Skip to main content
. Author manuscript; available in PMC: 2022 Jun 8.
Published in final edited form as: J Health Econ. 2018 Jun 19;60:142–164. doi: 10.1016/j.jhealeco.2018.06.005

Table 5 –

Standard Deviation of Coding by Type of Hospital

(1) (2) (3) (4) (5)
Statistic Std Dev Std Dev Std Dev Std Dev N
All Hospitals 0.199 0.151 0.151 0.160 2,341

By Ownership

 Government 0.222 0.163 0.162 0.141 392
 Non-Profit 0.191 0.147 0.147 0.167 1,571
 For-Profit 0.192 0.143 0.143 0.143 378
By Location

 Rural 0.229 0.171 0.170 0.190 525
 Large Urban 0.192 0.146 0.145 0.146 988
 Other Urban 0.182 0.142 0.141 0.151 828
By Size

 Upper Tercile 0.174 0.137 0.137 0.129 780
 Middle Tercile 0.184 0.141 0.141 0.143 775
 Lower Tercile 0.227 0.168 0.167 0.196 786
By Teaching Status

 Non-Teaching 0.206 0.154 0.153 0.159 1,459
 Major Teaching 0.183 0.146 0.146 0.129 237
 Minor Teaching 0.182 0.141 0.141 0.168 645
By EMR Type

 None 0.184 0.143 0.143 0.135 151
 Basic 0.207 0.155 0.154 0.151 1,175
 Advanced 0.186 0.143 0.143 0.171 1,015
By Hospital-Physician Integration

 None 0.201 0.151 0.150 0.180 714
 Contract 0.188 0.145 0.145 0.129 392
 Employment 0.191 0.147 0.147 0.164 821
Patient Controls None Admission Full Full
Physician Controls None None None FE

Each row shows the standard deviation in coding score for a different partition of hospitals (hospital counts, which apply to columns 1–4, shown in column 5). Column 1 uses no controls to calculate the hospital effects. Column 2 adds controls for patient characteristics observable upon admission, and column 3 adds histories of chronic conditions. Column 4 adds physician fixed effects. All results are adjusted for sampling variation.