activity of PADI4, or its association with Elk-1 that is regulated in this manner.
Similarly, ATP-dependent PADI2 activation in mast cells is mediated by the kinases p38 MAPK and
PKC, supporting the possibility that PADI2 activation is modulated by phosphorylation [165].

Understanding the biochemical mechanisms that lead to PADI activation requires the identification of
the precise conditions and cell stimuli that elicit a citrullination response. In this respect, the fields of
neutrophil activation and inflaimmatory signalling offer fertile ground for investigation, although
significant progress in this regard has been impeded by the seeming heterogeneity and differing
outcomes of neutrophil responses depending on the experimental context, as well as variability in the
antibody reagents typically used to access PADI4 activation [166].

A recently reported context of PADI4 activation is likely to provide additional research avenues in this area.
Wang et al. discovered that PADI4 is activated under hypoxic conditions and mediates hypoxia-inducible factor
(HIF) dependent transcriptional regulation in cancer cells [167]. Although the activation is closely associated
with hypoxia-mediated upregulation of PADI4, kinetic experiments in this study also report conditions
under which PADI4 activation is observed within a few hours of the hypoxic stimulus and before any
appreciable upregulation of the protein. This suggests that hypoxia leads to the enzymatic activation of
PADI4, as well as its upregulation. Disentangling the catalytic and transcriptional/translational regulation of
PADIs will be a key step toward understanding mechanisms of allosteric regulation and hypoxic stimuli
may provide a cleaner system than growth promoting or inflammatory signalling.

A study published earlier this year identified that cytomegalovirus infection elicits upregulation and
activation of PADI2 and PADI4 and consequent citrullination of a wide range proteins [168]. The timing
of PADI activation in this context makes it difficult to ascertain whether viral infection regulates the
catalytic activity of PADIs, or whether the citrullination observed is due to increased levels of the
enzymes. However, more detailed temporal studies in this context may provide an additional useful
system in which to study PADI activation.

An alternative, but not mutually exclusive, possibility is that PADIs are subject to inhibitory PTMs,
which are removed or reversed under activating conditions. A study by Chang et al. reported that
association with the protein tyrosine phosphatase PTPN22 suppresses the catalytic activity of PADI4
and subsequent NETosis [169]. Although in this context PADI4 inhibition is not mediated via the
phosphatase activity of PTPN22, it is possible that association with other phosphatases or other
PTM-reversing regulates PADI activity.

An exciting possibility is that detailed understanding of the mechanistic principles of PADI activation
and how they differ between physiological and disease conditions may enable the design of a next
generation of therapeutics based on modulators that will achieve precise perturbation or activation of
citrullination. It will therefore be a valuable endeavour for the field to pursue studies that will
delineate the cellular conditions, signalling pathways and biochemical mechanisms that underlie PADI
regulation in physiology and disease.
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7. Discussion

PADI enzymes are ubiquitous across vertebrates and are becoming increasingly appreciated as key
regulators in many aspects of mammalian physiology. They are absent from classical model



organisms such as yeast, worms and flies [25] and, arguably, this has impeded progress into [ 14 |
understanding the physiological functions of citrullination, as the field wasn’t afforded the rich
information that can be derived from systematic genetic screens. The discovery that PADIs arose in
animals by horizontal gene transfer leads us to think about citrullination and its roles in animal
biology in a new light. The fact that the PADI sequence was not only retained throughout vertebrate
evolution, but duplicated multiple times, suggests that citrullination confers a fitness or survival
advantage to animals. While there is still a lot to understand regarding the physiological functions of
PADIs, an explanation for their retention may be the role of citrullination in the defense against
infection. Indeed, it has been suggested that genes that are horizontally transferred from bacteria may
augment the innate immune functions of eukaryotes [170]. Alternatively, the emerging role of
citrullination in mammalian embryonic development [10,109,110] may explain the selective pressure
for retaining the sequence. A notable insight into this question is offered by a recent study in fish.
Golenberg et al. deleted the single PADI in zebrafish and found that this protein regulates wound
healing and fin regeneration [171]. It is not yet known how the PADI-null zebrafish respond to
infection and it is possible that PADIs have acquired different roles, even throughout animal
evolution. However, we can safely assume, and indeed we are starting to appreciate, that some of
their functions are of fundamental importance in animal physiology.

The future is undoubtedly bright for citrullination research and we can predict that the field will see
yet greater progress in the short- and mid-term, as researchers are building ever more specific and
powerful tools for the manipulation of PADIs and the detection of their activation, as well as animal
models where their function is perturbed. It has been pleasing to see that citrullination was
highlighted as one of the PTMs that are likely to have a significant impact in the field of signal
transduction, in an editorial on ‘“The Future of Signaling” a few years back [172].
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8. Outlook

Some questions are largely unresolved and it is the author’s view that the following are of immediate
importance: Firstly, is citrullination a bona fide signal transduction mechanism, one that mediates the
translation of environmental cues into transcriptional and epigenetic changes in normal physiology?
Secondly, what determines ‘normal’ versus ‘pathogenic’ levels of citrullination in a tissue? Is it the
magnitude, or the nature of the activating signal that is altered in the various pathologies exacerbated by
aberrant citrullination? If it is the mechanism, can we exploit this in disease therapy? Thirdly, the long-
standing question on the elusive reversing mechanism: after a stimulus that induces citrullination, for
example of histones, the citrulline mark disappears with time [54]. Is this due to the existence of a
citrullination ‘eraser’, akin to a phosphatase or deacetylase? Or is citrullination only lost through
degradation and recycling of the modified protein? And lastly, can we map specific residues or regions
within PADIs that may be perturbed to achieve certain outcomes, for example a constitutively active
PADI, or one that only responds to certain stimuli? We can dare to speculate that, by continuing to build
upon current knowledge and moving towards precise biochemical understanding of PADI activation and
substrate engagement mechanisms, it will be possible to answer these outstanding questions.
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